LINEAR LOGIC AND
BEHAVIORAL TYPES

Luis Caires

Universidade Nova de Lisboa
(based on joint work with Pfenning, Toninho, and Perez)

‘ NOVA Laboratory for
NOVALINGS Computer Science and Informatics

EU TYPES 2016 Meeting (NOVA Lisbon)

type systems for programming

¢ Types at the heart of “real” PLs (OCaml, Java, C#, Scala)
¢ Highly modular, based on a “lego” of canonical constructions
¢ Deep foundations in logic
¢ a type system is (should be) a specialised logic!
¢ Essential in mainstream technology
¢ mostly checked statically
¢ “standard” types must be easy to use by any programmer

I”

& types are everywhere, and “practica

type systems for programming

® Huge impact on software quality:

¢ “Well-typed programs do not go wrong”
¢ Huge impact on programming (as a human activity):

¢ types “tame programmers’ to write reasonable code
¢ But what about types (specifically) for concurrency !

¢ “Adopted” type systems are purely structural, state
oblivious, unable to tackle the challenges of state dynamics,
concurrency, aliasing, etc (but recently, see e.g,, Rust).

¢ We foresee behavioural types leading to a new generation
of type systems for future programming languages

simply typed A-calculus [Church30]

I —M:A
I, x:ArFxA
TaFTA FME I-M:A—>B I'=N:A
I'- Ax:AM: A—B ' -MN :B

Tapp(Tlam([x]d1).d2) — di1{d>/x}

simply typed A-calculus

1"

IT-M:A1T -N:B
I'-<MN>:AAB

I'-M:AANB .
I I—Fst(M) - A Tfst(Tpair(di, d2)) — di
e
I' -snd(M) : B sna(Tpair(di, d2)) >

simply typed A-calculus

I -M: A .
T OENE: i [case(T1nl(d), [x]ci, [x]c2) = ciid/x}

I'=M:B
I'-inr(M):AVB

Tcase(Tinr(d), [x]ci1, [x]c2) — c2{d/x}

I'-N:AvB ©I''xA-M:C I, xBEN:C
I' - case N(inl(x)=>M | inr(x)=>N) : C

induction

I'-nil: List[A]

I'-M:A T -N:List[A]
' M::N: List[A]

I'-N:C T,x:A,t:List[A],z:C+M:C
I' - rec(0=N,(xtz)M): C

Basic Properties of Typing

¢ type preservation under evaluation / reduction

¢ think about rewriting the complete typing trees
¢ progress (stuck freedom)

¢ together with preservation this means “type safety”
¢ termination (sometimes)

¢ confluence (sometimes)

Typeful Programming [Cardelli85]

¢ Typeful programming ~ Special case of program specification
¢ Types ~ Specifications

¢ Type-Checking ~ Verification

¢ Useful to enforce correctness at “compilation” time

¢ View nicely fits with the Curry-Howard paradigm of

propositions as types, and proofs as programs

Propositions as Types

Intuitionistic Logic = Typed A-calculus,

I'.x:A-M:B IT'-M:A—-B 1T -N:A
I'- Ax:A.M : A—B I'-MN:B

I, x:ArFxA

I'-M:AAB T'+-M:AAB T'EFM:ATHEN:B
I'-sndM):B T fstiM):A T'-<MN>:AAB

I ="]

I'-M:A
I'FinliM) :AVB THN:AVB I, xA-M:CT,xB+M:C
I'-M:B I'-case N(inl(x)=>M | inr(x)=>M) : C

I'-inr(M):AVB

Curry-Howard Correpondence

¢ Proofs = Programs and Types = Propositions

¢ Curry-Howard, Girard, VWadler

¢ A proof denotes a “‘computational object”: program, process
¢ Program execution = Proof reduction (cut-elimination)

¢ Program equivalence = Proof conversion

¢ Proof reduction preserves proof equivalence

¢ Termination + Confluence = Consistency

¢ Compositional Semantics via Logical Relations

Curry-Howard Design Space

¢ Different logics yield different typed languages
¢ Sequent calculus ~ explicit substitutions
¢ Higher order logic ~ polymorphism
¢ Classical logic ~ continuations, exceptions
¢ Modal logic ~ monads, security

¢ Linear Logic ~ resource control, behavioural types

o “Powerful insights arise from linking two fields of study previously thought
separate [... | as offered by the principle of Propositions as Types, which links
logic to computation. At first sight it appears to be a simple coincidence— almost
a pun—>but it turns out to be remarkably robust, inspiring the design of
automated proof assistants and programming languages’ [VVadler| 6]

Curry-Howard Design Space

¢ Different logics yield different typed languages
¢ Sequent calculus ~ explicit substitutions
¢ Higher order logic ~ polymorphism
¢ Classical logic ~ continuations, exceptions
¢ Modal logic ~ monads, security
¢ Linear Logic ~ resource control, behavioural types

¢ “One can also extrapolate this correspondence and turn it into a predictive tool:
if a concept is present in type theory but absent in programming, or vice versa, it
can be very fruitful to both areas to investigate and see what the corresponding

concept might be in the other context.’ [Cardelli89]

Curry Howard for Process Types?

Types for Processes

the m-calculus [Milner92]

Pas=0 (inaction)

PlO (composition)

(new x)P (restriction)

x(y).P (input)

x|y].P (free output)

Ix(yv).P (replicated input)

x(y).P = (new y)x[y].P (fresh output)

Semantics:

structural congruence (P = Q) [static identity |
reduction (P — Q) [dynamics |

the m-calculus [Milner92]

structural congruence (=)

PlO=P
PlQ = ¢
P

(newx)0=0
(newx)(P1Q)=Pl(newx)Q [x ¢ fn(P)]

the m-calculus [Milner92]

reduction (—)

x().P | x[z].Q — Pizly} | Q
x(»).P| x[z].O — !x(v).P|P{z/y} | O

P— Q implies PIR — QO|R
P— QO implies (newx)P — (newx)Q
(P=P and P"— Q and Q" = Q) implies P — QO

Types for Processes

A Sort Inference Algorithm for the Polyadic 7-Calculus

Simon J. Gay*
Department of Computing,
Imperial College of Science,
Technology and Medicine,

Abstract

In Milner’s polyadic m-calculus there is a notion of sorts
which is analogous to the notion of types in functional
programming. As a well-typed program applies func-
tions to arguments in a consistent way, a well-sorted pro-
cess uses communication channels in a consistent way.
An open problem is whether there is an algorithm to in-
fer sorts in the 7-calculus in the same way that types can
be inferred in functional programming. Here we solve
the problem by presenting an algorithm which infers
the most general sorting for a process in the first-order
calculus, and proving its correctness. The algorithm is
similar in style to those used for Hindley-Milner type
inference in functional languages.

phic type of an expression. This relieves the program-
mer of the task of supplying type annotations for all
variables and functions, and helps to ensure that func-
tion definitions reflect any genericity present in the al-
gorithms which they are encoding. From a theoreti-
cal point of view, the analogy between types in func-
tional programming and propositions in intuitionistic
logic (the Curry-Howard isomorphism, also known as
the propositions-as-types paradigm) forms the basis of
the elegant connections between functional programs,
intuitionistic proofs and cartesian closed categories. On
the practical side, type checking is recognised as one of
the most successful applications to date of formal meth-
ods in computer science.

