A
1V

Linear Dependent Types

Zhaohui Luo
Royal Holloway
University of London

(Based on work with Yu Zhang at Chinese Academy of Sciences)

AN

N

Linear types and dependent types

¢ Linear types (Girard 1987):
+ A—°B, ...

+» Dependent types (Martin-L6f 1970s):
+« TIX:A.B[X], ...

** How to combine them?

» In most of existing work (Pfenning et al 2002, Krishnaswami et al
2015, Vakar 2015)
< B[x] only when x is intuitionistic (non-linear).
% Hence it is possible to separate intuitionistic " and linear A: TI; A|-a: A
< A depends on I', but not the other way around.

» Except McBride’s recent work (2016) — independent/different.
+*» This paper: LDTT, where types can depend on linear variables.

October 2016

Motivations

N

L

¢ Reasoning
+ Linear functions and logic in the same language
+ Internal reasoning about linear functions

¢ Concurrency
» Dependent session types
+ Curry-Howard for concurrent programs

¢ Natural language analysis
+» Dependent categorial grammars
+ Uniform analysis of syntax/semantics in modern TTs

October 2016

Reasoning about linear functions

N

L/
** Type theory
+ Language for both programming and reasoning
+ For f : Nat=>Nat, x:Nat,
f(x) = x
iS @ proposition in the same language in which f is written.

**» What if f : Nat—oNat and x::Nat (a linear variable)?
+ f(x) = x is now a proposition/type depending on linear x ...
+ This would not be allowed in previous work.
+ We would allow this, written as

EqNat(f X, X)
=» linear dependent types

October 2016

Dependent session types

N

L/
¢ Girard’s claim:
+ Linear logic offers Curry-Howard for concurrent programs.
+ Attempts in 1990s (Abramsky, Bellin-Scott, ...)

¢ Breakthrough: Caires and Pfenning (2010)
+ Linear formulas < session types
» Linearity: unique ownership of channel endpoints.

¢ Dependent session types?

+ cf, Toninho ..., Gay at TYPESI16, ...
= Truly dependent? E.qg., ?x:Int.B(x) — linear Il-type

=» linear dependent types

October 2016

Dependent Categorial Grammars

N

L

¢ Lambek calculus (1958) & Lambek CGs
+ Syntactic analysis of natural language
+ Ordered” system (linear + no-exchange)
+ Corresponding to Montague semantics (only =)

+¢* Formal semantics of NLs in modern TTs
+ Ranta (1994) in Martin-Lo6f's type theory

+ Recent developments of MTT-semantics: leading to a full-
blown better alternative to Montague semantics

+ See http://www.cs.rhul.ac.uk/home/zhaohui/lexsem.html
+¢ Syntactic analysis corresponding to MTT-semantics?
=» linear/ordered dependent types

October 2016

LDTT — a Linear Dependent Type Theory

N

¢ Types: intuitionistic/linear I1-types, equality types

¢ Contextual regime

+ Contexts are sequences of two forms of entries:
x:A, v::B[x], z:C[x,y], ...
% Intuitionistic variables XA
% Linear variables y::B
+ Types dependent on linear variables
% Example: x::A, f: A—A |- Eq,(f X, X) type

October 2016

Intuitionistic I'T-types

N

7
I' #: A+ B type I'nz:AFb: B '+ f:Mx:A.B Tha:A
I'-Mz:A.B type U FAx:Ab:1lz:A.B ' f(a):[a/x]|B

¢ T — the intuitionistic part of ' (A proven intuitionistically)
» I' =\ FVp(I") — removing the linear dependent variables
* FVp(0) =9
% FV(Mx:A) = FV () if FV(A) N FV5(T) = &;
= FVp(IN v {x} otherwise
% FVp(I,x::A) = FV (N u {x}
+ Example: T =x:A, y::B, z:C
' =x:A z.C ifyeFV(C)
T = XA, if yeFV(C)

