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type systems for programming

Types at the heart of  “real” PLs (OCaml,  Java, C#, Scala)

Highly modular, based on a “lego” of canonical constructions
Deep foundations in logic 

a type system is (should be) a specialised logic!

Essential in mainstream technology
mostly checked statically

“standard” types must be easy to use by any programmer

types are everywhere, and “practical”



type systems for programming

Huge impact on software quality:

“Well-typed programs do not go wrong”
Huge impact on programming (as a human activity):

types “tame programmers” to write reasonable code
But what about types (specifically) for concurrency ?  

“Adopted” type systems are purely structural, state 
oblivious, unable to tackle the challenges of state dynamics, 
concurrency, aliasing, etc (but recently, see e.g,, Rust).

We foresee behavioural types leading to a new generation 
of type systems for future programming languages



simply typed λ-calculus [Church30]

Γ, x:A ⊢x:A

Γ, x : A ⊢M : B 
Γ⊢ λx:A.M : A→B 

Γ ⊢M : A→B  Γ ⊢N : A 
Γ ⊢MN : B

Tapp(Tlam([x]d1),d2) → d1{d2/x}

Γ ⊢M:A



simply typed λ-calculus

Γ ⊢*:1

Γ ⊢M : A  Γ ⊢N : B 
Γ ⊢<M,N> : A ∧ B

Γ ⊢M : A ∧ B 
Γ ⊢fst(M) : A

Γ ⊢M : A ∧ B 
Γ ⊢snd(M) : B

Tfst(Tpair(d1, d2)) → d1

Tsnd(Tpair(d1, d2)) → d2
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simply typed λ-calculus

Γ ⊢N : A ∨ B    Γ, x:A ⊢M : C    Γ, x:B ⊢N : C 
Γ ⊢ case N (inl(x)⇒M | inr(x)⇒N) : C

Γ ⊢M : A 
Γ ⊢inl(M) : A ∨	
  B

Γ ⊢M : B 
Γ ⊢inr(M) : A ∨ B

Tcase(Tinl(d), [x]c1, [x]c2) → c1{d/x}

Tcase(Tinr(d), [x]c1, [x]c2) → c2{d/x}
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induction

Γ ⊢N : C     Γ, x:A, t: List[A], z : C ⊢M : C 
Γ ⊢ rec (0 ⇒N,(x,t,z)M) : C

Γ ⊢M : A     Γ ⊢N : List[A] 
Γ ⊢ M::N : List[A]

Γ ⊢ nil: List[A]
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Basic Properties of Typing

type preservation under evaluation / reduction
think about rewriting the complete typing trees

progress (stuck freedom)

together with preservation this means “type safety”
termination (sometimes)

confluence (sometimes)
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Typeful Programming [Cardelli85]

Typeful programming ~ Special case of program specification

Types ~ Specifications 

Type-Checking ~  Verification

Useful to enforce correctness at  “compilation” time

View nicely fits with the Curry-Howard paradigm of 

propositions as types, and proofs as programs
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Propositions as Types
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Intuitionistic Logic = Typed λ-calculus

Γ ⊢N : A ∨ B  Γ, x:A ⊢M : C Γ, x:B ⊢M : C 
Γ ⊢ case N (inl(x)⇒M | inr(x)⇒M) : C

Γ ⊢M : A 
Γ ⊢inl(M) : A ∨	
  B

Γ ⊢M : B 
Γ ⊢inr(M) : A ∨ B

Γ ⊢*:1
Γ ⊢M : A  Γ ⊢N : B 
Γ ⊢<M,N> : A ∧ B

Γ ⊢M : A ∧ B 
Γ ⊢fst(M) : A

Γ ⊢M : A ∧ B 
Γ ⊢snd(M) : B

Γ, x:A ⊢x:A Γ, x : A ⊢M : B 
Γ⊢ λx:A.M : A→B 

Γ ⊢M : A→B  Γ ⊢N : A 
Γ ⊢MN : B
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Curry-Howard Correpondence

Proofs = Programs and Types = Propositions

Curry-Howard, Girard,  Wadler
A proof denotes a “computational object”: program, process

Program execution = Proof reduction (cut-elimination)
Program equivalence = Proof conversion

Proof reduction preserves proof equivalence

Termination + Confluence = Consistency
Compositional Semantics via Logical Relations
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Curry-Howard Design Space

Different logics yield different typed languages

Sequent calculus ⤳ explicit substitutions
Higher order logic ⤳ polymorphism

Classical logic ⤳ continuations, exceptions

Modal logic ⤳ monads, security
Linear Logic ⤳ resource control, behavioural types

“Powerful insights arise from linking two fields of study previously thought 
separate [ … ] as offered by the principle of Propositions as Types, which links 
logic to computation. At first sight it appears to be a simple coincidence— almost 
a pun—but it turns out to be remarkably robust, inspiring the design of 
automated proof assistants and programming languages” [Wadler16]
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Curry-Howard Design Space

Different logics yield different typed languages

Sequent calculus ⤳ explicit substitutions
Higher order logic ⤳ polymorphism

Classical logic ⤳ continuations, exceptions

Modal logic ⤳ monads, security
Linear Logic ⤳ resource control, behavioural types

“One can also extrapolate this correspondence and turn it into a predictive tool: 
if a concept is present in type theory but absent in programming, or vice versa, it 
can be very fruitful to both areas to investigate and see what the corresponding 
concept might be in the other context.” [Cardelli89]                                             
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Curry Howard for Process Types?
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Types for Processes

16



the π-calculus [Milner92]

P  ::=    0              (inaction)
       |    P | Q         (composition)
       |    (new x)P   (restriction) 
       |    x(y).P        (input) 
       |    x[y].P        (free output) 
       |    !x(y).P       (replicated input)
       |    x(y).P         :=  (new y)x[y].P        (fresh output)

 Semantics:

       structural congruence (P ≡ Q)    [ static identity ] 
       reduction (P → Q)                      [ dynamics ]



the π-calculus [Milner92]

structural congruence (≡) 

P | 0  ≡  P
P | Q  ≡  Q | P
P | (Q | R) ≡  (P | Q) | R

(new x)0 ≡ 0
(new x)(P | Q) ≡ P | (new x)Q [ x ∉ fn(P) ]



the π-calculus [Milner92]

reduction (→) 

       x(y).P | x[z].Q    →  P{z/y} | Q   
      !x(y).P | x[z].Q    →  !x(y).P | P{z/y} | Q 
                
      P → Q    implies  P | R  →  Q | R 
      P → Q    implies  (new x)P  →  (new x)Q 
      (P ≡ P´ and P´ → Q´ and Q´ ≡ Q) implies P  → Q



Types for Processes



simple types [Milner92,Gay93]



IO-types [PierceSangiorgi93]



Linear Types [KobayashiPierceTurner96]



Session Types [Honda93,HKV98,GH05]



Session Types [Honda93,HKV98,GH05]



Session Types [Honda93,HKV98,GH05]



Session Types [GH05]

Γ; Δ1 ⊢ P    Γ;Δ2 ⊢ Q 
Γ; Δ1, Δ2 ⊢ P | Q

T ::= *T    (shared channel)
|    S     (session type)

Γ; . ⊢ P  
Γ; . ⊢ !P

S ::= end   (base type)
| !T.S    (output)
| ?T.S    (input)

