Interaction morphisms

Tarmo Uustalu, Inst. of Cybernetics, Tallinn joint work with Shin-ya Katsumata, Kyoto University

Theory Days at Lilaste, 13-16 October 2016

Motivation

- What is a systematic way to go about running effectful computations (in functional programming), handling effects, reducing effects to manipulation of state?
- U. (MFPS 2015): stateful runners.
 The theory is centered around associating to a monad a comonad going via the (generally large) Lawvere theory corresponding to the monad.
- This talk: interaction morphisms as a more abstract approach.
- On a higher-level, this is a functional programmer's take on certain types of protocols of two-party communication (must be closed under sequential composition of sessions).

This talk

- Interaction morphisms
 as an abstract way to specify environments capable of
 handling effects in computations and how they do it
- Their relationship to runners of effects . . .
- ...and to monad morphisms

Interaction morphisms: Examples

•
$$TX = S \Rightarrow S \times X$$
, $DY = S \times (S \Rightarrow Y)$

$$\theta_{X,Y}: \underbrace{(S \Rightarrow S \times X)}_{TX} \times \underbrace{(S \times (S \Rightarrow Y))}_{DY} \to X \times Y$$

• $TX = S \Rightarrow S \times X$, $DY = C \times (C \Rightarrow Y)$ in the presence of get : $C \rightarrow S$, put : $C \times S \rightarrow C$ satisfying the *lens* laws

$$\theta_{X,Y}: \underbrace{(S \Rightarrow S \times X)}_{TX} \times \underbrace{(C \times (C \Rightarrow Y))}_{DY} \to X \times Y$$

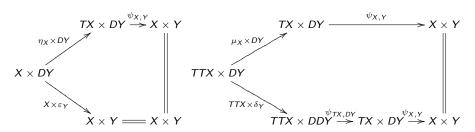
• $TX = \mu Z. X + \Sigma s : S.(P s \Rightarrow Z),$ $DY = \nu Z. Y \times \Pi s : S.P s \times Z$

Interaction morphisms

- Given a monad $T=(T,\eta,\mu)$ and a comonad $D=(D,\varepsilon,\delta)$ on a category with finite products (or, more generally, a monoidal category).
- An interaction morphism between T, D is a nat. transf. ψ with comps.

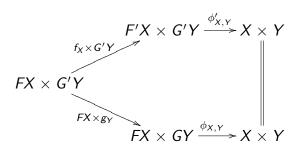
$$\psi_{X,Y}: TX \times DY \to X \times Y$$

satisfying



Interaction morphisms as monoids

- Interaction morphisms are monoids in a suitable monoidal category (just as monads, comonads).
- An object in this category is a pair of functors F, G, with a nat. transf. ϕ with comps. $\phi_{X,Y}: FX \times GY \to X \times Y$
- A map between (F, G, ϕ) , (F', G', ϕ') is a pair of nat. transfs. $f: F \to F'$, $g: G' \to G$ such that



Runners

- ullet Given a monad T on a category \mathcal{C} .
- A runner of T is an object Y with a nat. transf. θ with comps.

$$\theta_X: TX \times Y \to X \times Y$$

satisfying

 More concisely, a runner of a monad T is an object Y together with a monad morphism from T to the state monad for Y.

$$\frac{TX \times Y \to X \times Y}{TX \to \underbrace{Y \Rightarrow X \times Y}_{\text{SYY}}}$$

Interaction morphisms and runners

 Interaction morphisms between T, D are in a bijection with carrier-preserving functors from coalgebras of D to runners of T.

$$(i(\psi)_X^{Y,\gamma} = TX \times Y \xrightarrow{TX \times \gamma} TX \times DY \xrightarrow{\psi_{X,Y}} X \times Y$$

$$(i^{-1}(\theta))_{X,Y} = TX \times DY \xrightarrow{\theta_X^{DY,\delta_Y}} X \times DY \xrightarrow{X \times \varepsilon_Y} X \times Y$$

Interaction morphisms and monad morphisms

• Given a comonad D on C, we can turn it into a monad $\lceil D \rceil$ by

$$\lceil D \rceil X = \int_Y DY \Rightarrow X \times Y$$

(because $\lceil - \rceil : [\mathcal{C}, \mathcal{C}]^{\mathrm{op}} \to [\mathcal{C}, \mathcal{C}]$ is lax monoidal, hence sends monoids to monoids)

• Interaction morphisms between T, D are in a bijection with monad morphisms between T and $\lceil D \rceil$, i.e., nat. transfs. $\tau: T \to \lceil D \rceil$ satisfying certain equations.

$$\frac{\theta_{X,Y}: TX \times DY \to X \times Y}{(\operatorname{cur}\theta)_X: TX \to \underbrace{\int_Y DY \Rightarrow X \times Y}_{\Gamma D \cap X}}$$

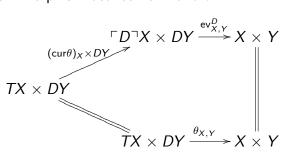
Interaction morphisms and monad morphisms

ullet The obvious natural transformation ev^D with components

$$\operatorname{ev}_{X,Y}^D : \underbrace{\left(\int_Y DY \Rightarrow X \times Y\right)}_{\lceil D \rceil X} \times DY \to X \times Y$$

is an interaction morphism.

• The monad morphism $\operatorname{cur}\theta$ is the unique interaction morphism morphism between ev^D and θ .



Summing up

- Interaction morphisms seem (from the categorical point of view) a natural concept with neat properties.
- They also seem to be a good abstraction for analyzing running/handling of effects.
- Alternatively, they are way to talk about communication protocols of two parties over a channel and the duality involved.
- Lots of cool category theory still to be worked out.