
LINEAR LOGIC AND
BEHAVIORAL TYPES

Luís Caires
Universidade Nova de Lisboa

(based on joint work with Pfenning, Toninho, and Perez)

 NOVA Laboratory for
 Computer Science and Informatics

EU TYPES 2016 Meeting (NOVA Lisbon)

type systems for programming

Types at the heart of “real” PLs (OCaml, Java, C#, Scala)

Highly modular, based on a “lego” of canonical constructions
Deep foundations in logic

a type system is (should be) a specialised logic!

Essential in mainstream technology
mostly checked statically

“standard” types must be easy to use by any programmer

types are everywhere, and “practical”

type systems for programming

Huge impact on software quality:

“Well-typed programs do not go wrong”
Huge impact on programming (as a human activity):

types “tame programmers” to write reasonable code
But what about types (specifically) for concurrency ?

“Adopted” type systems are purely structural, state
oblivious, unable to tackle the challenges of state dynamics,
concurrency, aliasing, etc (but recently, see e.g,, Rust).

We foresee behavioural types leading to a new generation
of type systems for future programming languages

simply typed λ-calculus [Church30]

Γ, x:A ⊢x:A

Γ, x : A ⊢M : B
Γ⊢ λx:A.M : A→B

Γ ⊢M : A→B Γ ⊢N : A
Γ ⊢MN : B

Tapp(Tlam([x]d1),d2) → d1{d2/x}

Γ ⊢M:A

simply typed λ-calculus

Γ ⊢*:1

Γ ⊢M : A Γ ⊢N : B
Γ ⊢<M,N> : A ∧ B

Γ ⊢M : A ∧ B
Γ ⊢fst(M) : A

Γ ⊢M : A ∧ B
Γ ⊢snd(M) : B

Tfst(Tpair(d1, d2)) → d1

Tsnd(Tpair(d1, d2)) → d2

5

simply typed λ-calculus

Γ ⊢N : A ∨ B Γ, x:A ⊢M : C Γ, x:B ⊢N : C
Γ ⊢ case N (inl(x)⇒M | inr(x)⇒N) : C

Γ ⊢M : A
Γ ⊢inl(M) : A ∨	
 B

Γ ⊢M : B
Γ ⊢inr(M) : A ∨ B

Tcase(Tinl(d), [x]c1, [x]c2) → c1{d/x}

Tcase(Tinr(d), [x]c1, [x]c2) → c2{d/x}

6

induction

Γ ⊢N : C Γ, x:A, t: List[A], z : C ⊢M : C
Γ ⊢ rec (0 ⇒N,(x,t,z)M) : C

Γ ⊢M : A Γ ⊢N : List[A]
Γ ⊢ M::N : List[A]

Γ ⊢ nil: List[A]

7

Basic Properties of Typing

type preservation under evaluation / reduction
think about rewriting the complete typing trees

progress (stuck freedom)

together with preservation this means “type safety”
termination (sometimes)

confluence (sometimes)

8

Typeful Programming [Cardelli85]

Typeful programming ~ Special case of program specification

Types ~ Specifications

Type-Checking ~ Verification

Useful to enforce correctness at “compilation” time

View nicely fits with the Curry-Howard paradigm of

propositions as types, and proofs as programs

9

Propositions as Types

10

Intuitionistic Logic = Typed λ-calculus

Γ ⊢N : A ