
The Best of Both Worlds

J. Garrett Morris
Garrett.Morris@ed.ac.uk

Two of my favorite things

2

By their powers combined

𝜆𝑥. 𝜆𝑦. 𝑥

– Types of arguments: 𝑥 can be instantiated freely, 𝑦 can

only be unrestricted

– Type of 𝜆𝑦. 𝑉 depends on type of 𝑉: if 𝑉 is linear,

function must be as well

3

By their powers combined

𝜆𝑥. 𝜆𝑦. 𝑥 ∶ ቊ
𝑡 →• 𝑢 →∘ 𝑡 if 𝑢 un
𝑡 →• 𝑢 →• 𝑡 if 𝑡, 𝑢 un

– Types distinguish whether functions can be copied or

discarded

– Central problem: generic combinator programming

with multiple function types

4

The quill is mightier…

We introduce a Qualified Linear Language

– Integrates linear and polymorphic functional

programming, using predicates on types

– Principal types (and decidable type inference)

– Conservative extension of existing functional (term)

languages.

Builds on recent work on functional linear

programming:

– Mazurak et al., “Lightweight linear types in System 𝐹∘”

– Tov & Pucella, “Practical Affine Types”

5

Linearity and overloading

𝜆𝑥. 𝑥 + 𝑥

– Type of 𝑥 must be numeric and unrestricted.

– Characterize unrestricted-ness using same tools as

characterize numeric-ness.

6

Linearity with class

𝜆𝑥. let 𝑦, 𝑧 = dup 𝑥 in 𝑦 + 𝑧

– Unrestricted types have methods:

dup ∷ 𝑡 → 𝑡 ⊗ 𝑡
drop ∷ 𝑡 → 1

– Corresponds to interpretation of exponential modality

via a commutative comonoid (Filinski, Seely)

7

Linearity with class

𝜆𝑥. let 𝑦, 𝑧 = dup 𝑥 in 𝑦 + 𝑧 ∶
Num 𝑡, Un 𝑡 ⇒ 𝑡 →• 𝑡

– Unrestricted types have methods:

dup ∷ 𝑡 → 𝑡 ⊗ 𝑡
drop ∷ 𝑡 → 1

– Corresponds to interpretation of exponential modality

via a commutative comonoid (Filinski, Seely)

8

Products and sums

𝜆 𝑥, 𝑦 . let 𝑥′, 𝑥′′ = dup 𝑥 in
let 𝑦′, 𝑦′′ = dup 𝑦 in

𝑥′, 𝑦′ , 𝑥′′, 𝑦′′

– Duplication of products depends on corresponding

operations for components.

– Can be captured by “class instances”:

instance Un 𝑡, Un 𝑢 ⇒ Un 𝑡 ⊗ 𝑢 where …
instance Un 𝑡, Un 𝑢 ⇒ Un 𝑡 ⊕ 𝑢 where …

9

Things best left unstated

𝜆𝑥. 𝑥 + 𝑥 ∶ Num 𝑡, Un 𝑡 ⇒ 𝑡 →• 𝑡

– Introduction of dup and drop implied by reuse or

disuse of variables.

10

An application

𝜆 𝑓, 𝑥 . 𝑓 𝑥

– Safe for both linear and unrestricted functions; want

to avoid repetition of combinators

– Syntax of application overloaded to apply to both

varieties of functions

– Reflect using qualified types (but not a type class)

11

An application

𝜆 𝑓, 𝑥 . 𝑓 𝑥 ∶ Fun 𝑓 ⇒ 𝑓 𝑡 𝑢 ⊗ 𝑡 →• 𝑢

– Fun class ranges over function types (→∘ and →•).

– Syntactic sugar:

𝑡 →𝑓 𝑢 ≡ Fun 𝑓 ⇒ 𝑓 𝑡 𝑢
𝑡 → 𝑢 ≡ 𝑡 →𝑓 𝑢 (𝑓 fresh)

12

Another application

𝜆𝑓. 𝜆𝑥. 𝑓 𝑥

– Linearity of partial application 𝜆𝑥. 𝑉 𝑥 depends on

type of 𝑉.

13

Another application

𝜆𝑓. 𝜆𝑥. 𝑓 𝑥 ∶ ൞

𝑡 →∘ 𝑢 → 𝑡 →∘ 𝑢

𝑡 →• 𝑢 → 𝑡 →∘ 𝑢

𝑡 →• 𝑢 → 𝑡 →• 𝑢

– Key point: overloading of 𝜆 for constructing functions.

