Formal verification of C code at Radboud
University Nijmegen, an overview

Robbert Krebbers Freek Wiedijk Marko van Eekelen
Sjaak Smetsers Ken Madlener Dan Frumin Marc
Schoolderman Freek Verbeek Herman Geuvers

Radboud University Nijmegen
The Netherlands

e

contents

» EUTypes COST Action CA15123
» The CH,0 project

> The Sovereign project

EUTypes

The European research network on types for programming

and verification

The main objective:
To develop and use expressive type systems as a basis for
improved programming techniques and for methods and
tools to implement computer artifacts and verify them.

Webpage

eutypes.cs.ru.nl

4 Working Groups

1.

vV v v v

Theoretical Foundations
Andrej Bauer (Slovenia)

Type-theoretic tools
Assia Mahboubi (France)

Types for programming
Andreas Abel (Sweden)

. Types for verification

Keiko Nakata (Germany)

Chair: Herman Geuvers (Netherlands)

Vice Chair: Tarmo Uustalu (Estonia)

STSM Coordinator: Silvia Ghilezan (Serbia)
Dissemination Coordinator: Aleksy Schubert (Poland)

WGs

WG1 Theoretical Foundations

» How to deal with isomorphic/equal structures? (HoTT,
Homotopy Type Theory)

» Dependent type theory as an integrated environment for
certified programming (WG2)

» Type-theoretic mechanisms to capture non-functional
behavior of systems (WG3)

WG2 Type-theoretic tools
» Methods for high-level human computer communication
> Library reuse and modularity.
» Techniques for stronger proof automation (e.g. using machine
learning)
» Deployment of advanced system architecture and
parallelisation.

WGs

WG3 Types for programming

» Deployment in a concrete programming environment of type
theories that capture other properties beyond functional
correctness, for example, resource usage, matching
communications, secure multi party computation, and
modularity. (WG1)

> New strongly typed programming languages

» Program correctness by design, via type inference

WG4 Types for verification

» Formalisation of industrial programming languages and their
specification languages in different type based verification
environments

» Proof automation techniques specific for the formal
verification (verification condition generators, proof tactics
etc.)

» High-level logics and type theories that make it easier to
express and verify particular properties of interest in program
verification.

Activities

1. Plenary Meetings and WG meetings:
» Types Conference Novi Sad (May 2016)
» Joint meeting with Cost Betty (Oct 2016)
» WG2,3,4 meeting co-located with POPL/CPP in Paris (Jan
2017)
> Plenary MC meeting + WG1 meeting co-located with HoTT
meeting at Ljubljana (Feb 2017)
2. Short-Term Scientific Missions:
» 10-15 STSM per year, about 4 calls per year

3. Training (Summer) Schools: none in year 1, but one in every
year 2, 3, 4.

why C?

performance / portability / control

SECOND EDITION

THE

_ yC

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

.....................

the sweet spot between abstraction and concreteness

properties of C
» performance
» portability

» control

realized by a specific combination of
» abstraction
underspecification
allows compiler optimizations
allows many architectures
> concreteness
close to the hardware

allows inline assembly
explicit data representation as bytes

the four dimensions of software

let's compare C and Haskell. ..

building a program is a trade-off between:

> features
C gives more control

» performance
C gives better performance

> reliability
Haskell gives more reliability

> cost
C is idiosyncratic, but easy
Haskell needs monads: only for PhDs = expensive!

. why formalize C?
accelerating cars

SUA = sudden unintended acceleration MEMORY

SPACE
2005 Toyota Camry

RECURSION CAN
KEEP PUTTING
COPIES OF DATA
ONTO STACK,
CAUSING
OVERFLOW

F———0

embedded software

GLOBALS/
RTOS DATA

256.6K (non-comment) lines of C code
11,000 global variables

recursion — stack overflow
against the MISRA-C rules

stack is 94% full plus any recursion
incorrect assumption that overflow always results in a system reset
memory just past stack is OSEK RTOS area

static analysis++

four levels of applying formal methods to C
» static analysis

> static analysis + annotations

model checkers
SMT solvers
automated theorem provers

> static analysis 4+ annotations + interactive proof
proof assistants

Why3/Jessie/Frama-C
Jean-Christophe Fillidtre/Claude Marché, LRI, Paris France

» verification against explicit semantics inside a proof assistant

Verified Software Toolchain Andrew Appel e.a., Princeton US

o CH.0
formalizing the C11 standard

Where IT all begins

]
=
©

k-]
5
©

S

»n
©
c

=

=
©
=
c
©
o
=
o
£
<

Robbert Krebbers and the formalin molecule

formalin = CH,0O

H H
\c/

(0]

> not exactly the standard

» only Coq

> executable semantics
> separation logic

» metatheory
validate formal definitions

other C formalization projects
CompCert and related projects

» CompCert Xavier Leroy e.a., INRIA France

compiler from C to x86/ARM/PowerPC
implemented using Coq's functional language
verified using using Coq's proof language

