The Best of Both Worlds

J. Garrett Morris

Garrett.Morris@ed.ac.uk

Two of my favorite things

By their powers combined

 $\lambda x \cdot \lambda y \cdot x$

- Types of arguments: x can be instantiated freely, y can only be unrestricted
- Type of $\lambda y. V$ depends on type of V: if V is linear, function must be as well

By their powers combined

$$\lambda x. \lambda y. x: \begin{cases} t \to ^{\bullet} u \to ^{\circ} t & \text{if } u \text{ un} \\ t \to ^{\bullet} u \to ^{\bullet} t & \text{if } t, u \text{ un} \end{cases}$$

- Types distinguish whether functions can be copied or discarded
- Central problem: generic combinator programming with multiple function types

The quill is mightier...

We introduce a Qualified Linear Language

- Integrates linear and polymorphic functional programming, using predicates on types
- Principal types (and decidable type inference)
- Conservative extension of existing functional (term) languages.

Builds on recent work on functional linear programming:

- Mazurak et al., "Lightweight linear types in System $F^{\circ "}$
- Tov & Pucella, "Practical Affine Types"

Linearity and overloading

$\lambda x.x + x$

- Type of *x* must be numeric and unrestricted.
- Characterize unrestricted-ness using same tools as characterize numeric-ness.

Linearity with class

$\lambda x. \operatorname{let}(y, z) = \operatorname{dup} x \operatorname{in} y + z$

- Unrestricted types have methods: $dup :: t \rightarrow t \otimes t$ $drop :: t \rightarrow 1$
- Corresponds to interpretation of exponential modality via a commutative comonoid (Filinski, Seely)

Linearity with class

$\lambda x. \operatorname{let} (y, z) = \operatorname{dup} x \operatorname{in} y + z :$ (Num t, Un t) $\Rightarrow t \rightarrow^{\bullet} t$

- Unrestricted types have methods: dup :: $t \rightarrow t \otimes t$ drop :: $t \rightarrow 1$

Corresponds to interpretation of exponential modality via a commutative comonoid (Filinski, Seely)

Products and sums

$$\lambda (x, y). \operatorname{let} (x', x'') = \operatorname{dup} x \operatorname{in} \operatorname{let} (y', y'') = \operatorname{dup} y \operatorname{in} ((x', y'), (x'', y''))$$

- Duplication of products depends on corresponding operations for components.
- Can be captured by "class instances": instance $(\text{Un } t, \text{Un } u) \Rightarrow \text{Un } (t \otimes u)$ where ... instance $(\text{Un } t, \text{Un } u) \Rightarrow \text{Un } (t \oplus u)$ where ...

Things best left unstated

$\lambda x. x + x : (\operatorname{Num} t, \operatorname{Un} t) \Rightarrow t \to^{\bullet} t$

Introduction of dup and drop implied by reuse or disuse of variables.

An application

 $\lambda(f, x) \cdot f x$

- Safe for both linear and unrestricted functions; want to avoid repetition of combinators
- Syntax of application overloaded to apply to both varieties of functions
- Reflect using qualified types (but not a type class)

$$\lambda(f, x) \cdot f x : \operatorname{Fun} f \Rightarrow f t u \otimes t \to^{\bullet} u$$

- Fun class ranges over function types (\rightarrow° and \rightarrow^{\bullet}).
- Syntactic sugar:

$$t \to^{f} u \equiv \operatorname{Fun} f \Rightarrow f t u$$
$$t \to u \equiv t \to^{f} u \text{ (f fresh)}$$

Another application

 $\lambda f \cdot \lambda x \cdot f x$

– Linearity of partial application $\lambda x. V x$ depends on type of V.

Another application

$$\lambda f. \lambda x. f x : \begin{cases} (t \to^{\circ} u) \to t \to^{\circ} u \\ (t \to^{\bullet} u) \to t \to^{\circ} u \\ (t \to^{\bullet} u) \to t \to^{\bullet} u \end{cases}$$

- Key point: overloading of λ for constructing functions.
- Relationship: function on the left must be "more unrestricted"

Another application

$$\lambda f. \lambda x. f x : f \ge g \Rightarrow (t \rightarrow^f u) \rightarrow t \rightarrow^g u$$

- τ ≥ v means τ has as many structural rules as v- E.g., (→•) ≥ (→°)

$$\lambda x. \lambda y. x: (t \ge f, \operatorname{Un} u) \Rightarrow t \to u \to^f t$$

– Use of $\tau \ge v$ predicates isn't limited to functions.

class Functor *h* where fmap :: $(t \rightarrow u) \rightarrow (h t \rightarrow h u)$

- Prototypical Haskell-like abstraction pattern
- Question: what do to about the arrows
- Example in the paper: monads

$$fmap1 f [] = []$$
$$fmap1 f (x : xs) = f x : fmap1 f xs$$

- Based on the Haskell functor instance for lists
- Lifted function *f* duplicated in the "cons" case
- So, f must have type $t \rightarrow^{\bullet} u$

Some maps are more equal...

fmap2
$$f sf =$$

 $\lambda s. let(z, s') = sf s in(f z, s')$

- Based on the Haskell functor instance for state transformers
- Lifted function *f* only needs to be unrestricted if the resulting state transformer is unrestricted

Generalizing over linearity

class Functor
$$h f \mid h \rightarrow f$$
 where
fmap $:: (t \rightarrow^{f} u) \rightarrow^{\bullet} (h t \rightarrow^{f} h u)$

- Functor type determines the type of its maps
- No "more" polymorphism than in Haskell

Generalizing over linearity

- instance Functor [] (\rightarrow^{\bullet}) where ... type State $k \ s \ t = s \rightarrow^k (t \otimes s)$ instance Functor (State $k \ s$) k where ...
 - Functor type determines the type of its maps– No "more" polymorphism than in Haskell

But wait, there's more...

data T_1 where $MkT_1 :: a \to {}^{\bullet} T_1$ data T_2 where $MkT_2 :: Un \ a \Rightarrow a \to {}^{\bullet} T_2$

- $-T_1$ and T_2 differ only in their linearity.
- Same pattern as functions.

But wait, there's more...

class *T t* where

$$MkT :: (a \ge t) \Rightarrow a \rightarrow^{\bullet} t$$

 $unT :: (f \ge g)$
 $\Rightarrow (\forall a. a \rightarrow^{f} b) \rightarrow t \rightarrow^{g} b$

– MkT's use of \geq similar to that in typing of λ

- Use of \geq in *unT* from capturing case body as function

The shoulders of giants

Linear functional calculi

- Mazurak et al., "Lightweight linear types in System F°"
- Tov & Pucella, "Practical Affine Types"
- Gay & Vasconcelos, "Linear type theory for asynchronous session types"

Uniqueness and usage types

- Smetsers et al., "Guaranteeing safe destructive updates through a type system with uniqueness information for graphs"
- Gustavsson & Svenningsson. "A usage analysis with bounded usage polymorphism and subtyping"
- Hage et al. "A generic usage analysis with subeffect qualifiers"

Things you haven't seen

Examples

- Session types
- Monads

Metatheory

- Principal types and type inference
- Type safety
- Conservative extension of existing functional languages

Prototype implementation.... coming very soon.