– Relationship: function on the left must be “more

unrestricted”

14

Another application

𝜆𝑓. 𝜆𝑥. 𝑓 𝑥 ∶ 𝑓 ≥ 𝑔 ⇒ 𝑡 →𝑓 𝑢 → 𝑡 →𝑔 𝑢

– 𝜏 ≥ 𝜐 means 𝜏 has as many structural rules as 𝜐

– E.g., →• ≥ (→∘)

15

A constant example

𝜆𝑥. 𝜆𝑦. 𝑥 ∶ 𝑡 ≥ 𝑓, Un 𝑢 ⇒ 𝑡 → 𝑢 →𝑓 𝑡

– Use of 𝜏 ≥ 𝜐 predicates isn’t limited to functions.

16

Consider the functor

class Functor ℎ where
fmap ∷ 𝑡 → 𝑢 → (ℎ 𝑡 → ℎ 𝑢)

– Prototypical Haskell-like abstraction pattern

– Question: what do to about the arrows

– Example in the paper: monads

17

Some maps are more equal

fmap1 𝑓 =
fmap1 𝑓 𝑥 ∶ 𝑥𝑠 = 𝑓 𝑥 ∶ fmap1 𝑓 𝑥𝑠

– Based on the Haskell functor instance for lists

– Lifted function 𝑓 duplicated in the “cons” case

– So, 𝑓 must have type 𝑡 →• 𝑢

18

Some maps are more equal…

fmap2 𝑓 𝑠𝑓 =
𝜆𝑠. let 𝑧, 𝑠′ = 𝑠𝑓 𝑠 in (𝑓 𝑧, 𝑠′)

– Based on the Haskell functor instance for state

transformers

– Lifted function 𝑓 only needs to be unrestricted if the

resulting state transformer is unrestricted

19

Generalizing over linearity

class Functor ℎ 𝑓 | ℎ → 𝑓 where

fmap ∷ 𝑡 →𝑓 𝑢 →• (ℎ 𝑡 →𝑓 ℎ 𝑢)

– Functor type determines the type of its maps

– No “more” polymorphism than in Haskell

20

Generalizing over linearity

instance Functor →• where …

type State 𝑘 𝑠 𝑡 = 𝑠 →𝑘 𝑡 ⊗ 𝑠
instance Functor State 𝑘 𝑠 𝑘 where …

– Functor type determines the type of its maps

– No “more” polymorphism than in Haskell

21

But wait, there’s more…

data 𝑇1 where 𝑀𝑘𝑇1 ∷ 𝑎 →• 𝑇1
data 𝑇2 where 𝑀𝑘𝑇2 ∷ Un 𝑎 ⇒ 𝑎 →• 𝑇2

– 𝑇1 and 𝑇2 differ only in their linearity.

– Same pattern as functions.

22

But wait, there’s more…

class 𝑇 𝑡 where
𝑀𝑘𝑇 ∷ 𝑎 ≥ 𝑡 ⇒ 𝑎 →• 𝑡
𝑢𝑛𝑇 ∷ 𝑓 ≥ 𝑔

⇒ ∀𝑎. 𝑎 →𝑓 𝑏 → 𝑡 →𝑔 𝑏

– 𝑀𝑘𝑇’s use of ≥ similar to that in typing of 𝜆

– Use of ≥ in 𝑢𝑛𝑇 from capturing case body as function

23

The shoulders of giants

Linear functional calculi
– Mazurak et al., “Lightweight linear types in System 𝐹∘”

– Tov & Pucella, “Practical Affine Types”

– Gay & Vasconcelos, “Linear type theory for asynchronous session

types”

Uniqueness and usage types
– Smetsers et al., “Guaranteeing safe destructive updates through

a type system with uniqueness information for graphs”

– Gustavsson & Svenningsson. “A usage analysis with bounded

usage polymorphism and subtyping”

– Hage et al. “A generic usage analysis with subeffect qualifiers”

24

Things you haven’t seen

Examples

– Session types

– Monads

Metatheory

– Principal types and type inference

– Type safety

– Conservative extension of existing functional

languages

Prototype implementation…. coming very soon.

25