October 2016

Linear I'l-types

N

L

I', 2::A = B type I' z:A-b: B ' f:llzAB AFa:A Merge(ITA) |
'-Mz:ABtype T FEAx:Ab:Ilz:AB Merge(I; A) - f a:[a/z]B

¢ Merge(T';A) is only defined if
» I'=A (the intuitionistic parts are the same)
FV o(MNNFV (A)=9 (I'/A do not share linear dependent variables)
** When the above are the case, Merge is defined as:
(a) Merge({): ()) = ()-
(h) If 2 € FVLp(D)U FVip(A),
Merge(I',27A; A) = Merge(I'; A,27A) = Merge(I'; A), a7A,
where 7 is either : or ::.
(¢) Merge(I',z:A; A,2:A) = Merge(I'; A), 2:A.
¢ Example: [= x:A, y;::By, z:C
A = x:A, y,::B,, z:C
Merge(T;A) = x:A, z:C, y;::By, ¥5::B,
Note: y,#y, and y; y,eFV(C) for otherwise, Merge(I';A) would be undefined.

October 2016

Equality Types

N

¢ Formation rule
I'Fa:A AFb:A merge(I;A) |
merge(I'; A) = Eqa(a,b) type
** merge(l';A) is defined only when var-sharing is OK:
X?Ael’, x?BeA = A=B and ? is both : or both ::

** merge(l';A) is defined as
(a) merge(l'; () =1T".

merge(l'; A) itz e FV(I')

(b) merge(I'; x7A,A) = {me-?“ge(lﬂe:fﬂ; A) otherwise

¢ Examples:
- XA, frA—A fx: A and x:ARF XA D xiA, fi A—A |- Eqa(f X, X) type
. xA | x:AandyiA Fy: A xA, yiA | Eq(xy) type

October 2016

N

Variable Typing

I, 27A, TV valid (for all y=I'y € I', y € Dp(x)) I intuitionistic 7 o
I A, "z A (Fe{s=})

where
« [intuitionistic means that it does not have linear ::-entries

» Dp(x) is defined as:
% X € Dr(x);
< For any yeD(x), FV(T,) < Dr(x).
¢ Examples:
- Judgements derivable intuitionistically are derivable.
- X2AY:B(xX) |- x:A and x::A,y:B(x) |- y:B(x) are derivable since x eB(x).
- XUA, XA, yiB(X) |- vy 1 B(x) is not derivable if x'¢B(x).

October 2016

Weak Linearity

N
\J

“* Defn (essential occurrences) Let I /- a:A. The multiset £{a) of
variables essentially occurring in @ under /is inductively defined
as follows (Eg-types omitted):

» Variable typing: Er, zza, /() = Dr, 224, /()

» Atyping: Er(AaTA.b) = Er-a(b)\{z }

« Intuitionistic applications: Er(f(a)) = Er(f)U Eg(a)
» Linear applications: Epserger:a)(f @) = Er(f) U Ea(a)

s Theorem (weak linearity)

In LDTT, every linear variable occurs essentially for exactly
once in a well-typed term. Formally,

[, y:B, "|-a:A = yeEr,.gr(a) only once.

October 2016

Summary and Related/Future Work

N

L

¢ Extended abstract of the technical development:
Z. Luo and Y. Zhang. A Linear Dependent Type Theory. TYPES 2016. Novi
Sad, 2016. (Available as http://www.cs.rhul.ac.uk/~zhaohui/TYPES16.pdf)
¢ Work on linearity in dependent types
Eg, (Pfenning et al, I&C02), (Krishnaswami et al, POPL15), (Vakar, FoSSaCS 15)
Lambek calculus with dependent types (Luo, TYPES 2015)
= Types in all above are non-dependent on linear/Lambek variables
McBride 2016 (Walder Festschrift)

< More general setting: considering “prices” pe{0,1,w} and intuitionistic/linear I1-types
(px:A)->B.
< Independent with the current work and comparison to be done.

s Examples of future work
Extension to other linear/Lambek type constructors
» Implementation: type-checking algorithm done in Haskell.

October 2016

