The Best of Both Worlds

J. Garrett Morris

Garrett.Morris@ed.ac.uk

Two of my favorite things

8
s

By their powers combined

Ax. Ay. x

— Types of arguments: x can be instantiated freely, y can
only be unrestricted

— Type of Ay.V depends on type of V: if V is linear,
function must be as well

By their powers combined

r . . .
t> u->"t ifuun

Ax. Ay.x ¢4 o o .
t—> u-> t ift,uun

— Types distinguish whether functions can be copied or
discarded

— Central problem: generic combinator programming
with multiple function types

The quill is mightier...

We introduce a Qualified Linear Language

— Integrates linear and polymorphic functional
programming, using predicates on types

— Principal types (and decidable type inference)

— Conservative extension of existing functional (term)
languages.

Builds on recent work on functional linear
programming:
— Mazurak et al., “Lightweight linear types in System F°”
— Tov & Pucella, “Practical Affine Types”

Linearity and overloading

Ax.x + x

— Type of x must be numeric and unrestricted.

— Characterize unrestricted-ness using same tools as
characterize numeric-ness.

Linearity with class

Ax.let (y,z) =dupxiny + z

— Unrestricted types have methods:
dup :t-=tQt
drop::t -1
— Corresponds to interpretation of exponential modality
via a commutative comonoid (Filinski, Seely)

Linearity with class

Ax.let (y,z) =dupxiny+z:
(Num ¢, Unt)=>t—>"t

— Unrestricted types have methodes:
dup :t-=tQt
drop::t -1
— Corresponds to interpretation of exponential modality
via a commutative comonoid (Filinski, Seely)

Products and sums

A(x,y).let(x,x") =dup xin
let (y",y"") = dupyin
(9, (", y™)

— Duplication of products depends on corresponding
operations for components.

— Can be captured by “class instances”:
instance (Unt,Unu) = Un (t @ u) where ...
instance (Unt,Unu) = Un (t @ u) where ...

Things best left unstatec

Ax.x+x:(Numt,Unt) >t >t

— Introduction of dup and drop implied by reuse or
disuse of variables.

10

An application

A(f,%). f x

— Safe for both linear and unrestricted functions; want
to avoid repetition of combinators

— Syntax of application overloaded to apply to both
varieties of functions

— Reflect using qualified types (but not a type class)

11

An application

A(f,x).fx:Funf=ftu®t-"u

— Fun class ranges over function types (—° and —°).
— Syntactic sugar:

t>u=Funf=> ftu
t >u=t-) u(f fresh)

12

Another application

Af Ax. f x

— Linearity of partial application Ax.V x depends on
type of V.

13

Another application

(t->"u)->t->"u
AMfAx.fx:({t>"u)»>t->"u
(t->"u)-t->"u

— Key point: overloading of 1 for constructing functions.

— Relationship: function on the left must be “more
unrestricted”

14

Another application

Af./lx.fx:fZg:»(t—Ju)et—ﬂu

— 7 = v means t has as many structural rules as v
-Eg., (=)= (=)

15

A constant example

Ax.ly.x:(t=>f,Unu)=>t->u-'t

— Use of T > v predicates isn't limited to functions.

16

Consider the functor

class Functor h where
fmap :: (t »u) > (ht - hu)

— Prototypical Haskell-like abstraction pattern
— Question: what do to about the arrows
— Example in the paper: monads

17

Some maps are more equal

fmapl f [] =]
fmapl f (x : xs) = f x : fmapl f xs

— Based on the Haskell functor instance for lists
— Lifted function f duplicated in the “cons” case
— So, f must have type t -»° u

18

Some maps are more equal...

fmap?2 f sf =
As.let(z,s") =sfsin(f z,5")

— Based on the Haskell functor instance for state
transformers

— Lifted function f only needs to be unrestricted if the
resulting state transformer is unrestricted

19

Generalizing over linearity

class Functor h f | h — f where
fmap :: (t =/ u) -° (ht -/ hu)

— Functor type determines the type of its maps
— No “more” polymorphism than in Haskell

20

Generalizing over linearity

instance Functor [] (=) where ...

type State kst = s =% (t ® s)
instance Functor (State k s) k where ...

— Functor type determines the type of its maps
— No “more” polymorphism than in Haskell

21

But wait, there’s more...

data Ty where MkT; ::a " T
data T, where MkT, ::Una=a - T,

— Ty and T, differ only in their linearity.
— Same pattern as functions.

22

But wait, there’s more...

class T t where
MKT = (a=t)=>a - t

unT :: (f = g)
:(Va.a—>f b)—>t—>gb

— MKT's use of > similar to that in typing of 1
— Use of = in unT from capturing case body as function

23

The shoulders of giants

Linear functional calculi
— Mazurak et al,, “Lightweight linear types in System F°”
— Tov & Pucella, “Practical Affine Types”

— Gay & Vasconcelos, “Linear type theory for asynchronous session
types”

Uniqueness and usage types

— Smetsers et al., “Guaranteeing safe destructive updates through
a type system with uniqueness information for graphs”

— Gustavsson & Svenningsson. “A usage analysis with bounded
usage polymorphism and subtyping”

— Hage et al. "A generic usage analysis with subeffect qualifiers”

24

Things you haven't seen

Examples

— Session types
— Monads

Metatheory
— Principal types and type inference
— Type safety

— Conservative extension of existing functional
languages

Prototype implementation.... coming very soon.

25