Γ; Δ, x+:S, x-:S ⊢ P  
Γ; Δ ⊢ (new x)P

Γ;Δ1 ⊢ y:T   Γ; Δ2, xp:S ⊢ P  
Γ; Δ1, xp:!T.S, Δ2 ⊢ xp[y].P

Γ; xp:S, y:T ⊢ P  
Γ; xp:?T.S  ⊢ xp(y).P

Γ; x:U ⊢ x:U

Γ, x:U; . ⊢ x:*U
Γ, x:T; Δ ⊢ P  
Γ; Δ ⊢ (new x)P

Γ, x:T; Δ ⊢ P  
Γ; Δ, x:*T ⊢ P Γ; end ⊢ 0



Curry Howard for Process Types?
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Session Types [Honda93]



Computational Interpretations of LL



Computational Interpretations of LL



Session Types 
[CairesPfenning10,ToninhoCP11-16]



Session Types as Linear Propositions

S,U ::= 
        |   U⊸S      (input)
        |   U⊗S      (output)

     |   S⊕S       (choice)
     |   S&S        (offer)
     |   !U          (shared replication)
     |   1            (end)

Duality on session types, the key insight of [H93], is captured by

duality (or left-write symmetry) at the logical level.
33



Linear Sequent Calculus [Andreolli92]

Γ; Δ, A ⊢ B 
Γ; Δ ⊢ A⊸B

Γ; Δ, A, B ⊢ C 
Γ; Δ, A⊗B ⊢ C

Γ; - ⊢ 1

Γ; Δ1 ⊢A   Γ; Δ2, A ⊢ C 
Γ; Δ1, Δ2 ⊢ CΓ; A ⊢ A

Γ; Δ1 ⊢ A    Γ; Δ2 ⊢B 
Γ; Δ1, Δ2 ⊢A⊗B

Γ; Δ1 ⊢ A   Γ; Δ2, B ⊢ C 
Γ; Δ1, Δ2, A⊸B ⊢ C

Γ; Δ ⊢ A
Δ linear context (multiset)

Γ cartesian context (set)

Γ; Δ ⊢ C 
Γ; Δ, 1 ⊢ C

Sequent calculus presentation of DILL [BarberPlotkin91]



Linear Propositions as Session Types

Γ; Δ, z:A ⊢ P :: x:B 
Γ; Δ ⊢ x(z).P :: x:A⊸B

Γ; Δ, z:A, x:B ⊢ P :: C 
Γ; Δ, x:A⊗B ⊢ x(z).P :: C

Γ; ⊢ 0 :: y:1

Γ;Δ1 ⊢Q :: x:A   Γ;Δ2, x:A ⊢ P :: C 
Γ; Δ1, Δ2 ⊢ (new x)(Q | P) :: CΓ; x:A ⊢ [x↔y] :: y:A

Γ; Δ1 ⊢ Q :: y:A    Γ;Δ2 ⊢P:: x:B 
Γ; Δ1, Δ2 ⊢x(y).(Q | P) :: x:A⊗B

Γ; Δ1 ⊢ Q :: y:A   Γ; Δ2, x:B ⊢ P :: C 
Γ; Δ1, Δ2, x:A⊸B ⊢ x(y).(Q | P) :: C

Γ; Δ ⊢ P :: C 
Γ; Δ, y:1 ⊢ P :: C



Linear Propositions as Session Types

Typing judgement
x1:A1, …, xn:An ⊢ P :: y:C 

Intuition: judgement states a “rely-guarantee” property:

Whenever composed with any processes offering a session 
of type Ai at xn, process P will offer a session of type C at y 

Typing ensures fidelity and global progress (cut-elimination)

Γ;Δ1 ⊢Q :: x:A   Γ;Δ2, x:A ⊢ P :: C 
Γ; Δ1, Δ2 ⊢ (new x)(Q | P) :: C



Movie Server Session

SrvBody(s) ≜ s.case( s(title).s(card).s(movie).0;  
                                    s(title).s(trailer).0) 

Alice(s) ≜ s.inr;s(“solaris” ).s(preview).0 

System ≜ (new s)( SrvBody(s) | Alice(s) ) 

ServerProto ≜ (Name ⊸ CardN ⊸ (MP4⊗1))&(Name ⊸ (MP4⊗1) 

- ; - ⊢ SrvBody(s) :: s:ServerProto 

- ; s:ServerProto ⊢ BClntBody(s) :: -:1 

- ; - ⊢ System :: -:1



Shared Movie Server

Movies(srv) ≜ !srv(s). SrvBody(s) 

SAlice(s) ≜ srv(s).s.inr;s(“solaris” ).s(preview).0 

SBob(s) ≜ srv(s).s.inl;s(“inception” ).s(“8888”).s(movie).0 

SSystem ≜ (new srv)( Movies(srv)) | SAlice(srv) | SBob(srv) ) 

- ; - ⊢ Movies(srv) :: srv:!ServerProto 

srv:ServerProto ; - ⊢ SAlice(srv) :: -:1 

srv:ServerProto ; - ⊢ SBob(srv)   :: -:1 

- ; - ⊢ SSystem :: -:1



Send and Receive

Γ; Δ1 ⊢ Q :: y:A    Γ;Δ2 ⊢P:: x:B 
Γ; Δ1, Δ2 ⊢x(y).(Q | P) :: x:A⊗B

Γ; Δ3, z:A, x:B ⊢ R :: C 
Γ; Δ3, x:A⊗B ⊢ x(z).R :: C

Γ; Δ1, Δ2, Δ3 ⊢(new x)(x(y).(Q | P) | x(z).R):: C
→



Send and Receive

→

Γ; Δ1 ⊢ Q :: y:A    Γ;Δ2 ⊢P:: x:B 
Γ; Δ1, Δ2 ⊢x(y).(Q | P) :: x:A⊗B

Γ; Δ3, y:A, x:B ⊢ R :: C 
Γ; Δ3, x:A⊗B ⊢ x(y).R :: C

Γ; Δ1, Δ2, Δ3 ⊢(new x)(x(y).(Q | P) | x(y).R):: C



Send and Receive

Γ; Δ1, Δ2, Δ3⊢ (new x)(P | (new y)(Q | R)):: C

Γ; Δ1 ⊢ Q :: y:A    Γ; Δ3, y:A, x:B ⊢ R :: C 
Γ; Δ1, Δ3, x:B ⊢(new y)(Q | R) :: CΓ;Δ2 ⊢P:: x:B

→

Tcut[x](TR⊗[y](d1, d2), TL⊗[y](d3)) → Tcut[x](d2, Tcut[y](d1, d3))

Γ; Δ1 ⊢ Q :: y:A    Γ;Δ2 ⊢P:: x:B 
Γ; Δ1, Δ2 ⊢x(y).(Q | P) :: x:A⊗B

Γ; Δ3, y:A, x:B ⊢ R :: C 
Γ; Δ3, x:A⊗B ⊢ x(y).R :: C

Γ; Δ1, Δ2, Δ3 ⊢(new x)(x(y).(Q | P) | x(y).R):: C



Send and Receive

Γ; Δ1, Δ2, Δ3 ⊢(new x)(x(y).P | x(y).(Q | R)):: C
→

Γ; Δ1, y:A ⊢ P :: x:B 
Γ; Δ1 ⊢ x(y).P :: x:A⊸B

Γ; Δ2 ⊢ Q :: y:A   Γ; Δ3, x:B ⊢ R :: C 
Γ; Δ2, Δ3, x:A⊸B ⊢ x(y).(Q | R) :: C



Send and Receive

→

Tcut[x](TR⊸[y](d1), TL⊸[y](d2, d3)) → Tcut[x](Tcut[y](d2, d1), d3)