The success of type systems in sequential programming

IO-types [PierceSangiorgi93]

Typing and Subtyping
for Mobile Processes

Benjamin Pierce* Davide Sangiorgi'

May 10, 1994

Abstract

The w-calculus is a process algebra that supports process mobility by focusing on the communication of
channels. Milner’s presentation of the w-calculus includes a type system assigning arities to channels and
enforcing a corresponding discipline in their use. We extend Milner’s language of types by distinguishing
between the ability to read from a channel, the ability to write to a channel, and the ability both to read
and to write. This refinement gives rise to a natural subtype relation similar to those studied in typed

A-calculi.

Linear Types [KobayashiPierceTurner96] |

Linearity and the Pi-Calculus

NAOKI KOBAYASHI
University of Tokyo
BENJAMIN C. PIERCE
University of Pennsylvania

and
DAVID N. TURNER

An Teallach Limited

The economy and flexibility of the pi-calculus make it an attractive object of theoretical study
and a clean basis for concurrent language design and implementation. However, such generality
has a cost: encoding higher-level features like functional computation in pi-calculus throws away
potentially useful information. We show how a linear type system can be used to recover important
static information about a process’s behavior. In particular, we can guarantee that two processes
communicating over a linear channel cannot interfere with other communicating processes. After

Session Types [Honda93,HKV98,GH05]

Types for Dyadic Interaction®

Kohei Honda

kohei@nt.cs.kero.ac.jp

Department of Computer Science, Keio University

3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

Abstract

We formulate a typed formalism for concurrency where types denote frecly composable structure of dyadic inter-
action in the symmetric scheme. The resulting calculus is a typed reconstruction of name passing process calculi.
Systems with both the explicit and implicit typing disciplines, where types form a simple hierarchy of types, are
presented, which are proved to be in accordance with each other. A typed variant of bisimilarity is formulated and
it is shown that typed B-equality has a clean embedding in the bisimilarity. Name reference structure induced by
the simple hierarchy of types is studied, which fully characterises the typable terms in the set of untyped terms.
It turns out that the name reference structure results in the deadlock-free property for a subset of terms with a
certain regular structure, showing behavioural significance of the simple type discipline.

Session Types [Honda93,HKV98,GH05]

LANGUAGE PRIMITIVES AND TYPE DISCIPLINE FOR
STRUCTURED COMMUNICATION-BASED PROGRAMMING

KOHEI HONDA*, VASCO T. VASCONCELOST, AND MAKOTO KUBO?

ABSTRACT. We introduce basic language constructs and a type discipline as a foun-
dation of structured communication-based concurrent programming. The constructs,
which are easily translatable into the summation-less asynchronous m-calculus, allow
programmers to organise programs as a combination of multiple flows of (possibly
unbounded) reciprocal interactions in a simple and elegant way, subsuming the pre-
ceding communication primitives such as method invocation and rendez-vous. The
resulting syntactic structure is exploited by a type discipline a la ML, which offers
a high-level type abstraction of interactive behaviours of programs as well as guar-
anteeing the compatibility of interaction patterns between processes in a well-typed
program. After presenting the formal semantics, the use of language constructs is
illustrated through examples, and the basic syntactic results of the type discipline
are established. Implementation concerns are also addressed.

Session Types [Honda93,HKV98,GHO05]

n
it

Subtyping for Session Types in the Pi
Calculus

Simon Gay!, Malcolm Hole?*

! Department of Computing Science, University of Glasgow, UK
2 Department of Computer Science, Royal Holloway, University of London, UK

Received: date / Revised version: date

Abstract. Extending the pi calculus with the session types proposed
by Honda et al. allows high-level specifications of structured patterns
of communication, such as client-server protocols, to be expressed as
types and verified by static typechecking. We define a notion of sub-
typing for session types, which allows protocol specifications to be
extended in order to describe richer behaviour; for example, an im-
plemented server can be refined without invalidating type-correctness
of an overall system. We formalize the syntax, operational semantics
and typing rules of an extended pi calculus, prove that typability
guarantees absence of run-time communication errors, and show that
the typing rules can be transformed into a practical typechecking
algorithm.

Session Types [GHO5]

T ::=*T (shared channel) S ::=end (base type)
| S (session type) | 'T.S (output)
| 7T.S (input)

INAl=P A EQ ;A xS, x:S-P I:-—P
I AL AP Q I'; A+ (new x)P [IP

Ayl 1 00,085FP 1LxXARP
I A, 0TS, Ao = xP[ylP 15 A, x:*T = P

I:end 0

L, XU 20U
| S o 6 T Kl 1, T, AP ¢
[0. 7T.S + xP(y).P [; A+ (newx)P I i o Il)

Curry Howard for Process Types?

28

Session Types [Honda93]

Types for Dyadic Interaction®

Kohei Honda

kohei@int.cs.keto.ac.jp

Department of Computer Science, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

Abstract

We formulate a typed formalism for concurrency where types denote frecly composable structure of dyadic inter-
action in the symmetric scheme. The resulting calculus is a typed reconstruction of name passing process calculi.
Systems with both the explicit and implicit typing disciplines, where types form a simple hierarchy of types, are
presented, which are proved to be in accordance with each other. A typed variant of bisimilarity is formulated and
it is shown that typed B-equality has a clean embedding in the bisimilarity. Name reference structure induced by
the simple hierarchy of types is studied, which fully characterises the typable terms in the set of untyped terms.
It turns out that the name reference structure results in the deadlock-free property for a subset of terms with a
certain regular structure, showing behavioural significance of the simple type discipline.

Other related work includes Abramsky’s process interpretation of Linear Logic [1], from which we
got essential suggestions regarding compositional type structure for interaction and its materialization

Computational Interpretations of LL

On the wm-Calculus and Linear Logic
G. Bellin * P. J. Scott |
July 20, 1994

Abstract

We detail Abramsky’s “proofs-as-processes” paradigm for inter-
preting classical linear logic (CLL) [13] into a “synchronous” version
of the w-calculus recently proposed by Milner [27, 28]. The trans-
lation is given at the abstract level of proof structures. We give a
detailed treatment of information flow in proof-nets and show how
to mirror various evaluation strategies for proof normalization. We
also give Soundness and Completeness results for the process-calculus
translations of various fragments of CLL. The paper also gives a self-
contained introduction to some of the deeper proof-theory of CLL,
and its process interpretation.

Computational Interpretations of LL

An exact correspondence between a typed
pi-calculus and polarised proot-nets

Kohei Honda
Department of Computer Science
Queen Mary, University of London

Olivier Laurent*
Preuves Programmes Systemes
CNRS — Universtité Paris 7

September 30, 2009

Abstract

This paper presents an exact correspondence in typing and dynamics be-
tween polarised linear logic and a typed m-calculus based on IO-typing.
The respective incremental constraints, one on geometric structures of
proof-nets and one based on types, precisely correspond to each other,
leading to the exact correspondence of the respective formalisms as they
appear in [Lau03] (for proof-nets) and [HYBO04]| (for the m-calculus).

Session Types

[CairesPfenning 10, ToninhoCP1 | -16]

Session Types as Intuitionistic Linear Propositions

Lufs Caires' and Frank Pfenning?

1 CITI and Departamento de Informética, FCT, Universidade Nova de Lisboa
2 Department of Computer Science, Carnegie Mellon University

Several type disciplines for r-calculi have been proposed in which linearity plays a key
role, even if their precise relationship with pure linear logic is still not well understood.
In this paper, we introduce a type system for the 7-calculus that exactly corresponds
to the standard sequent calculus proof system for dual intuitionistic linear logic. Our
type system is based on a new interpretation of linear propositions as session types, and
provides the first purely logical account of all (both shared and linear) features of session
types. We show that our type discipline is useful from a programming perspective, and
ensures session fidelity, absence of deadlocks, and a tight operational correspondence
between m-calculus reductions and cut elimination steps.

