
⇐←0→

Formal verification of C code at Radboud
University Nijmegen, an overview

Robbert Krebbers Freek Wiedijk Marko van Eekelen
Sjaak Smetsers Ken Madlener Dan Frumin Marc
Schoolderman Freek Verbeek Herman Geuvers

Radboud University Nijmegen
The Netherlands



⇐←1→

contents

I EUTypes COST Action CA15123
I The CH2O project
I The Sovereign project



⇐←2→

EUTypes

The European research network on types for programming
and verification
The main objective:

To develop and use expressive type systems as a basis for
improved programming techniques and for methods and
tools to implement computer artifacts and verify them.

Webpage
eutypes.cs.ru.nl



⇐←3→

4 Working Groups

1. Theoretical Foundations
Andrej Bauer (Slovenia)

2. Type-theoretic tools
Assia Mahboubi (France)

3. Types for programming
Andreas Abel (Sweden)

4. Types for verification
Keiko Nakata (Germany)

I Chair: Herman Geuvers (Netherlands)
I Vice Chair: Tarmo Uustalu (Estonia)
I STSM Coordinator: Silvia Ghilezan (Serbia)
I Dissemination Coordinator: Aleksy Schubert (Poland)



⇐←4→

WGs

WG1 Theoretical Foundations
I How to deal with isomorphic/equal structures? (HoTT,

Homotopy Type Theory)
I Dependent type theory as an integrated environment for

certified programming (WG2)
I Type-theoretic mechanisms to capture non-functional

behavior of systems (WG3)

WG2 Type-theoretic tools
I Methods for high-level human computer communication
I Library reuse and modularity.
I Techniques for stronger proof automation (e.g. using machine

learning)
I Deployment of advanced system architecture and

parallelisation.



⇐←5→

WGs

WG3 Types for programming
I Deployment in a concrete programming environment of type

theories that capture other properties beyond functional
correctness, for example, resource usage, matching
communications, secure multi party computation, and
modularity. (WG1)

I New strongly typed programming languages
I Program correctness by design, via type inference

WG4 Types for verification
I Formalisation of industrial programming languages and their

specification languages in different type based verification
environments

I Proof automation techniques specific for the formal
verification (verification condition generators, proof tactics
etc.)

I High-level logics and type theories that make it easier to
express and verify particular properties of interest in program
verification.



⇐←6→

Activities

1. Plenary Meetings and WG meetings:
I Types Conference Novi Sad (May 2016)
I Joint meeting with Cost Betty (Oct 2016)
I WG2,3,4 meeting co-located with POPL/CPP in Paris (Jan

2017)
I Plenary MC meeting + WG1 meeting co-located with HoTT

meeting at Ljubljana (Feb 2017)
2. Short-Term Scientific Missions:

I 10-15 STSM per year, about 4 calls per year
3. Training (Summer) Schools: none in year 1, but one in every

year 2, 3, 4.



⇐←7→

why C?

performance / portability / control

=



⇐←8→

the sweet spot between abstraction and concreteness

properties of C
I performance
I portability
I control

realized by a specific combination of
I abstraction

underspecification
allows compiler optimizations
allows many architectures

I concreteness
close to the hardware
allows inline assembly
explicit data representation as bytes



⇐←9→

the four dimensions of software

let’s compare C and Haskell. . .

building a program is a trade-off between:
I features

C gives more control
I performance

C gives better performance
I reliability

Haskell gives more reliability
I cost

C is idiosyncratic, but easy
Haskell needs monads: only for PhDs = expensive!



⇐←10→

why formalize C?
accelerating cars

SUA = sudden unintended acceleration

2005 Toyota Camry

embedded software
256.6K (non-comment) lines of C code
11,000 global variables

recursion =⇒ stack overflow
against the MISRA-C rules

stack is 94% full plus any recursion
incorrect assumption that overflow always results in a system reset

memory just past stack is OSEK RTOS area



⇐←11→

static analysis++

four levels of applying formal methods to C
I static analysis
I static analysis + annotations

model checkers
SMT solvers
automated theorem provers

I static analysis + annotations + interactive proof
proof assistants

Why3/Jessie/Frama-C
Jean-Christophe Filliâtre/Claude Marché, LRI, Paris France

I verification against explicit semantics inside a proof assistant

Verified Software Toolchain Andrew Appel e.a., Princeton US



⇐←12→

CH2Oformalizing the C11 standard



⇐←13→

Robbert Krebbers and the formalin molecule

formalin = CH2O

C

O

H H
��HH

I not exactly the standard
I only Coq

I executable semantics
I separation logic
I metatheory

validate formal definitions



⇐←14→

other C formalization projects
CompCert and related projects

I CompCert Xavier Leroy e.a., INRIA France

compiler from C to x86/ARM/PowerPC
implemented using Coq’s functional language
verified using using Coq’s proof language

CompCert C
small step operational semantics

does not match C11 as precisely as CH2O
CH2O compliant (future work)

I CompCertTSO Jaroslav Ševčík, Viktor Vafeiadis, e.a.