Γ; Δ1, Δ2, Δ3⊢(new x)((new y)(Q | P) | R):: C

Γ; Δ2 ⊢ Q :: y:A          Γ; Δ1, y:A ⊢ P :: x:B 
Γ; Δ2, Δ1, x:B ⊢(new y)(Q | P) :: x:B Γ; Δ3, x:B ⊢ R :: C

Γ; Δ1, Δ2, Δ3 ⊢(new x)(x(y).P | x(y).(Q | R)):: C
→

Γ; Δ1, y:A ⊢ P :: x:B 
Γ; Δ1 ⊢ x(y).P :: x:A⊸B

Γ; Δ2 ⊢ Q :: y:A   Γ; Δ3, x:B ⊢ R :: C 
Γ; Δ2, Δ3, x:A⊸B ⊢ x(y).(Q | R) :: C



Replication and Sharing

Γ; ⊢ P :: y : A 
Γ; ⊢ !x(y).P :: x : !A

Γ, x:A; Δ ⊢P :: C 
Γ; Δ, x:!A ⊢ P :: C

Γ, x:A; Δ, y:A ⊢P :: C 
Γ, x:A; Δ ⊢ x(y).P :: C



Γ, x:A; Δ, y:A ⊢ Q :: C 
Γ, x:A ; Δ ⊢ x(y).Q :: C

Replication and Sharing

→

Tcut[x](TR![y](d1), TL![z](d2)) → Tcut[x](d1, Tcut![xy](d1, d2))

Γ; Δ ⊢(new y)(P | (new x)(!x(y).P | Q)):: C

Γ; Δ ⊢ (new x)(!x(y).P | x(y).Q) :: C

Γ; ⊢ P :: y:A 
Γ; ⊢ !x(y).P :: x:!A

Γ;  ⊢ P :: y:A     Γ, x:A; Δ, y:A ⊢ Q :: C 
Γ; Δ, y:A  ⊢ (new x)(!x(y).P | Q) :: CΓ;  ⊢ P :: y:A



Choice and Offer

Γ; Δ ⊢ Q :: x:A    Γ; Δ ⊢P:: x:B 
Γ; Δ ⊢x.case(Q,P) :: x:A&B

Γ; Δ ⊢P:: x:B 
Γ; Δ ⊢x.inr;P :: x:A⊕B

Γ; Δ ⊢P:: x:A 
Γ; Δ ⊢x.inl;P :: x:A⊕B

Γ; Δ, x:A ⊢ R :: C 
Γ; Δ, x:A&B ⊢ x.inl;R :: C

Γ; Δ, x:B ⊢ R :: C 
Γ; Δ, x:A&B ⊢ x.inr;R :: C

Γ; Δ, x:A ⊢ Q :: C   Γ; Δ, x:B ⊢P:: C 
Γ; Δ, x:A⊕B ⊢x.case(Q,P) :: C



Choice and Offer

Γ; Δ1, Δ2 ⊢ (new x)(Q | R):: C
Γ; Δ2, x:A ⊢ R :: CΓ; Δ1 ⊢ Q :: x:A

→

Tcut[x](TR&(d1, d2), TL1&(d3)) → Tcut[x](d1, d3)

Γ; Δ1 ⊢ Q :: x:A    Γ; Δ1 ⊢P:: x:B 
Γ; Δ1 ⊢x.case(Q,P) :: x:A&B

Γ; Δ2, x:A ⊢ R :: C 
Γ; Δ2, x:A&B ⊢ x.inl;R :: C

Γ; Δ1, Δ2 ⊢ (new x)(x.case(Q,P) | x.inl;R):: C

Tcut[x](TR&(d1, d2), TL2&(d3)) → Tcut[x](d2, d3)



Choice and Offer (labeled sums)

Γ; Δ ⊢Pi:: x:Ai 
Γ; Δ ⊢x.case(li:Pi) :: x:&{li:Ai}

Γ; Δ ⊢P:: x:Ai 
Γ; Δ ⊢x.li;P :: x:⊕{li:Ai}

Γ; Δ, x:Ai ⊢ Q :: C 
Γ; Δ, x:&{li:Ai} ⊢ x.li;Q :: C

Γ; Δ, x:Ai ⊢ Pi :: C  
Γ; Δ, x:⊕{li:Ai} ⊢x.case(li:Pi) :: C

&{li:Ai}  ≜ A1 &	
  	
  A2  &	
  …	
  	
  &	
  	
  An  
⊕{li:Ai} ≜ A1 ⊕	
  A2 ⊕	
  …	
  ⊕	
  An   



Copycat Forwarder

→

Tcut[x](TA[xy], d)) → d{x/y}

Γ; x:A ⊢ [x↔y]:: y:A Γ; Δ, y:A ⊢P :: C
Γ; Δ, x:A ⊢(new x)( [x↔y] | P):: C

Γ; Δ, x:A ⊢P{x/y}:: C

The axiom forwarder already appears in [Abramsky01], but used very differently.



Some Admissible Rules in DILL

Γ; Δ1 ⊢P :: 1   Γ; Δ2 ⊢Q :: C     
Γ; Δ1, Δ2 ⊢P | Q : : C

Γ; 1 ⊢0 :: 1  

Γ;Δ ⊢P:: x:B 
Γ; y:A, Δ ⊢x[y].P :: x:A⊗B

x[y].P ≜ x(z).([z↔y]|P)

cf. the so-called mix rule
(independent composition)

cf. empty
(replacing T1R and T1L)
Exactly as in [GH05] Tend

cf. internal mobility 
translation [Boreale98]



Duality in DILL

S ::= 1 | U⊗S  |   U⊸S  |  S⊕S  |  S&S

U⊗S    =    U⊸S   
U⊸S    =    U⊗S
S⊕S     =    S&S                   S = S
S&S      =    S⊕S
1     =  1

Theorem. Γ; Δ ⊢ P :: x:U  if and only if  Γ; Δ, x:U ⊢ P :: -:1

Duality on session types captured by left-right symmetry



Proofs = Processes

P  ::=    0                        (inaction)
       |    [x↔y]                 (linear forwarder)
       |    (new x)(P | Q)     (composition) 
       |    x(y).P                  (input) 
       |    x(y).P                  (output) 
       |    !x(y).P                 (replicated server)
       |    x.case(P,Q)       (offer)
       |    x.inl;Q               (choose left)
       |    x.inr;Q               (choose right)



Proof Conversions = Process Identities

Structural Conversions ( ≡ )

Identify structurally identical proofs (e.g, commute cuts, 
expose redexes)

Correspond to standard structural congruences ( ≡ )

(new x)(0 | P)  ≡  P
(new x)(P | (new y)(Q | R)) ≡  (new y)((new x)(P | Q) | R)
(new x)(P | (new y)(Q | R)) ≡  (new y)(Q | (new x)(P | R))



Proof Reductions = Process Reductions

Computational Conversions (→)

Reduce proofs into simpler ones (e.g,  decreases types)

Correspond to standard process reductions ( → )