Session Types as Linear Propositions,

S,U ::

U—-S (input)
U®S (output)
SHS (choice)
S&S (offer)

U (shared replication)
1 (end)

Duality on session types, the key insight of [H93], is captured by

duality (or left-write symmetry) at the logical level.

7

Linear Sequent Calculus [Andreolli92]

¢ A linear context (multiset)

[;AFA :
¢ I’ cartesian context (set)
. I AiHFA T A, A-C
57 e T. A, AzF C
I;AiEA 1A, BEC I;A,A+B iy
[; A1, Ay, A~B + C ;A A—B 5
INAiHA I'; B I;A,A,B+C IbARC
I'; Ai, A2 FAR®B I'' A\, AQB + C IVA, 1+ C

Sequent calculus presentation of DILL [BarberPlotkin9|]

Linear Propositions as Session Types.

I''AMi=Q ix:A Ao, x AP C
I'; A, Ao = (newx)(Q | P) :: C

I'; x: A [xeop] s y:A

I"’ARP::C
1,001 PRcC
INAMi-Qiuy:A 1; AP xB I''A zA,xBH-P::C
I'; A1, A2 =%(»).(Q | P) :: x:AQB I' A, x:AQB - x(2).P :: C

| Bl g | il gt

INAIFQuyvA 1 A, xBEP::C I;A,zZA+ P ::xB
I'; A1, A, x:A—B - X(1).(Q | P) :: C I'; A x(2).P :: x:A—B

Linear Propositions as Session Types.

¢ Typing judgement |
X1:A1, ..., X0 An = P y:C

¢ Intuition: judgement states a “‘rely-guarantee” property:

Whenever composed with any processes offering a session
of type Aj at xu, process P will offer a session of type C at y

I''AMi=Q cix:A A, x AP C
I'; Ai, A= (newx)(Q | P) :: C

Typing ensures fidelity and global progress (cut-elimination)

Movie Server Session

SrvBody(s) £ s.case((title).s(card).@(.OVie).O;
s(title).s(trailer).0)

Alice(s) 2 s.inr;s(“solaris’).s(preview).0

System = (new s)(SrvBody(s) | Alice(s))

ServerProto £ (Name — CardN — (MP4®1))&(Name — (MP4®1)

- ; - = SrvBody(s) :: s:ServerProto

- ; s:ServerProto — BClintBody(s) :: -:1

- ;- = System :: -:1

Shared Movie Server

Movies(srv) £ lsrv(s). SrvBody(S)
SAlice(s) 2 srv(s).s.inr;s(“solaris”).s(preview).0

SBob(s) £ srv(s).s.1nl;s(“inception’).s(“8888”).s(movie).0
SSystem = (new srv)(Movies(srv)) | SAlice(srv) | SBob(srv))
- ; - = Movies(srv) :: srv:\ServerProto

srv.ServerProto ; - = SAlice(srv) :: -:1

srv.ServerProto ; - -+ SBob(srv) ::-:1

- ;- = SSystem :: -:1

Send and Receive

1M Qiy:A o FP..xB I'; A, zZA,x B R :: C
I'; A, Ao =X(1).(Q | P) :: x:AQB I'; A5, x AQB - x(2).R :: C
I'; A1, Az, As =(new x)(X(»).(O | P) | x(2).R):: C

—>

Send and Receive

1M Qiy:A o FP..xB I'; Az, A, x BFR:: C
I'; A, o =X(»).(Q | P) :: x:AQB I'; A3, x:AQB ~ x(y).R :: C
I'; A1, A2, As —(new x)(x(»).(O | P) | x(y).R):: C

—>

Send and Receive

1M Qiy:A o FP..xB I'; Az, A, x BFR:: C
I'; A, o =X(»).(Q | P) :: x:AQB I'; A3, x:AQB ~ x(y).R :: C
I'; A1, A2, As —(new x)(x(»).(O | P) | x(y).R):: C

INAMMFQiuy: A T A3,y A, xBHR::C
A =P x:B I'; At, A3, x:B —(newy)(O | R) :: C

I'; A1, Az, As- (new x)(P | (new y)(Q | R)):: C

Tcut[x](TR®[y](di, d2), TLR[y](d3)) — Tcutx](d2, Tcutl[yl(d:, d3))

Send and Receive

I AMi,yA-P::xB I Q:ayv:A 1 A, xBFR::C
I Ai=x(p).Pi:x:A—-B 1, A2, A3, x:A-=B FX()).(O|R) :: C
I'; A1, Az, As=(new x)(x(1).P | X(»).(Q | R)):: C

—>

Send and Receive

I AMi,yA-P::xB I Q:ayv:A 1 A, xBFR::C
I Ai=x(p).Pi:x:A—-B 1, A2, A3, x:A-=B FX()).(O|R) :: C
I'; A1, Az, As=(new x)(x(1).P | X(»).(Q | R)):: C

—>

I A= Qi y:A I'; A7,y AP ::x:B
I'; Ao, Ai,x BH(newy) Q| P)::x:B T1;A3,xBFR::C
I'; A1, Az, As=(new x)((new y)(Q | P) | R):: C

Tcut[x](TR—[y](d:), TL—o[y](d>2, d3)) — Tcut[x](Tcutlyl(dz, d:), d3)

Replication and Sharing

EFEPLIYIA
I Ix().P:x: 1A

oA TTA R G
I, xA; A= X(y).P:: C

I,x:A; AP ::C
I; A, x!A-P::C

Replication and Sharing

| Bl o s I, xA; A,y A-Q::C
I'; - Ix(y).P::x:!A I',xA; A-X(»).0:: C
I'; A (new x)(!x(»).P | X(»).Q) :: C

L3Py ANl CAFN AR O C
| S8 o i I A, y:A = (newx)(!Ix(y).P| Q) :: C
I'; A-(new y)(P | (new x)(!x(»).P | Q)):: C

Tcut[x](TR![y]l(d1), TL![z](d2)) — Tcut[x](d;, Tcut![xyl(d:, d2))

Choice and Offer

INAFQ:xA T;A-P::xB INAxAFR::C
I'; A-x.case(Q,P) :: x:A&B I') A, x:A&B + x.1nl:R :: C

1;AFP: xB 1A xBEFR:C
I'' Abx.inr;P :: x:A®B I'; A, x:A&B + x.1inr;R :: C
I; AP x:A L AEARD U, D EPC

N AFxanEr L ADB I'; A, xA®B —x.case(Q,P) :: C

Choice and Offer

INAMFQuxA 1AM P x:B I'; A, x AR ::C
I'; Ajx.case(Q,P) :: x:A&B I'; A2, x:A&B + x.1nl;R :: C
I'; A1, A2 = (new x)(x.case(Q,P) | x.1inl;R):: C

ITMFQOXA diMxAFEK:C
I'; At, A= (new x)(Q | R):: C

Tcut[x](TR&(d1, d2), TL1&(d3)) — Tcut[x](d;, ds)

Tcut[x](TR&(d1, d2), TL2&(d3)) — Tcut[x](dz, ds)

Choice and Offer (labeled sums)

I'; A -Pi:: x:Aj A xAi-Q :: C
I'; Abx.case(li:Pi) :: x:&{li:Ai} 1 A, x:&{li:Ai} Hx.1i;Q:: C

15 AP x:A; I A x:Ai-Pi:: C
' AFx i P o x:@{li:Ait T'; A, x:®{li:Ai} Fx.case(li:Py) :: C

&{Li:Ai} £ A1& A2 &... & An
B{liAi} tAIGAD ... D An

Copycat Forwarder

I'; xAF [xop]:: y:A I A,y A-P . C
I'; A, x:A=(new x)([x—y] | P):: C

—>

I A, xA=Pix/y}:: C

Tcut[x](TA[xy], d)) — d{x/y}

The axiom forwarder already appears in [AbramskyO|], but used very differently.