I Compositional CompCert Gordon Stewart e.a., Princeton US

I CerCo Claudio Sacerdoti Coen e.a., Bologna Italy



⇐←15→

Chucky Ellison’s kcc

K = semantic framework built on rewriting logic

kcc
Chucky Ellison, A Formal Semantics of C with Applications
2012 PhD thesis with Grigore Ro,su, Illinois US

executable semantics implemented in K

does not match C11 as precisely as CH2O
more features from C11 than CH2O

kcc aims to be a formal version of the C11 standard
does not allow proof in a proof assistant

CompCert C more specific than the C11 standard
does allow proof in a proof assistant



⇐←16→

Chung-Kil Hur’s group

Seoul, Korea

Jeehoon Kang’s PhD project

I CompCertSep
separate compilation

I Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov,
Steve Zdancewic, Viktor Vafeiadis
A Formal C Memory Model Supporting Integer-Pointer Casts
PLDI 2015



⇐←17→

Peter Sewell’s group

Cambridge, UK

Kayvan Memarian’s PhD project

I C memory quiz
unfinished web survey that escaped to the web

I Kayvan Memarian, Justus Matthiesen, Kyndylan Nienhuis,
Peter Sewell
Cerberus,
a semantic basis for sequential and concurrent C11
unpublished paper that escaped to the web



⇐←18→

less is more

CH2O compared to the C11 standard:

I fewer features
I fewer programs behave well

in case of doubt: don’t choose = everything may happen
if one can prove a program behaves in a certain way,
it should behave that way with any conforming compiler

CompCert C compared to C11/CH2O:

C11
CH2O

CompCert C

comparing with
end-of-array pointers
byte-wise pointer copy

subtle
casts
subtle
type

punning

integer overflow
aliasing violations
sequence point

violations
use of dangling block

scope pointers

arithmetic on
pointer bytes



⇐←19→

underspecification in the C standard

I implementation-defined behavior
= you do know what will happen, but not from the standard
each implementation documents how the choice is made

number of bits in the integer types

I unspecified behavior
= you do not know what will happen, but it will be reasonable

order of evaluation of function arguments

I undefined behavior
= you do not know at all what will happen = might crash
accessing an array out-of-bounds
signed integer overflow
multiple updates to a variable in one statement



⇐←20→

underspecification in the CH2O formalization

I implementation-defined behavior
semantics parametrized by an environment
Class IntCoding (K : Set) := {

char_rank : K;
char_signedness : signedness; ...
char_bits : nat; ...

}.
Class IntEnv (K : Set) := {

int_coding :> IntCoding K; ...
}.
Class Env (K : Set) := {

env_type_env :> IntEnv K;
size_of : env K → type K → nat;
align_of : env K → type K → nat;
field_sizes : env K → list (type K) → list nat;
alloc_can_fail : bool

}.

I unspecified behavior
non-determinism in the semantics

I undefined behavior = is allowed to crash
undef states in the semantics



⇐←21→

multiple updates in one statement

int x, y = (x = 3) + (x = 4);
printf("x = %d y =%d \n", x, y);

output:

�
�
�� �

�
��

x=4 y=7

I another “natural” output is x=3 y=7
I compiled with gcc -O3 this prints x=4 y=8 (!)
I anything is allowed, also a computer a crash.

j modified twice in the same statement =⇒ undefined behavior
not allowed to read or write a variable after writing it
between two sequence points
sequence point = boundary of expression evaluation

C11 standard, 6.5p2:
If a side effect on a scalar object is unsequenced relative to either a
different side effect on the same scalar object or a value computation
using the value of the same scalar object, the behavior is undefined.



⇐←22→

C11 is inconsistent
the example from Defect Report 260

short a[2] = {6, 7}, b[2] = {-1, 9};
short *p = a + 2, *q = b;
if memcmp(&p, &q, sizeof(p)) == 0) {

/* the bits of p and q are identical */
printf("%d ", p == q);
*q = 8;
printf("%d %d\n", *p, *q);

}

compiled with gcc -O3 this prints

0 8 -1

questions:
I is this very strange output allowed by the C11 standard? yes!
I is this program allowed to crash? yes!



⇐←23→

who cares for a contrived example?

many examples
I end-of-array pointers
I unions (type punning)
I uninitialized memory (padding bytes in structs)
I dangling pointers

fundamental inconsistency between:
I abstract way of looking at data

arrays, structs, unions
effective types

CH2O: trees / paths in trees

b

0

−1

1

9

q

I concrete way of looking at data
unstructured, untyped

CH2O: lists of bits 11111111 11111111 10010000 00000000 00100100 01100110 10110110 11010110



⇐←24→

the CH2O memory model
trees of lists of bits

I values in the semantics

I memory values

memory =
finite partial function
from indexes
to memory values

I flattened values
(for unions)

0

−1

1

9

(1 ↪→ 0, 0)