(new x)(x(y).P | x(y).(Q | R))  → (new x)(P | (new y)(Q | R)) 
(new x)(x.case(Q,P) | x.inl;R) → (new x)(Q | R) 
(new x)(!x(y).P | x(y).Q) → (new y)(P | (new x)(!x(y).P | Q)) 



Proof Conversions = Process Identities

Structural Conversions (≃)

Correspond to well known typed strong bisimilarities ( ≃ )

   (new x)(!x(y).P | (new z)(Q | R)) ≃ 
         (new z)( (new x)(!x(y).P | Q) | (new x)(!x(y).P | R))  
   (new x)(!x(y).P | (new z)(!z(u).Q | R)) ≃ 
         (new z)( !z(u).(new x)(!x(y).P | Q) | (new x)(!x(y).P | R))
   (new x)(!x(y).P | Q) ≃ Q  [ x ∉ fn(Q) ] 

The sharpened replication lemmas of [SangiorgiWalker01] 

Yet another remarkable bridge surfaces here



Proof Conversions = Process Identities

Structural Conversions        ( ≡ )

( ≡ ) matched by π structural congruence ( ≡ )

Computational Conversions (→)
(→) matched by π reduction ( → )

Structural Conversions        ( ≃ )

( ≃ ) matched by typed π observational equivalence ( ≡ )

All Conversions                   ( ≅	
  )



Curry-Howard Correspondence

Theorem (processes as proofs) [CairesPfenning10,CPT*] 

If  Γ; Δ ⊢ P :: C  and  P ≡ → ≡ Q  then  Γ; Δ ⊢ P ≅	
  → ≅ Q:: C  

Theorem (proofs as processes) [CairesPfenning10,CPT*] 

If  Γ; Δ ⊢ P → Q :: C then P → Q  

If  Γ; Δ ⊢ P  ≡ Q :: C then P ≡ Q  

If  Γ; Δ ⊢ P  ≃ Q :: C then P ≃ Q 



Curry-Howard Correspondence

Theorem (progress) [CairesPfenning10,CPT*] 

live(P) ≜ P ≢ 0 

If  -; - ⊢ P :: -:1  and live(P) then P → Q   



From  Theorems to Code

Every provable sequent Γ; Δ ⊢ C “is” a process Γ; Δ ⊢ P :: C
We may “automatically” produce interface adapters for every 
linear logic theorem, e.g., x:A ⊢ P :: y:B is a morphism A→B

Examples (try to figure out what the process is )

    x:X⊗Y  ⊢ y:Y⊗X
     x:X ⊸  (Y&Z) ⊢ y: (X⊸Y) & (X⊸Z) 
Generally [ESOP’12], an isomorphism A ⇋ B is process pair 

(P, Q) such that x:A ⊢ P :: y:B and y:B ⊢ Q :: x:A and  
 x:A ⊢ (new y)(P|Q{z/x}) ≈ [x↔z]:: z:A 
y:B  ⊢ (new z)(Q|P{z/y}) ≈ [y↔z]:: z:B



Movie Server Session

SrvBody(s) ≜ s.case( s(title).s(card).s(movie).0;  
                                    s(title).s(trailer).0) 

Alice(s) ≜ s.inr;s(“solaris” ).s(preview).0 

System ≜ (new s)( SrvBody(s) | Alice(s) ) 

ServerProto ≜ (Name ⊸ CardN ⊸ (MP4⊗1))&(Name ⊸ (MP4⊗1) 

- ; - ⊢ SrvBody(s) :: s:ServerProto 

- ; s:ServerProto ⊢ BClntBody(s) :: -:1 

- ; - ⊢ System :: -:1



Movie Server Session

- ; - ⊢ (new s)( SrvBody(s) | Alice(s) ) :: -:1 

→ 
- ; - ⊢ (new s)( s(title).s(trailer).0 | s(“solaris” ).s(preview).0 ) :: -:1 

→ 
- ; - ⊢ (new s)( s(trailer).0 | s(preview).0 ) :: -:1 
→ 
- ; - ⊢ (new s)( 0 | 0 ) :: -:1 

≡ 
- ; - ⊢ 0 :: -:1 

Tcut[s](TR&(d1, d2), TL2&(d3)) → Tcut[s](d1, d2)

Tcut[s](TR⊸(d1), TL⊸(d2, d3)) → Tcut[s](Tcut(d2, d1), d3)

Tcut[s](TR1, TL1(TR1)) ≡ TR1

Tcut[s](TR⊗(d1,d2), TL⊗(d3)) → Tcut[s](d1,Tcut(d2, d3))



Replication and Sharing

Γ; ⊢ P :: y : A 
Γ; ⊢ !x(y).P :: x : !A

Γ, x:A; Δ ⊢P :: C 
Γ; Δ, x:!A ⊢ P :: C

Γ, x:A; Δ, y:A ⊢P :: C 
Γ, x:A; Δ ⊢ x(y).P :: C

Key idea of DILL [BarberPlotkin91]: postponing of contraction and 
weakening (“fat axioms”).

Γ; ⊢ 0 :: y:1

Γ; x:A ⊢ [x↔y] :: y:A

Γ;  ⊢ P :: y:A     Γ, x:A; Δ ⊢ Q :: C 
Γ; Δ  ⊢ (new x)(!x(y).P | Q) :: C



Γ, x:A; Δ ⊢ Q :: C 
Γ; x:!A, Δ ⊢ Q:: C

Replication and Sharing

≡

Γ; Δ ⊢ (new x)(!x(y).P | Q) :: C

Γ; ⊢ P :: y:A 
Γ; ⊢ !x(y).P :: x:!A

Γ;  ⊢ P :: y:A     Γ, x:A; Δ ⊢ Q :: C 
Γ; Δ  ⊢ (new x)(!x(y).P | Q) :: C

Tcut[x](TR!(d1), TL![y](d2)) → Tcut![xy](d1,d2)



Γ, x:A; Δ, y:A ⊢ Q :: C 
Γ, x:A ; Δ ⊢ x(y).Q :: C

Replication and Sharing

→

Tcut![xy](d1, Tcopy[xy](d2)) → Tcut[y](d1, Tcut![xy](d1, d2))

Γ; Δ ⊢(new y)(P | (new x)(!x(y).P | Q)):: C

Γ; Δ ⊢ (new x)(!x(y).P | x(y).Q) :: C
Γ; ⊢ P :: y:A

Γ;  ⊢ P :: y:A     Γ, x:A; Δ, y:A ⊢ Q :: C 
Γ; Δ, y:A  ⊢ (new x)(!x(y).P | Q) :: CΓ;  ⊢ P :: y:A



Shared Movie Server

Movies(srv) ≜ !srv(s). SrvBody(s) 

SAlice(s) ≜ srv(s).s.inr;s(“solaris” ).s(preview).0 

SBob(s) ≜ srv(s).s.inl;s(“inception” ).s(“8888”).s(movie).0 

SSystem ≜ (new srv)( Movies(srv)) | SAlice(srv) | SBob(srv) ) 

- ; - ⊢ Movies(srv) :: srv:!ServerProto 

srv:ServerProto ; - ⊢ SAlice(srv) :: -:1 

srv:ServerProto ; - ⊢ SBob(srv)   :: -:1 

- ; - ⊢ SSystem :: -:1



Shared Movie Server

- ; - ⊢ (new srv)( Mov(srv) | SA(srv) | SB(srv) ) 
≅

- ; - ⊢ (new srv)(Mov(srv) | SA(srv)) | (new srv)(Mov(srv) | SB(srv)) 