CompCert C
small step operational semantics

does not match C11 as precisely as CH,O
CH,0 compliant

» CompCertTSO Jaroslav Sevéik, Viktor Vafeiadis, e.a.
» Compositional CompCert Gordon Stewart e.a., Princeton US

» CerCo Claudio Sacerdoti Coen e.a., Bologna ltaly

Chucky Ellison's kcc

K = semantic framework built on rewriting logic

kcc
Chucky Ellison, A Formal Semantics of C with Applications
2012 PhD thesis with Grigore Rosu, Illinois US

executable semantics implemented in K I

(=

kcc aims to be a formal version of the C11 standard
does not allow proof in a proof assistant

does not match C11 as precisely as CH,O
more features from C11 than CH,O

CompCert C more specific than the C11 standard
does allow proof in a proof assistant

Chung-Kil Hur's group

Seoul, Korea
Jeehoon Kang's PhD project

» CompCertSep
separate compilation

» Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov,
Steve Zdancewic, Viktor Vafeiadis

A Formal C Memory Model Supporting Integer-Pointer Casts
PLDI 2015

Peter Sewell's group

Cambridge, UK
Kayvan Memarian's PhD project

» C memory quiz

unfinished web survey that escaped to the web

» Kayvan Memarian, Justus Matthiesen, Kyndylan Nienhuis,
Peter Sewell

Cerberus,
a semantic basis for sequential and concurrent C11

unpublished paper that escaped to the web

less is more

CH»0O compared to the C11 standard:
> fewer features
» fewer programs behave well

in case of doubt: don't choose = everything may happen

if one can prove a program behaves in a certain way,
it should behave that way with any conforming compiler

CompCert C compared to C11/CH,0:

CompCert C

CH,0

subtle integer overflow
comparing with casts aliasing violations
end-of-array pointers subtle | sequence point
byte-wise pointer copy type | violations
punning

use of dangling block
S/ scope pointers

arithmetic on
__ pointer bytes

underspecification in the C standard

» implementation-defined behavior
= you do know what will happen, but not from the standard

each implementation documents how the choice is made

» unspecified behavior
= you do not know what will happen, but it will be reasonable

» undefined behavior
= you do not know at all what will happen = might crash

underspecification in the CH,O formalization

» implementation-defined behavior
semantics parametrized by an environment

Class IntCoding (K : Set) := {
char_rank : K;
char_signedness : signedness;
char_bits : nat;

}.

Class IntEnv (K : Set) := {
int_coding :> IntCoding K;

}.

Class Env (K : Set) := {
env_type_env :> IntEnv K;
size_of : env K — type K — nat;
align_of : env K — type K — nat;
field_sizes : env K — list (type K) — list nat;
alloc_can_fail : bool

}.

» unspecified behavior
non-determinism in the semantics

» undefined behavior = is allowed to crash
undef states in the semantics

multiple updates in one statement

int x, y= (x =3) + (x = 4); output:
printf("x = %d y =%d \n", x, y);

» another “natural” output is x=3 y=7
» compiled with gcc -03 this prints x=4 y=8 (!)
» anything is allowed, also a computer a crash.

j modified twice in the same statement == undefined behavior

not allowed to read or write a variable after writing it
between two sequence points

sequence point = boundary of expression evaluation

C11 standard, 6.5p2:

the behavior is undefined.

C11 is inconsistent
the example from Defect Report 260

short a[2] = {6, 7}, b[2] = {-1, 9};
short *p = a + 2, *q = b;
if memcmp(&p, &q, sizeof(p)) == 0) {
/* the bits of p and q are identical */
printf("%d ", p == q);
*q = 8;
printf ("%d %d\n", *p, *q);
}

compiled with gcc -03 this prints
08-1

questions:
> is this very strange output allowed by the C11 standard? yes!

> is this program allowed to crash? yes!

who cares for a contrived example?

many examples
» end-of-array pointers
> unions (type punning)
> uninitialized memory (padding bytes in structs)
» dangling pointers

fundamental inconsistency between:

» abstract way of looking at data b q

)]

arrays, structs, unions !