Some Admissible Rules in DILL

APl T; M0 ::C cf. the so-called mix rule

[;ALAMEP|O::C (independent composition)
cf. empty
[51H0::1 (replacing TIR and T1L)
Exactly as in [GHO5] Tend
I’ AP x:B
I yv:A, A=x[y].P :: xAQB cf. internal mobility

x[V].P & X(z2).([z—V]|P) translation [Boreale98]

S:=1 | US| U-=S | S&S | S&S

U®S
U—eS
SDOS

S&S
1

Theorem. [; A+ P :: x:U ifand only if T; A, x:U - P:: -:1

Duality on session types captured by left-right symmetry

Duality in DILL

Proofs = Processes

Pi= 0 (1naction)
[x—y] (linear forwarder)
(newx)(P1 Q) (composition)
x(y).P (input)
x(y).P (output)
Ix(y).P (replicated server)
x.case(P,0) (offer)
x.1nl;0 (choose left)
x.i1nr;Q (choose right)

Proof Conversions = Process ldentities

Structural Conversions (=)

|dentify structurally identical proofs (e.g, commute cuts,
expose redexes)

Correspond to standard structural congruences (=)

(newx)(0|P) =P
(new x)(P | (new y)(Q | R)) = (new y)((new x)(P | Q) | R)
(new x)(P | (new y)(Q I R)) = (new y)(Q | (new x)(P | R))

Proof Reductions = Process Reductions

Computational Conversions (—)
Reduce proofs into simpler ones (e.g, decreases types)

Correspond to standard process reductions (—)

(new x)(x(y).P | ¥(»).(Q | R)) —> (new x)(P | (new y)(Q | R))
(new x)(x.case(Q,P) | x.1nlL;R) — (new x)(Q | R)

(new x)(!x(y).P | X(y).Q) — (new y)(P | (new x)(!x(y).P | Q))

Proof Conversions = Process ldentities

¢ Structural Conversions (=)
Correspond to well known typed strong bisimilarities (=)

(new x)(!x(y).P | (new z)(Q | R)) =

(new z)((new x)(!x(»).P 1 Q) | (new x)(!x(»).P | R))
(new x)(!x(y).P | (new z)(!z(u).Q | R)) =

(new z)(!z(u).(new x)(!x(»).P 1 Q) | (new x)(!x(y).P | R))
(new x)(1x(y).P 1 Q) = Q [x & fn(Q)]

¢ The sharpened replication lemmas of [SangiorgiVWalkerO|l]

¢ Yet another remarkable bridge surfaces here

Proof Conversions = Process ldentities

¢ Structural Conversions (=)
(=) matched by = structural congruence (=)
¢ Computational Conversions (—)
(—) matched by & reduction (—)
¢ Structural Conversions (=)
(=) matched by typed & observational equivalence (=)

& All Conversions (=)

Curry-Howard Correspondence

Theorem (processes as proofs) [CairesPfenning10,CPT*]
IfI;A-P::C and P=—=Q then | ;A-P=—-=0::C
Theorem (proofs as processes) [CairesPfenning10,CPT*]
IfI;A-rP—=Q:CthenP — QO

If I'’AFP=0Q::CthenP=0Q

If AP ~Q::CthenP=Q

Curry-Howard Correspondence

Theorem (progress) [CairesPfenning10,CPT*]
live(P)2 P#£0

If -;-+ P::-:1 and live(P) then P — Q

From Theorems to Code

¢ Every provable sequent I'; A+ C “is” a process [; A~ P :: C

¢ We may “automatically” produce interface adapters for every
linear logic theorem, e.g.,x:A + P :: y:B is a morphism A—B

¢ Examples (try to figure out what the process is)
XXX — VY RX
x:X o (Y&Z) - y: (X—=Y) & (X—Z)
¢ Generally [ESOP’12], an isomorphism A = B is process pair
(P, O) such that x:A+~ P::y:Band y:B+ Q :: x:A and
XA (new y)(P|Q{z/x}) = [xez]:: z:A
y:B = (new z)(QO|P{z/y}) = [y<z]:: z:B

Movie Server Session

SrvBody(s) £ s.case((title).s(card).@(.OVie).O;
s(title).s(trailer).0)

Alice(s) 2 s.inr;s(“solaris’).s(preview).0

System = (new s)(SrvBody(s) | Alice(s))

ServerProto £ (Name — CardN — (MP4®1))&(Name — (MP4®1)

- ; - = SrvBody(s) :: s:ServerProto

- ; s:ServerProto — BClintBody(s) :: -:1

- ;- = System :: -:1

Movie Server Session

- ; - = (new s)(SrvBody(s) | Alice(s)) :: -:1

=2 [cut[s](TR&(d1, d2), TL2&(d3)) — Tcut[s](d;, d>)
- ; - = (new s)(s(title).s(trailer).0 | s(“solaris”).s(preview).0) :: -:1
e | cut[s](TR—(d;), TL—o(d>, d3)) — Tcut[s](Tcut(dz, d;), ds3)
- ; - = (new s)(s(trailer).0 | s(preview).0) :: -:1

= TCcut[s](TR®(d:,d2), TLR(d3)) — Tcut[s](d:,Tcut(dsz, ds))
-;-F(news)(0]0)::-:1
Tcut[s](TR1, TL1(TR1)) = TR1

S | |

Replication and Sharing

I'-P:y:A
I-!Ix().P:x: 1A

I'; x A [xoy] s y:A

| B | B
| B o0 S0 g Gl B B
I',xA; A+=Xx(y).P:: C
I, xA; AP ::C i POpA AN O C
E D NIAE e A - (newx)(!x(»).P| Q) :: C

Key idea of DILL [BarberPlotkin91]: postponing of contraction and
weakening (“‘fat axioms”).