→ ≡ 
- ; - ⊢  . . . . . . . (new srv)(Mov(srv) | (new s)(SrvBody(s) | Bob(s)) 
≅

- ; - ⊢ (new srv)( Mov(srv) | SA(srv) | (new s)(SrvBody(s) | Bob(s)) 

→* 
- ; - ⊢ (new srv)( Mov(srv) | 0) ≅ 0

sharpened replication lemma (distribution of ! over | )

sharpened replication lemma (distribution of ! over | )

Tcut(TR!,TL!) followed by Tcut / Tcut! assoc 



DILL and Locality

Γ; ⊢ P :: y : A 
Γ; ⊢ !x(y).P :: x : !A

Γ, x:A; Δ ⊢P :: C 
Γ; Δ, x:!A ⊢ P :: C

Γ, x:A; Δ, y:A ⊢P :: C 
Γ, x:A; Δ ⊢ x(y).P :: C

!A type always offered at positive polarity for server offer

!A type always used at negative polarity for server invocation

So a process such as a(x).!x(y).P is not typable in DILL

DILL enforces locality on shared receptive names

( Of course, linear sessions may still output receptive names )



Dual Shared Types: !A and ?A

 !A 
Type for a shared channel server name that can persistently 
accept requests for a fresh session of type A.

?A 
Type for a channel name that can request creation of a fresh 
session of type A by communicating to a channel of type !A. 
In [GH05] such (shared) names can be freely aliased at output 
(invocation) and input (acceptance) modes.

However, this is not allowed in logical based disciplines.



Dual Shared Types: !A and ?A

Type for session that receives a channel to which server 
invocations of type A can be sent, and continues as B:

       !A ⊸ B 

Type for session that receives a channel from which server 
invocations of type A can be received, and continues as B:

       ?A ⊸ B      (not expressible in DILL)

In traditional session types [GH05], types !A and ?A get 
amalgamated into a unique, unpolarised, shared type [A]
[GH05] does not enforce locality or uniform receptiveness, in 
the sense of [Sangiorgi97] (no non-deterministic behaviour)



uniform receptiveness [Sangiorgi97]



uniform receptiveness [Sangiorgi97]

The continuation behaviour for each shared name is uniform

Corresponds to the unique definition of shared servers

Uniform receptivness [Sangiorgi97] relies on locality:

Only the output capability of shared names is passed around

  Processes forbidden to receive on shared received names

Allows “efficient” distributed implementations of name passing 
and routing since no “impersonation” of addresses is possible.

the locality property was studied in [MerroSangiorgi04]



Locality [MerroSangiorgi04]



Duality for All Session Types

S ::= 1 | U⊗S  |   U ⅋S  |  S⊕S  |  S&S |  !S	
  |	
  ?S

U⊗S    =    U⊸S   =   U ⅋  S
U⅋  S    =    U⊗S
S⊕S     =    S&S                   S = S
S&S      =    S⊕S
1     =  1
!S         =    ?S
?S         =    !S



Session Types as CLL Propositions

S ::= 1 | U⊗S  |   U ⅋S  |  S⊕S  |  S&S |  !S	
  |	
  ?S

U⊗S    =    U⊸S   =   U ⅋  S
U⅋  S    =    U⊗S
S⊕S     =    S&S                   S = S
S&S      =    S⊕S
1     =  1           S = S⊥
!S         =    ?S                      U⊸S   =   U ⅋  S
?S         =    !S



Session Types as CLL Propositions



Session Types as CLL Propositions



Classical Linear Logic [Andreolli’90]

⊢ 1; ϴ

⊢ Δ, A,  B; ϴ 
⊢ Δ, A ⅋  B; ϴ

⊢ Δ; ϴ
Δ linear context (multiset)

ϴ cartesian context (set)

⊢ A, A; ϴ  ⊢ A, Δ1; ϴ   ⊢ A, Δ2; ϴ 
⊢ Δ1, Δ2; ϴ

⊢ Δ ; ϴ 
⊢ Δ, ⊥ ; ϴ

 ⊢ Δ1; ϴ   ⊢ Δ2; ϴ 
⊢ Δ1, Δ2; ϴ

⊢ Δ1, A; ϴ   ⊢ Δ2, B; ϴ 
⊢ Δ1, Δ2 A⊗B; ϴ

NB. This system corresponds to a classical version of DILL



Classical Session Types [CPT’12-14,C14]

P ⊢ Δ, y:A,  x:B; ϴ 
x(y).P ⊢ Δ, x:A ⅋  B; ϴ

[x↔y] ⊢ x:A, y:A; ϴ

 Q ⊢ x:A, Δ1; ϴ   P ⊢x:A, Δ2; ϴ 
(new x)(Q | P) ⊢ Δ1, Δ2; ϴ

P ⊢ Δ ; ϴ 
close;P ⊢ Δ, ⊥ ; ϴ

 Q ⊢ Δ1; ϴ  P ⊢ Δ2; ϴ 
Q | P ⊢ Δ1, Δ2; ϴ

0 ⊢ ; ϴ

close ⊢ 1; ϴ

Q ⊢ Δ1, y:A; ϴ   P ⊢ Δ2, x:B; ϴ 
x(y).(Q | P) ⊢ Δ1, Δ2 , x:A⊗B; ϴ



Classical Linear Logic [TCP’12-14]

P ⊢ Δ, x:B; ϴ 
x.inr;P ⊢ Δ, x:A⊕B; ϴ

P ⊢ Δ, x:A; ϴ 
x.inl;P ⊢ Δ, x:A⊕B; ϴ

Q ⊢ Δ, x:B; ϴ   P ⊢ Δ, x:B; ϴ 
x.case(Q,P) ⊢ Δ, x:A&B; ϴ



Classical Linear Logic [TCP’12-14]

P ⊢ Δ ; x:A, ϴ 
P ⊢ Δ, x:?A; ϴ

P ⊢ y:A ; ϴ 
!x(y).P ⊢ x:!A ; ϴ

P ⊢ Δ, y:A ; x:A, ϴ 
x(y).P ⊢ Δ ; x:A, ϴ

 Q ⊢ y:A ; ϴ    P ⊢ Δ ; x:A,ϴ 
(new x)(!x(y).Q | P) ⊢ Δ ; ϴ



Replication Reduction

→

Γ; Δ ⊢(new y)(P | (new x)(!x(y).P | Q)):: C

P ⊢ y:A ; ϴ           Q ⊢ Δ, y:A ; x:A, ϴ 
Γ; Δ, y:A  ⊢ (new x)(!x(y).P | Q) :: CP ⊢ y:A ; ϴ

Q ⊢ Δ, y:A ; x:A, ϴ 
x(y).Q ⊢ Δ ; x:A, ϴ

(new x)(!x(y).P | x(z).Q) ⊢ Δ ; ϴ
P ⊢ y:A ; ϴ



Proofs = Processes

P  ::=    0                        (inaction)
       |    [x↔y]                 (forwarder)
       |    (new x)(P | Q)     (composition) 
       |    x(y).P                  (input) 
       |    x(y).P                  (output) 
       |    !x(y).P                 (shared server)
       |    x.case(P,Q)       (offer)
       |    x.inl;Q               (choose left)
       |    x.inr;Q               (choose right)
       |    x.close;Q           (wait)
       |    x.close               (close)



Proof Conversions = Process Identities

Structural Conversions        ( ≡ )