0 1

1 3

11111111 11111111 10010000 00000000

ptr_bits ptr_bits ptr_bits ptr_bits

11111111 11111111 10010000 00000000 ptr_bits ptr_bits ptr_bits ptr_bits



⇐←25→

the CH2O semantics
two abstract variants of C

C source code

preprocessed C

CIL parse tree

CH2O abstract C

CH2O core C

cppcppC

parser
from CIL
parser
from CILOCaml

OCaml

Coq 99KOCaml

CH2O counterpart
to “CompCert C”

struct s {char c; short h;} x;
int i;
int main() {

int j = 0, k = j;
return (j = (i = j++));

}

("s", struct ((char "c") (short "h")))
("x", global : struct "s")
("i", global : int)
("main", fun (

int "j" := (constint 0); int "k" := "j";
return ("j" := ("i" := ("j" +:= (constint 1))))

) : ε → int)

0 7→ (struct"s" (((basesigned char(full, 0)8)(full, E)8)
((basesigned short(full, 0)16))), false)

1 7→ (basesigned int(full, 0)32, false)
"main" 7→ localsigned int (x0 := [intsigned int 0]∅;

(localsigned int (x0 := load x1;
(return (x1 := ([(1 : signed int, ε, 0)signed int>∗signed int]∅

:= (x1 +:= [intsigned int 1]∅)))))))



⇐←26→

three variants of the CH2O semantics

semantics of CH2O abstract C

I translation to CH2O core C

semantics of CH2O core C

I operational semantics
small step

I executable semantics
‘interpreter’
extracted to OCaml −→ standalone experimentation tool

I axiomatic semantics
separation logic −→ proving small programs correct



⇐←27→

operational semantics: running around a zipper

state of the program P[s] in the semantics:

S(P[�], (d, s),m)

(d, s) running around the syntax tree
e evaluating an expression

call f v calling a function
return f v returning from a function
undef φU crashed!

s statement that is the current focus
P[�] context of the statement, annotated with stack addresses

d direction of execution


↘ down
↗ up
y l executing goto l
↑n breaking from a loop
↑↑ v returning from a function

m current state of the memory
e expression being evaluated



⇐←28→

executable semantics: the ch2o tool

calculates trace of sets of states
all the states, but modulo renumbering of memory indexes



⇐←29→

axiomatic semantics: separation logic for C

multiple writes to a variable in one statement =⇒ undefined behavior

matches well with separation logic:

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 } e2 {Q1 ∗Q2}



⇐←30→

the formalization
metatheory

I the three kinds of semantics match
executable semantics: modulo renaming of indexes
axiomatic semantics: not complete

separation logic through shallow embedding

C typing:
Γ,∆, ~τ ` e : τlr

Γ ` S(P[�], φ,m) : fmain

I translation to CH2O core C always type correct
(if the translation succeeds)

I subject reduction and progress



⇐←31→

what’s next?
extend it?

I I/O and external functions

I multi-threading

I extend semantics to be closer to C11 standard
I exit
I untyped malloc
I setjmp / longjmp
I signals
I floats
I bitfields
I variadic functions
I variable-length arrays
I const, volatile, restrict, etc.
I header files and the preprocessor
I etc. etc.

I stack overflow (for Toyota)



⇐←32→

other proof assistants?



⇐←33→

use it? improve it?

I verification condition generation

I static analysis++

I replace CIL parser with verified parser from CompCert

I formally show that CompCert C is an instance of CH2O



⇐←34→

STW project Sovereign

I Sovereign: A Framework for Modular Formal Verification of
Safety Critical Software.

I PI: Marko van Eekelen. Co-applicants HG, Sjaak Smetsers,
Freek Wiedijk.

Motto: Scalability through modularity
Verification should be
1. scalable (costs should not grow exceedingly as the size of the

system increases),
2. compositional (global properties are directly inferrable from

local properties of the subsystems),
3. incremental (verification can be performed iteratively while

previous intermediate results are still usable),
4. effective (the proposed methodology will be applied

successfully in some real-world case studies).



⇐←35→

Sovereign project users

Companies involved
I Rijkswaterstaat RWS: Maeslantkering, tunnels, bridges

I Nuclear Research Group NRG: Borssele, Petten

Other companies (potentially) interested: NASA, TNO, ASML



⇐←36→

approach

Specification

Security
properties

Structured
(security by)

design

Provable
design
patterns

Non-critical
C11 code
Critical

Misra C
code with
ACSL

annotations

Misra C
semantics

Certified C11
compilation

Certified
executable

VC
generation

Proof
X Security
X Misra
conformance

Figure: The Sovereign Framework



⇐←37→

questions?


	Formal verification of C code at Radboud University Nijmegen, an overview
	table of contents
	1. contents

	EUTypes COST Action CA15123
	2. EUTypes
	3. 4 Working Groups
	4. WGs
	5. WGs
	6. Activities

	The CH2O project
	why C?
	why formalize C?
	CH2O
	other C formalization projects
	C11 is inconsistent
	the CH2O memory model
	the CH2O semantics
	the formalization
	what's next?

	Sovereign project
	34. STW project Sovereign
	35. Sovereign project users
	36. approach
	37. questions?