Replication and Sharing

| Bl o s LA - Ql
I'; - Ix(y).P::x:!A I xAJA- Qi C
I A (newx)(!Ix(y).P | Q) :: C

Feib A - 1 XCATSE G
INA - (newx)(!x(»).P| Q) :: C

Tcut[x](TR!(d;), TL![y](d2)) — Tcut![xyl(d:.d>2)

Replication and Sharing

I, xA; A,y A-Q::C
L 1P eV A I, xA;A+-X().0:. C
I'; A (new x)(Ix(y).P | X(»).Q) :: C
L3Py ANl CAFN AR O C
| S8 o i I A, y:A = (newx)(!Ix(y).P| Q) :: C
I'; A-(new y)(P | (new x)(!x(»).P | Q)):: C

Tcut![xyl(d:, Tcopy[xyl(dz)) — Tcutlyl(d:, Tcut![xyl(d:, d2))

Shared Movie Server

Movies(srv) £ lsrv(s). SrvBody(S)
SAlice(s) 2 srv(s).s.inr;s(“solaris”).s(preview).0

SBob(s) £ srv(s).s.1nl;s(“inception’).s(“8888”).s(movie).0
SSystem = (new srv)(Movies(srv)) | SAlice(srv) | SBob(srv))
- ; - = Movies(srv) :: srv:\ServerProto

srv.ServerProto ; - = SAlice(srv) :: -:1

srv.ServerProto ; - -+ SBob(srv) ::-:1

- ;- = SSystem :: -:1

Shared Movie Server

- ; - = (new srv)(Mov(srv) | SA(srv) | SB(srv))

sharpened replication lemma (distribution of ! over |)

- ; - = (new srv)(Mov(srv) | SA(srv)) | (new srv)(Mov(srv) | SB(srv))

1R

=48 Tcut(TRLTL!) followed by Tcut / Tcut! assoc
e ST (new srv)(Mov(srv) | (new s)(SrvBody(s) | Bob(s))

— sharpened replication lemma (distribution of ! over |)

- ; - = (new srv)(Mov(srv) | SA(srv) | (new s)(SrvBody(s) | Bob(s))

- ; - = (new srv)(Mov(srv) | 0) = 0

DILL and Locality

Iy Py A
L Ix(Y).FP . TA
I, x:A; AP ::C oA VAR =C
VA NBIA P C I',xA; A-X(y).P:: C

¢ 1A type always offered at positive polarity for server offer

¢ 1A type always used at negative polarity for server invocation
¢ So a process such as a(x).!x(y).P is not typable in DILL

¢ DILL enforces locality on shared receptive names

(Of course, linear sessions may still output receptive names)

Dual Shared Types: !A and A

s 1A

Type for a shared channel server name that can persistently
accept requests for a fresh session of type A.

s 1A

Type for a channel name that can request creation of a fresh
session of type A by communicating to a channel of type !A.

¢ In [GHOS5] such (shared) names can be freely aliased at output
(invocation) and input (acceptance) modes.

However, this is not allowed in logical based disciplines.

Dual Shared Types: !A and A

¢ Type for session that receives a channel to which server
invocations of type A can be sent, and continues as B:

IA—B

¢ Type for session that receives a channel from which server
invocations of type A can be received, and continues as B:

A —- B (not expressible in DILL)

¢ In traditional session types [G
amalgamated into a unique, un

-H05], types !A and ?A get
bolarised, shared type [A]

¢ [GHO5] does not enforce loca
the sense of [Sangiorgi97] (no

ity or uniform receptiveness, in
non-deterministic behaviour)

The name discipline of uniform receptiveness

Davide Sangiorgi
INRIA Sophia-Antipolis, France.

October 20, 1997

Abstract

In a process calculus, we say that a name x is uniformly receptive for a
process P if: (1) at any time P is ready to accept an input at z, at least as long
as there are processes that could send messages at x; (2) the input offer at =
is functional, that is, all messages received by P at z are applied to the same
continuation. In the mw-calculus this discipline is employed, for instance, when
modeling functions, objects, higher-order communications, remote-procedure
calls. We formulate the discipline of uniform receptiveness by means of a
type system, and then we study its impact on behavioural equivalences and
process reasoning. We develop some theory and proof techniques for uniform
receptiveness, and illustrate their usefulness on some non-trivial examples.

uniform receptiveness [Sangiorgi97]

¢ The continuation behaviour for each shared name is uniform
¢ Corresponds to the unique definition of shared servers
¢ Uniform receptivness [Sangiorgi97] relies on locality:
Only the output capability of shared names is passed around
Processes forbidden to receive on shared received names

¢ Allows “efficient” distributed implementations of name passing
and routing since no “impersonation” of addresses is possible.

¢ the locality property was studied in [MerroSangiorgiO4]

Locality [MerroSangiorgi04]

On asynchrony in name-passing calculi

Massimo Merro* Davide Sangiorgi**

INRIA Sophia-Antipolis, France

Abstract. The asynchronous m-calculus is considered the basis of exper-
imental programming languages (or proposal of programming languages)
like Pict, Join, and Blue calculus. However, at a closer inspection, these
languages are based on an even simpler calculus, called Local © (L),
where: (a) only the output capability of names may be transmitted; (b)
there is no matching or similar constructs for testing equality between
names.

We study the basic operational and algebraic theory of L7w. We focus on
bisimulation-based behavioural equivalences, precisely on barbed congru-
ence. We prove two coinductive characterisations of barbed congruence
in L7, and some basic algebraic laws. We then show applications of this
theory, including: the derivability of delayed input; the correctness of an
optimisation of the encoding of call-by-name A-calculus; the validity of
some laws for Join.

Duality for All Session Types

S:=1 1 URS | UBS | S&S | S&S1| IS|?S

U-oS
U®S
S&S

S®S

o D
wn v

U®S

S

S

Session Types as CLL Propositions

S:=1 1 URS | UBS | S&S | S&S1| IS|?S

UKS = U-eS

U%S = U®S
S®S = S&S
S&S = S&S
1 - 1
1S = 9§

?S = 1S

U=nS
S=S

S =S4
U—eS

URBS

Session Types as CLL Propositions

-

Propositions as sessions™

PHILIP WADLER

University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK
(e-mail: wadler@inf.ed.ac.uk)

Abstract

Continuing a line of work by Abramsky (1994), Bellin and Scott (1994), and Caires and Pfenning
(2010), among others, this paper presents CP, a calculus, in which propositions of classical linear
logic correspond to session types. Continuing a line of work by Honda (1993), Honda et al. (1998),
and Gay & Vasconcelos (2010), among others, this paper presents GV, a linear functional language
with session types, and a translation from GV into CP. The translation formalises for the first time
a connection between a standard presentation of session types and linear logic, and shows how a
modification to the standard presentation yields a language free from races and deadlock, where race
and deadlock freedom follows from the correspondence to linear logic.

Linear Logic Propositions as Session Types

Luis Caires!, Frank Pfenning? and Bernardo Toninho!?
! Faculdade de Ciéncias e Tecnologia and CITI, Universidade Nova de Lisboa, Lisboa, Portugal

2 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Throughout the years, several typing disciplines for the m-calculus have been proposed.
Arguably, the most widespread of these typing disciplines consists of session types.
Session types describe the input/output behavior of processes and traditionally provide
strong guarantees about this behavior (i.e., deadlock freedom and fidelity). While these
systems exploit a fundamental notion of linearity, the precise connection between linear
logic and session types has not been well understood.

This paper proposes a type system for the m-calculus that corresponds to a standard
sequent calculus presentation of intuitionistic linear logic, interpreting linear propositions
as session types and thus providing a purely logical account of all key features and
properties of session types. We show the deep correspondence between linear logic and
session types by exhibiting a tight operational correspondence between cut elimination
steps and process reductions. We also discuss an alternative presentation of linear session
types based on classical linear logic, and compare our development with other more
traditional session type systems.