( ≡ ) matched by π structural congruence ( ≡ )

Computational Conversions (→)
(→) matched by π reduction ( → )

Structural Conversions        ( ≃ )

( ≃ ) matched by typed π observational equivalence ( ≡ )

All Conversions                   ( ≅	
  )



Proof Conversions = Process Identities

Structural Conversions ( ≡ )

Identify structurally identical proofs (e.g, commute cuts, 
expose redexes)

Correspond to standard structural congruences ( ≡ )

0 | P  ≡  P
(new x)(P | (new y)(Q | R)) ≡  (new y)((new x)(P | Q) | R)
(new x)(P | (new y)(Q | R)) ≡  (new y)(Q | (new x)(P | R))
(new x)(P | (Q | R)) ≡  Q | (new x)(P | R) cut/mix conversions

cut/mix conversions



Proof Reductions = Process Reductions

Computational Conversions (→)

Reduce proofs into simpler ones (e.g,  decreases types)

correspond to standard process reductions ( → )

(new x)(x.close | x.close.P)  → P  
(new x)(x(y).(P|Q) | x(y).R) → (new y)(P | (new x)(Q | R)) 
(new x)(x.case(Q,P) | x.inl;R) → (new x)(Q | R) 
(new x)(!x(y).P | x(y).Q) → (new y)(P | (new x)(!x(y).P | Q))



Proof Conversions = Process Identities

Structural Conversions (≃)

Correspond to well known typed strong bisimilarities ( ≃ )

   (new x)(!x(y).P | (new z)(Q | R)) ≃ 
         (new z)( (new x)(!x(y).P | Q) | (new x)(!x(y).P | R))  
   (new x)(!x(y).P | (new z)(!z(u).Q | R)) ≃ 
         (new z)( !z(u).(new x)(!x(y).P | Q) | (new x)(!x(y).P | R))
   (new x)(!x(y).P | Q) ≃ Q  [ x ∉ fn(Q) ] 

The sharpened replication lemmas of [SangiorgiWalker01]. 



Proof Conversions = Process Identities

Structural Conversions (≃)

Correspond to well known typed strong bisimilarities ( ≃ )

   (new x)(!x(y).P | Q | R) ≃ 
        (new x)(!x(y).P | Q) | (new x)(!x(y).P | R)
   (new x)(!x(y).P | (new z)(!z(u).Q | R)) ≃ 
         (new z)( !z(u).(new x)(!x(y).P | Q) | (new x)(!x(y).P | R))
   (new x)(!x(y).P | Q) ≃ Q  [ x ∉ fn(Q) ] 

The sharpened replication lemmas of [SangiorgiWalker01]. 

cut/mix conversions



CLL is non-local

SendBroad(a) ≜ a(q). (q(v1).q(v2).0 | Q) 

System ≜ (new a)( SendBroad(a) | a(x).!x(s).P)) 

a(x).!x(s).P ⊢ a: ?A⊸?B ; - 

q(v1).q(v2).0 | q(v3).0 ⊢ q: ?A ; -             Q ⊢ a:!B 

SendBroad(a) ⊢ a: ?A ⊗ !B ; -                 System ⊢ - ; - 

Unlike DILL, CLL allows us to express full duality on shared 
sessions, by dropping the (too strict) locality property.
Remarkably, the classical type structure still ensures uniform 
receptiveness on shared names (thus confluence, no surprise)



CLL ensures uniform ω-receptiveness

SendBroadW(a) ≜ a(q). (q(v).p[q].Q | P) 

⊢ SendBroadW(a) :: a:?A⊗B, p:!A⊗1; ϴ
⊢ q(v).p[q].Q :: q: ?A, p:!A⊗1; ϴ 

⊢ p[q].Q :: p:!A⊗1; q:A,ϴ
⊢ p(h).!h(z).q(k).[k↔z] :: p:!A ; q:A,ϴ

Typing allows the receptive endpoint q- to be sent (on a) at 
type ?A, linearly (exactly once), leading to a “unique server”.

Typing enforces all positive uses of q (q+) to be sent only at 
type !A, mediated by a proxy (via !R)



Building up

Behavioural Polymorphism and Parametricity
Dependent types

Asynchrony
Authorisation

LNL and Higher-Order processes

Logical Relations
Encoding Multiparty Systems

Non-determinism (forthcoming)



Behavioral Polymorphism



Behavioral Polymorphism

Polymorphism (aka “generics”) is an indispensable feature in 
everyday programming, say Java

class LinkedList<T>

T is a type parameter than can be instantiated (at compile 
time) by a given type (say, class or interface)

Parametric polymorphism was introduced in PL by Reynolds 
and is linked by the Curry-Howard correspondence to 
quantification in second-order logic by Girard

Repeating the exercise on logical session types we discover a 
powerful notion of behavioural polymorphism, just too 
hard to tackle by extant techniques [Turner,PierceSangiorgi]



simply typed λ-calculus [Church30]

Γ, x:A ⊢x:A

Γ, x : A ⊢M : B 
Γ⊢ λx:A.M : A→B 

Γ ⊢M : A→B  Γ ⊢N : A 
Γ ⊢MN : B

Tapp(Tlam([x]d1),d2) → d1{d2/x}



Polymorphic λ-calculus [Girard-Reynolds]

Ω; Γ ⊢M:A

Ω,X; Γ⊢M : B 
Ω;Γ⊢ λX.M : ∀X.B 

Ω; Γ ⊢M: ∀X.B  Ω ⊢S ty 
Ω; Γ ⊢MS : B{S/X}

TTapp(TTlam([X]d1),S) → d1{X/S}

Ω ⊢M ty



Ω;Γ ⊢M: B{S/X}  Ω ⊢S ty 
Ω;Γ ⊢<S,M> : ∃X.B

TTopen(TThide[X](d1,S),d2) → d2{X/S,x/d1}

Ω;Γ ⊢M: ∃X.B  Ω,X;, x:X ⊢N:A 
Ω;Γ ⊢ let <X,x>=M in N:A

Polymorphic λ-calculus [Girard-Reynolds]



Linear Propositions as Session Types

Typing judgement
Ω;Γ;Δ ⊢ P :: y:C 

Intuition: judgement states a rely-guarantee property:

for all session types Ω,	
  whenever composed with processes 
offering a session Ai at xn, P offers a session of type C at y 

typing ensures fidelity and global progress (cut-elimination)

Ω;Γ;Δ1 ⊢Q :: x:A   Ω;Γ;Δ2, x:A ⊢ P :: C 
Ω;Γ; Δ1, Δ2 ⊢ (new x)(Q | P) :: C



Proofs = Processes

P  ::=    0                        (inaction)
       |    [x↔y]                 (linear forwarder)
       |    (new x)(P | Q)     (composition) 
       |    x(y).P                  (input) 
       |    x(y).P                  (output) 
       |    !x(y).P                 (shared server)
       |    x.case(P,Q)       (offer)
       |    x.inl;Q               (choose left)
       |    x.inr;Q               (choose right)
       |    x[S].P                  (type output)
       |    x(X).Q                 (type input)