. 0 1 /
effective types ;

CH,O: trees / paths in trees -1 9 -

» concrete way of looking at data

unstructured, untyped

C H 2 O N | iStS Of b|tS 11111111]11111111/10010000/00000000[00100100/01100110/10110110[11010110)

. . the CH,0 memory model
trees of lists of bits

» values in the semantics (1 e_:07 0)

~

~

» memory values

memory = 1 2
fl nite partial fu nction ptr_bits ptr_bits ptr_bits ptr_bits

. 0 1
from indexes
to memory Va|ueS 1111111111111111 10010000 00000000
» flattened Values [11111111/11111111]1001 [| [ptr_bits|ptr_bits|ptr_bits|ptr_bits

(for unions)

. the CH,;0 semantics
two abstract variants of C

’ C source code ‘

C|cpp

‘ preprocessed C ‘

parser
from CIL

‘ CIL parse tree ‘
OCamIl
’ CH>O abstract C ‘

OCaml

Coq --»OCaml

’ »(“:HZO core C ‘

CH, O counterpart
to “CompCert C”

struct s {char c; short h;} x;
int i;
int main() {

int j =0, k = j;

return (j = (4 = j++));

}
("s", struct ((char"c") (short "h")))
("x", global : struct "s")

("i", global : int)

(

int"j" := (constint 0); int "k" :="j";
return ("j" := ("i" := ("j" +:= (constint 1))))
) : e —int)

0+ (structuge (((basesigned char (full, 0)%)(full, £)%)
((basesigned short (full, ())16))), false)
1 +— (basegigned int (full, 0)32, false)
"main" — localsignedint (0 := [iNtsignedint 0]g;
(|OCa|5igned int (I() := load T,
(return (1 := ([(1 : signed int, €, 0)signed int>y signed int| 0
= (21 +:= [intsigned it 110)))))))

three variants of the CH,O semantics

semantics of CH,O abstract C

» translation to CH>O core C

semantics of CH,O core C

» operational semantics

small step

» executable semantics
‘interpreter’

extracted to OCaml — standalone experimentation tool

» axiomatic semantics

separation logic — proving small programs correct

operational semantics: running around a zipper

state of the program P[s] in the semantics:

S(P[), d s ,m)

(d, s) running around the syntax tree
e evaluating an expression
call fo calling a function

return fv returning from a function
undef ¢y crashed!

S statement that is the current focus
P[] context of the statement, annotated with stack addresses
N\, down
/o up

d direction of execution ~ 1 executing goto !
tn breaking from a loop
Mo returning from a function
m current state of the memory
e expression being evaluated

executable semantics: the ch2o tool

calculates trace of sets of states
all the states, but modulo renumbering of memory indexes

axiomatic semantics: separation logic for C

multiple writes to a variable in one statement = undefined behavior

matches well with separation logic:

{Piler{@1} {P2}e2{Q2}
{P* Py} e; ®ex {Q1 % Qa2}

the formalization
metatheory

> the three kinds of semantics match
executable semantics: modulo renaming of indexes
axiomatic semantics: not complete

separation logic through shallow embedding
C typing:

AT FRe:m,
' FS(PIO, ¢, m) : fmain

» translation to CH,0 core C always type correct
(if the translation succeeds)

» subject reduction and progress

tend it? what’s next?
extend it?

> 1/O and external functions
> multi-threading

» extend semantics to be closer to C11 standard
> exit

untyped malloc

setjmp / longjmp

signals

floats

bitfields

variadic functions

variable-length arrays

const, volatile, restrict, etc.

header files and the preprocessor

etc. etc.

YV VY VY VY VY VY VY VvYYy

» stack overflow (for Toyota)

other proof assistants?

use it? improve it?

» verification condition generation

> static analysis++

> replace CIL parser with verified parser from CompCert

» formally show that CompCert C is an instance of CH,0O

STW project Sovereign

» Sovereign: A Framework for Modular Formal Verification of
Safety Critical Software.

» PIl: Marko van Eekelen. Co-applicants HG, Sjaak Smetsers,
Freek Wiedijk.

Motto: Scalability through modularity
Verification should be

1. scalable (costs should not grow exceedingly as the size of the
system increases),

2. compositional (global properties are directly inferrable from
local properties of the subsystems),

3. incremental (verification can be performed iteratively while
previous intermediate results are still usable),

4. effective (the proposed methodology will be applied
successfully in some real-world case studies).

Sovereign project users

Companies involved

> Rijkswaterstaat RWS: Maeslantkering, tunnels, bridges

Other companies (potentially) interested: NASA, TNO, ASML

approach

Specification
Security
properties

Structured Critical
(sef;uri_ty by) Misra C
esign code with
ACSL
annotations

Certified
executable

E—
Non-critical
C11 code

Certified C11
compilation

|
|
Misra C }
|

semantics

v~ Security
v" MISRA
conformance

Provable

design
patterns

generation

Figure: The Sovereign Framework

questions?

	Formal verification of C code at Radboud University Nijmegen, an overview
	table of contents
	1. contents

	EUTypes COST Action CA15123
	2. EUTypes
	3. 4 Working Groups
	4. WGs
	5. WGs
	6. Activities

	The CH2O project
	why C?
	why formalize C?
	CH2O
	other C formalization projects
	C11 is inconsistent
	the CH2O memory model
	the CH2O semantics
	the formalization
	what's next?

	Sovereign project
	34. STW project Sovereign
	35. Sovereign project users
	36. approach
	37. questions?