Classical Linear Logic [Andreolli’90]

¢ A linear context (multiset)
—A; © :]
¢ O cartesian context (set)

5 —AALO FAAMO EALO A O

i o — AL A O — AL A O
—A;©
P an A, L;©
- ALA;© Ay, B;© ~A,A,B; ©
- A1, A2 A®B; © ~A,A®B; 0

NB. This system corresponds to a classical version of DILL

Classical Session Types [CPT’12-14,C14]

[xy] F x:A, y:A; © 0;0

OF x:A,A1;0 PrxA,A; O O+-A;© PHA2 O
(newx)(Q | P) + A1, Az; © O|PFA1,A;©

PHA;©
close;P—A,1;0

closetr 1; 0

OF ALYy A;© P A,xB;0 P+ A,y:A,x:B; ©
X).(O| P) - A1, A2, x:A®B; © x(y).P+ A, x:A®B; ©

Classical Linear Logic [TCP'12-14]

P+ A,x:A; ©
x.inl; P+ A, x:A®B; 6

P+ A,xB:; 6
x.inr; P+ A, x:ADB; ©

O+A,xB;© P+ A, xB;©
x.case(Q,P) + A, x:A&B; ©

Classical Linear Logic [TCP'12-14]

PryA;© P+—A:xA,©
x(y).P + x:'A; © P+ A,x?A; ©
PrHA,y:A;x:A,© O+vyA;O PrA;xAB

x().P+A;xA,©O (new x)(!x(»).O | P)—A; ©

Replication Reduction

OF A,y:A;x:A,©

PryA;© x(v).O+ A;x:A,©
(new x)('x(»).P | X(z).O) - A; ©
P+ y:A;© OF A,y:A; x:A,©
Pry:A;© I A, y:A = (newx)(!Ix(y).P| Q) :: C

I'; A-(new y)(P | (new x)(!x(y).P | O)):: C

Proofs = Processes

Pi= U0 (1naction)
[x—y] (forwarder)
(newx)(P1 Q) (composition)
x(y).P (input)

x(y).P (output)
Ix(y).P (shared server)
x.case(P,0) (offer)
x.1nl;0 (choose left)
x.inr;Q (choose right)
x.close;0 (wait)
x.close (close)

Proof Conversions = Process ldentities

¢ Structural Conversions (=)
(=) matched by = structural congruence (=)
¢ Computational Conversions (—)
(—) matched by & reduction (—)
¢ Structural Conversions (=)
(=) matched by typed & observational equivalence (=)

& All Conversions (=)

Proof Conversions = Process ldentities

Structural Conversions (=)

|dentify structurally identical proofs (e.g, commute cuts,
expose redexes)

Correspond to standard structural congruences (=)

0P =P

(new x)(P | (new y)(Q | R)) = (new y)((new x)(P 1 Q)| R)
(new x)(P | (new y)(Q | R)) = (new y)(Q | (new x)(P | R))

(newx)(P 1 (Q1R))= QI (newx)(PI|R)

Proof Reductions = Process Reductions

Computational Conversions (—)
Reduce proofs into simpler ones (e.g, decreases types)

correspond to standard process reductions (—)

(new x)(x.close | x.close.P) — P

(new x)(x(»).(P|Q) | x(»).R) — (new y)(P | (new x)(Q | R))
(new x)(x.case(Q,P) | x.1nl;R) — (new x)(Q | R)

(new x)(1x(y).P | ¥(y).Q) — (new y)(P | (new x)(!x(y).P | O))

Proof Conversions = Process |ldentities

e Structural Conversions (=)

Correspond to well known typed strong bisimilarities (=)

(new x)(!x(y).P | (new z)(Q | R)) =
(new z)((new x)(!x(v).P | Q) | (new x)(!x(y).P | R))

(new x)(!x(y).P | (new z)(1z(u).Q | R)) =
(new z)(!1z(u).(new x)(!x(y).P | Q) | (new x)(!x(y).P | R))

(new x)(1x(y).P1 Q) = O [x ¢ fn(Q)]

¢ The sharpened replication lemmas of [SangiorgiVWalkerO|l].

Proof Conversions = Process ldentities

® Structural Conversions (=)

Correspond to well known typed strong bisimilarities (=)

(new x)(!Ix(y).Pl QI R) =

(new x)(!x(y).P 1 Q) | (new x)(!x(»).P | R)
(new x)(!x(y).P | (new z)(1z(u).Q | R)) =

(new z)(!1z(u).(new x)(!x(y).P | Q) | (new x)(!x(y).P | R))

(new x)(1x(y).P1 Q) = O [x ¢ fn(Q)]

¢ The sharpened replication lemmas of [SangiorgiVValkerO|].

CLL is non-local

SendBroad(a) £ a(q). (g(v1).q(v2).0 | Q) |
System = (new a)(SendBroad(a) | a(x).!x(s).P))
a(x).!x(s).P+ a: ?2A—?B ; -

qg(v1).q(v2).0 | g(v3).0 = g: ?A ; - O+ a:'B
SendBroad(a) - a: 7A & B e System + - ; -

¢ Unlike DILL, CLL allows us to express full duality on shared
sessions, by dropping the (too strict) locality property.

¢ Remarkably, the classical type structure still ensures uniform
receptiveness on shared names (thus confluence, no surprise)

CLL ensures uniform w-receptiveness

a(q). (q(v).plql.Q | P)
— SendBroadW(a) :: a:?A®B, p:'A®1; ©
—g(v).p[ql.O :: q: ?A, p:1A®1; 6

- p[q].0 :: p:'A®L; ¢:A,O

= B(h).\h(z)G(k).[koz] :: pIA ; ¢:A,O

SendBroadW(a) =

¢ Typing allows the receptive endpoint g” to be sent (on a) at
type ?A, linearly (exactly once), leading to a “unique server”.

¢ Typing enforces all positive uses of g (¢g") to be sent only at
type !A, mediated by a proxy (via !R)

Building up

¢ Behavioural Polymorphism and Parametricity
¢ Dependent types

¢ Asynchrony

¢ Authorisation

¢ LNL and Higher-Order processes

¢ Logical Relations

¢ Encoding Multiparty Systems

¢ Non-determinism (forthcoming)

Behavioral Polymorphism

Behavioral Polymorphism

¢ Polymorphism (aka “generics”) is an indispensable feature in
everyday programming, say Java

class LinkedList<T>

T is a type parameter than can be instantiated (at compile
time) by a given type (say, class or interface)

¢ Parametric polymorphism was introduced in PL by Reynolds
and is linked by the Curry-Howard correspondence to
quantification in second-order logic by Girard

¢ Repeating the exercise on logical session types we discover a
powerful notion of behavioural polymorphism, just too
hard to tackle by extant techniques [Turner,PierceSangiorgi]

simply typed A-calculus [Church30]

I, x:ArFxA

1,¥:AFM: D I'~M:A—B I'-N:A
I'-2x:AM:A—B ' -MN:B

Tapp(TLlam([x]d1).d2) — di1{d2/x}

Polymorphic A-calculus [Girard-Reynolds,

QO M ty O: T -M:A
OX; I'=M:B O: T M ¥VXB Q Sty
OI'=AXM: VX.B Q; T —MS : B{S/X}

TTapp(TTLam([X]d1),S) — di{X/S}

Polymorphic A-calculus [Girard-Reynolds,

;I =M: B{S/X} QFSty O =M: 3X.B Q.X;, x: X mN:A
;1 -<§,M> : 3X.B QI - let <X, x>=M 1n N:A

TTopen(TThide[X](d1,S).d2) — d2{X/S,x/d:1}

Linear Propositions as Session Types.