Linear Propositions as Session Types

Ω,X;Γ;Δ⊢ P :: x:B 
Ω;Γ;Δ ⊢ x(X).P :: x:∀X.B

Ω,X;Γ; Δ, x:B ⊢ P :: C 
Ω;Γ;Δ, x:∃X.B ⊢ x(X).P :: C

Ω	
  ⊢S ty   Ω;Γ; Δ ⊢ P :: x:B{S/X}   
Ω; Γ; Δ ⊢x[S].P :: x:∃X.B

Ω ⊢ S ty   Γ; Δ, x:B{S/X} ⊢ P :: C 
Γ; Δ, x:∀X.B ⊢ x[S].P :: C



Type Send and Receive

→

Tcut[x](TR∀[X](d1), TL∀(S, d2)) → Tcut[x](d1{S/X}, d2)

Ω; Γ; Δ1 ⊢ P{S/X} :: x:B{S/X}    Ω;Γ; Δ2, x:B{S/X} ⊢ Q :: C 
Ω; Γ; Δ1, Δ2 ⊢(new x)(P{S/X} | Q) :: C

→

Ω; Γ; Δ1, Δ2 ⊢(new x)(x(X).P | x[S].Q):: C

Ω,X; Γ; Δ1 ⊢ P :: x:B 
Ω;Γ; Δ1 ⊢ x(X).P :: x:∀X.B

Ω ⊢ S ty   Γ; Δ2, x:B{S/X} ⊢ Q :: C 
Ω; Γ; Δ2, x:∀X.B ⊢ x[S].Q :: C



Type Send and Receive

→

Tcut[x](TR∃(S, d1), TL∃[X](d2)) → Tcut[x](d1, d2{S/X})

Ω; Γ; Δ1 ⊢ P :: x:B{S/X}    Ω;Γ; Δ2, x:B{S/X} ⊢ Q{S/X} :: C      
Ω; Γ; Δ1, Δ2 ⊢(new x)(P | Q{S/X}) :: C

→

Ω; Γ; Δ1, Δ2 ⊢(new x)(x[S].P | x(X).Q):: C

Ω	
  ⊢S ty   Ω;Γ; Δ1 ⊢ P :: x:B{S/X} 
Ω; Γ; Δ1 ⊢x[S].P :: x:∃X.B

Ω,X;Γ; Δ2, x:B ⊢ Q :: C 
Ω;Γ; Δ2, x:∃X.B ⊢ x(X).Q :: C



Classical Typing Rules

Ω	
  ⊢S ty  P ⊢ Δ, x:B{S/X}; ϴ; Ω 
x[S].P ⊢ Δ, x:∃X.B; ϴ; Ω

P ⊢ Δ, x:A; ϴ; Ω,	
  X 
x(X).P ⊢ Δ, x:∀X.A; ϴ; Ω



A Cloud Computing Server



The Generic Cloud Service

API ≜ !&{ rmov:(Name ⊸  MP4⊗1), wmov:(Name ⊸  MP4 ⊸  1)) 

CloudServer ≜ ∀X.!(API ⊸  X) ⊸  !X  

CS(a) ≜ a(Y).a(t).!a(w).t(s).s(ap).([ap↔api] | [s↔w]) 

 - ; api:API ⊢ CS(a) :: a:CloudServer 

 - ; - ⊢ MDB(api) :: api:API 

 - ; - ⊢ (new api)(MDB(api) | CS(a)) :: a:CloudServer



API ≜ !&{ rmov:(Name ⊸  MP4⊗1), wmov:(Name ⊸  MP4 ⊸  1)) 

MCode(s,api) ≜ s(title).api(h).h.rmov;h(title).h(mfile).s(mfile).0  

UserProto ≜ Name ⊸ MP4⊗1 

- ; - ⊢ s(api).MCode(s) :: s: API ⊸  UserProto 

ServiceCode(t) ≜ !t(s).s(api).MCode(s,api) 

- ; - ⊢ ServiceCode(t) :: t: !(API ⊸  UserProto) 

Uploading Service to the Cloud



 - ; - ⊢ (new api)(MDB(api) | CS(a)) :: a:CloudServer 

FreeViewProto(n) ≜ a[UserProto].a(t).(ServiceCode(t) | [a↔n]) 

- ; a:CloudServer ⊢ FreeViewProto(n) :: n:!UserProto 

FreeOnCloud ≜ (new a)(CloudServer | FreeViewProto(n)) 

- ; - ⊢ FreeOnCloud:: n:!UserProto 

Creating a Custom Service



 - ; - ⊢ (new api)(MDB(api) | CS(a)) :: a:CloudServer 

FreeViewProto(n) ≜ a[UserProto].a(t).(ServiceCode(t) | [a↔n]) 

- ; a:CloudServer ⊢ FreeViewProto(n) :: n:!UserProto 

FreeOnCloud ≜ (new a)(CloudServer | FreeViewProto(n)) 

- ; - ⊢ FreeOnCloud:: n:!UserProto 

Isabel(n) ≜ n(a).a(“interstellar”).a(file)…. 

- ; n:!UserProto ⊢ Isabel(n) :: p:Fun 

- ; - ⊢ (new n)(FreeOnCloud | Isabel(n))) :: p:Fun

Creating a Custom Service



Logical Relations and Parametricity

Being based on logic, our systems are amenable to well-
known reasoning techniques that can be used to establish 
important meta properties.

We have developed (linear) logical relations and associated 
proof techniques for our session type systems [ESOP12, 
ESOP13, TGC14, BT15], addressing strong normalisation, 
observational equivalences, parametricity.
N.B: Logical relations have been originally introduced by 
[Tait58], but are currently a basic tool for studying general 
semantic properties enforced by type systems [see A13].



A Logical Predicate Tηω⟦z:A⟧

P ∈ Tηω⟦z:X⟧  ≜ P ∈ η(X)(z) 

P ∈ Tηω⟦z:1⟧  ≜ ∀Q. (P ⇒ Q ∧ Q → ) ⊃ Q ≡! 0 

P ∈ Tηω⟦z:A⊸B⟧ ≜  ∀Q.(P ⇒ Q) ⊃	
  
	
  	
  	
  	
  	
  	
  	
  	
  ∀R ∈ Tηω⟦y:A⟧. (new y)(R | Q) ∈ Tηω ⟦z:B⟧ 

P ∈ Tηω⟦z:A⊗B⟧ ≜  ∀Q.(P ⇒ Q) ⊃	
  
	
  	
  	
  	
  	
  	
  	
  	
  ∃P1,P2. P ≡! (P1 | P2) ∧	
  P1 ∈ Tηω ⟦y:A⟧ ∧ P2 ∈ Tηω ⟦z:B⟧

P ∈ Tηω⟦z:∀X.A⟧ ≜ ∀S,P´,R[:S]. (P ⇒ Q) ⊃	
  Q ∈ Tη[X/R[:S]]ω[X/S]⟦z:A⟧ 

P ∈ Tηω⟦z:∃X.A⟧ ≜  ∃S,P´,R[:S]. (P ⇒ Q) ⊃	
  Q ∈ Tη[X/R[:S]]ω[X/S]⟦z:A⟧ 

z(y)

z(y)

z(S)

z[S]



Logical Candidate

A logical candidate R⟦z:A⟧ is a set of processes such that:

P ∈ R⟦z:A⟧  implies -­‐;-;- ⊢ P :: z:A 

P ∈ R⟦z:A⟧  implies P strongly terminates under → 

P ∈ R⟦z:A⟧  and P ≡! Q implies Q ∈ R⟦z:A⟧

P ∈ R⟦z:A⟧  and P ⇒ Q implies Q ∈ R⟦z:A⟧ 

P ∈ R⟦z:A⟧ if for all Q such that P ⇒ Q we have Q ∈ R⟦z:A⟧ 

The defined notion of candidate [Girard] captures the 
intended semantic property here, in this case termination.



Strong Termination

Theorem. 

For all ω:Ω η:Ω, Tηω⟦z:A⟧ is a logical candidate R⟦z: ω(A)⟧

Theorem. 

If Ω;Γ;Δ ⊢P:: y:C and ω:Ω, η:Ω then ω(P) ∈ Tηω⟦ Ω;Γ;Δ⊢ P:: y:C⟧ 

Theorem. 

If Ω;Γ;Δ ⊢P:: y:C and ω:Ω	
  then ω(P) strongly terminates under →



Logical Relations and Parametricity

Parametricity states that polymorphic code operates in a 
completely uniform way across all type instantiations 

Traditionally, parametricity is important to establish e.g., 
representation independence or security properties of ADTs.

In [PCPT’13-ESOP] we have developed a powerful theory of 
parametricity for polymorphic session types.
We show e.g., how observational equivalence of two 
restaurant finding apps relying on completely different map 
services (with very different interaction protocols).

Simple type based analysis technique shows that no client can 
tell which map service is being used “under the hood”.



Interface Contracts and Assertions



Interface Contracts and Assertions

Session types just talk about the abstract communication 
behaviour, but richer behavioural specifications will definitely 
need to talk about properties of exchanged data as well

Traditionally, this involves considering notions of “contracts” 
or “assertions”, in the spirit of axiomatic semantics [Hoare].
Along this lines, [BHTY10] studied one possible combination 
of multiparty session types with FOL pre / post conditions.



Interface Contracts and Assertions

Following the Curry-Howard approach we may naturally 
integrate session types (propositional linear logic) towards a 
dependent type theory (intuitionistic first-order logic). 

N.B. while basic values can be encoded as processes, we have 
no perspective on how to define a consolidated type theory 
for processes both as behaviours and as values that would 
support a proper dependent type theory.

We now illustrate a typed integration of processes, 
intuitionistic data types, proofs, and “processes as data” 
inspired by the Mixed Linear-Non-Linear logic of Benton.



Mixed linear-non-linear Logic [Benton]

Ѱ ;Γ; Δ ⊢P :: z:S

Δ linear channel context (multiset)

Γ cartesian channel context (set)

Ѱ cartesian value context (set)

A :: = int | bool | nat | string | … 
    |  A → B 
    |  A ∧ B 
    |  A ∨ B 
    |  { z:S } 
    |  ∀x:A.B 
    |  ∃x:A.B 

S :: =      U⊗S  |   U⊸S     
     |   S⊕S  |   S&S       
     |   !U      |  1   	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  | 	
  	
  $A	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  |	
  	
  ∀x:A.S  
           |  ∃x:A.B

Ѱ; Γ ⊢M : A



Mixed linear-non-linear Logic [Benton]

Ѱ ;Γ ⊢M : A 
Ѱ ;Γ; - ⊢[z ← M] :: z:$A

Ѱ ;Γ; - ⊢P ::  z:S  
Ѱ ;Γ ⊢{P} : {z:S}

Ѱ, z:A; Γ; Δ ⊢P : C 
Ѱ ;Γ; Δ, z:$A ⊢P :: C

Δ linear channel context (multiset)

Γ cartesian channel context (set)

Ѱ cartesian value context (set)

Ѱ ;Γ ⊢ M : {z:S}   Ѱ ;Γ; Δ, z:S ⊢Q :: C  
Ѱ ;Γ; Δ ⊢ spawn. z (M || Q): C

Ѱ; Γ ⊢M : A
Ѱ ;Γ; Δ ⊢P :: z:S



Certifying Session Interfaces

“Standard” Session Type (talks about behaviour)

BankST ≜&{ with: nat ⊗	
  nat ⊸ &{ ok;1,ko;1},
          deposit: nat	
  ⊗	
  &{ ok;1, ko;1} } 

Dependent Session Type (talks about behaviour + data exchanged)

BankCI ≜&{ with: ∃b:nat. ∀v:nat.∀p: [v ≤ b]. &{ ok;1,ko;1},
          deposit:∀v:nat. ∀p: [0 ≤ v]. &{ ok;1,ko;1}}



Dependent Session Types

Ѱ,y:A;Γ;Δ ⊢ P :: x:S 
Ѱ;Γ;Δ ⊢ x(y).P :: x: ∀y:A.S

Ѱ; Γ ⊢M : A   Ѱ;Γ; Δ ⊢ P :: x:S{M/x}   
Ѱ; Γ; Δ ⊢x[M].P :: x: ∃x:A.S



Certifying Session Interfaces

BankCI ≜&{ with: ∃b:nat. ∀v:nat.∀p: [v ≤ b]. &{ ok;1,ko;1},
          deposit:∀v:nat. ∀p: [0 < v]. &{ ok;1,ko;1}} 

Client(b) ≜ b.with.s(bv).s(bv/2).s[ltehalf(bv)].ok;1 

Ѱ; Γ; b: BankCI  ⊢ Client(b)  :: - 1 

Ѱ	
  contains	
  a	
  binding	
  for	
  ltehalf: ∀b:nat. b/2 ≤ b



Mixed linear-non-linear Logic [Benton]

Ѱ ;Γ ⊢M : A 
Ѱ ;Γ; - ⊢[z ← M] :: z:$A

Ѱ ;Γ; - ⊢P ::  z:S  
Ѱ ;Γ ⊢{P} : {z:S}

Ѱ, z:A; Γ; Δ ⊢P : C 
Ѱ ;Γ; Δ, z:$A ⊢P :: C

Δ linear channel context (multiset)

Γ cartesian channel context (set)

Ѱ cartesian value context (set)

Ѱ ;Γ ⊢ M : {z:S}   Ѱ ;Γ; Δ, z:S ⊢Q :: C  
Ѱ ;Γ; Δ ⊢ spawn. z (M || Q): C

Ѱ; Γ ⊢M : A
Ѱ ;Γ; Δ ⊢P :: z:S



App Store

AppStore ≜&{ game:{ g: API ⊸ Game},
           maps: { g: API ⊸  GPS ⊸ Maps } 

  cam:{ g: API ⊸  CAM ⊸ Cam} } 
Cam ≜ … some session type describing the camera App behaviour  



A toy App Store

AppStore ≜&{ game:{ g: API ⊸ Game},
           maps: { g: API ⊸  GPS ⊸ Maps } 

  cam:{ g: API ⊸  CAM ⊸ Cam} } 
Cam ≜ … some session type describing the camera App behaviour  

Betty(as,gps) ≜ 
     as.maps.as(code).spawn g. (code | g(api).g(gps).[g↔c]): c:Maps 

as: AppStore, api:GPS ⊢ Betty(as,api) :: c: Maps 



The Cloud Server Type (redux)

API ≜ !&{ rmov:(Name ⊸  MP4⊗ 1),  

                  wmov:(Name ⊸  MP4 ⊸  1)} 

CloudServer ≜ ∀X.{c:API ⊸  X} ⊸  !X  



Building up

Behavioural Polymorphism and Parametricity
Dependent types

Asynchrony
Authorisation

LNL and Higher-Order processes

Logical Relations
Encoding Multiparty Systems

Non-determinism (forthcoming)
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