¢ Typing judgement |
SEACA R P i y:C

¢ Intuition: judgement states a rely-guarantee property:

for all session types (), whenever composed with processes
offering a session A; at xn, P offers a session of type C at y

L IAMEQ x:A Q1A x: AP C
1 A, o= (newx)(Q | P) :: C

typing ensures fidelity and global progress (cut-elimination)

Proofs = Processes

Pi= 0 (1naction)
[x—y] (linear forwarder)
(newx)(P1 Q) (composition)
x(y).P (input)

x(y).P (output)
Ix(y).P (shared server)
x.case(P,0) (offer)
x.1nl;0 (choose left)
x.i1nr;Q (choose right)
x|S].P (type output)
x(X).0 (type input)

Linear Propositions as Session Types.

OFSty QI A P x:B{S/X} BN AXBEELC
;) I'; A=x[S].P:: x:3X.B 1A, x:3X.B - x(X).P:: C

OFSty I A, x:B{S/ X} —-P::C O,X:I';A- P :: x:B
I'; A, x:VX.B - x[S].P::C OLGIAE x(X).P i x:VX.B

Type Send and Receive

OX; A= Px:B OQFSty I; A2, x:B{S/ X} -Q::C
;1 A= x(X).P:: x:VX.B ;I Ag, x:VX.B — x[S].Q0 :: C
(; I'; A1, Aa=(new x)(x(X).P | x[S].O):: C

—>

O, I'; A1 = P{S/X} :: x:B{S/X} QI'; Ay, x:B{S/X} -0 ::C
O, 1; A1, A =(newx)(P{S/X} | Q) :: C

Tcut[x](TRY[X](d)), TLY(S, d2)) — Tcut[x](d;{S/X}, d>)

Type Send and Receive

OFSty QI A= Pax:B{S/X} QOXI;MA,xBFQO:C
; I'; A1 —x[S].P :: x:3X.B ;1 Az, x:3AX B - x(X).0 :: C
; I'; A1, Aa=(new x)(x[S].P | x(X).0):: C

—>

0, 1; A1 = P:: x:B{S/X} I'; A2, x:B{S/X} - Q{S/X} :: C
O, 1; A1, A2 —=(new x)(P | O{S/X}) :: C

Tcutx](TRA(S, d1), TLA[X](d2)) — Teut[x](d:, d2{S/X})

Classical Typing Rules

PrHA xA;0;Q0,X
x(X).P+ A, x:VX.A; ©;

QFSty P A, x:B{S/X}; ©; Q
x[S].P + A,x:3X.B; ©; Q

A Cloud Computing Server

The Generic Cloud Service

API £ 1&{ rmov:(Name — MP4®1), wmov:(Name — MP4 — 1))
CloudServer £ VX.!(API — X) — IX

CS(a) £ a(Y).a(?).!a(w).t(s).s(ap).(lap—api] | [sew])
- ; api: APl = CS(a) :: a:CloudServer

- ; - = MDB(api) :: api:API

- ; - = (new api)(MDB(api) | CS(a)) :: a:CloudServer

Uploading Service to the Cloud

API 2 1&{ rmov:(Name — MP4®1), wmov:(Name — MP4 — 1))

MCode(s,api) £ s(title).api(h).h.rmov;h(title).h(mfile).s(mfile).0
UserProto = Name — MP4®1

- ; - = s(api).MCode(s) :: s: API —o UserProto

ServiceCode(t) £ 1(s).s(api).MCode(s,api)

- ; - = ServiceCode(t) :: t: (APl —o UserProto)

Creating a Custom Service

- ; - = (new api)(MDB(api) | CS(a)) :: a:CloudServer
FreeViewProto(n) £ a|UserProto].a(t).(ServiceCode(t) | [a<>n])
- ; a:CloudServer + FreeViewProto(n) :: n:UserProto

FreeOnCloud = (new a)(CloudServer | FreeViewProto(n))

- - = FreeOnCloud:: n:'UserProto

Creating a Custom Service

-; - ~ (new api)(MD(api) | CS()) % ‘:"CloudServer
FreeViewProto(n) £ a|UserProto].a(t).(ServiceCode(t) | [a<>n])
- ; a:CloudServer +— FreeViewProto(n) :: n:!UserProto
FreeOnCloud = (new a)(CloudServer | FreeViewProto(n))

- - = FreeOnCloud:: n:'UserProto
Isabel(n) £ n(a).a(“interstellar”).a(file)....
- ; n:\UserProto + Isabel(n) :: p:Fun

- ; - = (hew n)(FreeOnCloud | Isabel(n))) :: p:Fun

Logical Relations and Parametricity

¢ Being based on logic, our systems are amenable to well-
known reasoning techniques that can be used to establish
Important meta properties.

¢ We have developed (linear) logical relations and associated
proof techniques for our session type systems [ESOPI2,
ESOPI13,TGCI4,BT 5], addressing strong normalisation,

observational equivalences, parametricity.

¢ N.B: Logical relations have been originally introduced by
[Tait58], but are currently a basic tool for studying general
semantic properties enforced by type systems [see Al 3].

A Logical Predicate T“[z:A]

Pe Ty[z:X] £ P e nX)(z)
PeT®[z1] £ VO.(P=0A0—>)>0=10
Pe Ty°[zA—B] ¢ VO.PX0) >

VR € T\ *[y:Al. (new y)gR | Q) e Ty* [z:B]
Pe Tz A®QB] £ VO.(P i(g)Q) =
AP1,P>. P = (P1| P2) A P1e Ty [y:A] A P> e Ty [z:B]

z(S
P e T\[z:VX.A] # VS,P’,R[:S]. (P (:) 0) D O € Tryx/rps) R/

i) S
Pe Tyelzz3X.Al ¢ 3S,P R[:S]. (P2'0) o 0 € Top/rpsy@™s)

[z:A]

[z:A]

Logical Candidate

¢ A logical candidate R[z:A] is a set of processes such that:

PeR
PeR
PeR
PeR
PeR

[7:A]
[7:A]
[z:A]
[z:A]

[z:A]

implies -;-;- = P i z.A

implies P strongly terminates under —

and P =, O implies) € R[z7:A]

and P = O implies) € R[z:A]

if for all O such that P = O we have O € R[z:A]

¢ The defined notion of candidate [Girard] captures the
intended semantic property here, in this case termination.

Strong Termination

Theorem.

For all w:Q n:Q), Ty®[z:A] 1s a logical candidate R[z: w(A)]
Theorem.

If Q;I';A =P:: y:C and w:(), n:Q) then w(P) € Ty*[Q; 1A P:: y:C]
Theorem.

If Q;I';A =P:: y:C and w:() then w(P) strongly terminates under —

Logical Relations and Parametricity

¢ Parametricity states that polymorphic code operates in a
completely uniform way across all type instantiations

¢ Traditionally, parametricity is important to establish e.g.,
representation independence or security properties of ADTs.

¢ In [PCPT’13-ESOP] we have developed a powerful theory of
parametricity for polymorphic session types.

¢ We show e.g., how observational equivalence of two
restaurant finding apps relying on completely different map
services (with very different interaction protocols).

¢ Simple type based analysis technique shows that no client can
tell which map service is being used “under the hood”.

Interface Contracts and Assertions

Interface Contracts and Assertions

® Session types just talk about the abstract communication
behaviour, but richer behavioural specifications will definitely
need to talk about properties of exchanged data as well

¢ Traditionally, this involves considering notions of “contracts”
or “assertions’, in the spirit of axiomatic semantics [Hoare].

¢ Along this lines, [BHTY 0] studied one possible combination
of multiparty session types with FOL pre / post conditions.

Interface Contracts and Assertions

¢ Following the Curry-Howard approach we may naturally
integrate session types (propositional linear logic) towards a
dependent type theory (intuitionistic first-order logic).

¢ N.B. while basic values can be encoded as processes, we have
no perspective on how to define a consolidated type theory
for processes both as behaviours and as values that would
support a proper dependent type theory.

® We now illustrate a typed integration of processes,
intuitionistic data types, proofs, and “processes as data”
inspired by the Mixed Linear-Non-Linear logic of Benton.

Mixed linear-non-linear Logic [Benton]

¢ A linear channel context (multiset
V.:.I'-M:A ()
¥ AP S ¢ I cartesian channel context (set)

® W cartesian value context (set)

A:=int|bool |nat|string|... S::= UKRKS | U--S
A—B SHS | S&S
ANANB wi="11
AVB $A
128} Vx:A.S
Vx:A.B Ix:A.B
Ix:A.B

Mixed linear-non-linear Logic [Benton]

® A linear channel context (multiset)

V.1 -M:A
YA P28 ¢ I’ cartesian channel context (set)
¢ Y cartesian value context (set)
VIEM:A VWV, z2A; 1, AP : C
VYi;,-F[zeM]::25A Yoo AL A FERC

b o BTl o) e PR Moy Tl NN ECT T
Xk et {283 VY:I;AFspawn. z(M || O): C

Certifying Session Interfaces

“Standard” Session Type (talks about behaviour)

BankST £&{ with: nat ® nat — &{ ok;1,ko;1},
deposit: nat ® &{ ok;1, ko;l} }

Dependent Session Type (talks about behaviour + data exchanged)
BankCI £&{ with: 3b:nat. Vv:nat.Vp: [v < b]. &{ ok;1,ko;1},
deposit:Vv:nat. Vp: [0 <v]. &{ ok;1,ko;1}}

Dependent Session Types

Y. T'E-M:A WI,A- P x:S{M/x}
Y. I1'; A=x[M].P :: x: Ax:A.S

YWy A LA P xS
WA x(v).P i x: Vy:AS

Certifying Session Interfaces

BankCI £&{ with: 3b:nat. Vv:nat.Vp: [v < b]. &{ ok;1,ko;1},
deposit:Vv:nat. Vp: [0 <v]. &{ ok;1,ko;1}}

Client(b) £ b.with.s(bv).s(bv/2).s[Itehalf(bv)].ok;1

Y I'; b: BankCI + Client(b) ::-1

Y contains a binding for Itehalf: Vb nat. b/2 <b

Mixed linear-non-linear Logic [Benton]

® A linear channel context (multiset)

V.1 -M:A
YA P28 ¢ I’ cartesian channel context (set)
¢ Y cartesian value context (set)
VIEM:A VWV, z2A; 1, AP : C
VYi;,-F[zeM]::25A Yoo AL A FERC

b o BTl o) e PR Moy Tl NN ECT T
Xk et {283 VY:I;AFspawn. z(M || O): C

AppStore A&{ game: {g API —o Game}
maps: { g: APl — GPS — Maps }
cam: { g: AP — CAM — Cam} }

Cam %= ... some session type describing the camera App behaviour

) toy App Store

AppStore =& { game: {g API —o Game}
maps: { g: APl — GPS — Maps }
cam: { g: APl — CAM — Cam} }

Cam %= ... some session type describing the camera App behaviour

Betty(as,gps) =
as.maps.as(code).spawn g. (code | g(api).g(gps).[g<c]): c:Maps

as: AppStore, api: GPS + Betty(as,api) :: c: Maps

The Cloud Server Type (redux)

API £ '&{ rmov: (Name —o MP4® 1)
wmov:(Name —o MP4 — 1)}
CloudServer = VX.{c:APl - X} — IX

Building up

¢ Behavioural Polymorphism and Parametricity
¢ Dependent types

¢ Asynchrony

¢ Authorisation

¢ LNL and Higher-Order processes

¢ Logical Relations

¢ Encoding Multiparty Systems

¢ Non-determinism (forthcoming)

Core References

Caires, Pfenning: Session Types as Intuitionistic Linear Propositions. CONCUR 10

Toninho, Caires, Pfenning: Dependent session types via intuitionistic linear type theory. PPDP 1| |
Caires, Pfenning, Toninho: Towards concurrent type theory. TLDI 12

Toninho, Caires, Pfenning: Functions as Session-Typed Processes. FoSSaCS 12

Pérez, Caires, Pfenning, Toninho: Linear Logical Relations for Session-Based Concurrency. ESOP 12

DeYoung, Caires, Pfenning, Toninho: Cut Reduction in Linear Logic as Asynchronous Session-Typed
Communication. CSL 12

Woadler: Propositions as sessions. ICFP 12 (also JFP 14)

Toninho, Caires, Pfenning: Higher-Order Processes, Functions, and Sessions: A Monadic Integration.
ESOP 13

Caires, Pérez, Pfenning, Toninho: Behavioral Polymorphism and Parametricity in Session-Based
Communication. ESOP |3

Toninho, Caires, Pfenning: Corecursion and Non-divergence in Session-Typed Processes. TGC 14
Caires, Pfenning:, Toninho, Linear Logic Propositions as Session Types. MSCS 16
Caires, Pérez: Multiparty Session Types Within a Canonical Binary Theory, and Beyond. FORTE 16

Background

Wadler: Propositions as types. Commun.ACM 58(12) (2015)

Cardelli: Typeful Programming, IFIP State-of-the-Art Reports (1989)

Milner, Parrow, Walker: A Calculus of Mobile Processes, I. Inf. Comput. 100(1): 1-40 (1992)
Milner: Functions as Processes. Mathematical Structures in Computer Science 2(2): (1992)
Gay:A Sort Inference Algorithm for the Polyadic Pi-Calculus. POPL 1993

Pierce, Sangiorgi: Behavioral equivalence in the polymorphic pi-calculus.]. ACM 47(3): (2000)

Pierce, Sangiorgi: Typing and Subtyping for Mobile Processes. Mathematical Structures in Computer
Science 6(5) (1996)

Merro, Sangiorgi: On Asynchrony in Name-Passing Calculi. ICALP 1998

Sangiorgi: The Name Discipline of Uniform Receptiveness. ICALP 1997

Kobayashi, Pierce, Turner: Linearity and the pi-calculus. ACM Trans. Program. Lang. Syst. 21(5): 7 (1999)
Honda: Types for Dyadic Interaction. CONCUR 1993

Honda,Vasconcelos, Kubo: Language Primitives and Type Discipline for Structured Communication-
Based Programming. ESOP 1998

Gay, Hole: Subtyping for session types in the pi calculus. Acta Inf. 42(2-3) (2005)
Giunti,Vasconcelos: A Linear Account of Session Types in the Pi Calculus. CONCUR 2010

Background

Honda, Laurent: An exact correspondence between a typed pi-calculus and polarised proof-nets.
Theor. Comput. Sci. 41 1(22-24): (2010)

Bellin, Scott: On the pi-Calculus and Linear Logic. Theor. Comput. Sci. 135(1): (1994)
Abramsky: Computational Interpretations of Linear Logic. Theor. Comput. Sci. | | I (1&2): (1993)

Andreoli: Logic Programming with Focusing Proofs in Linear Logic. J. Log. Comput. 2(3): 347 (1992)
Barber, Plotkin: Dual Intuitionistic Linear Logic, ECS-LFCS-96-347, 1996.

Benton: A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models. CSL 1994

127

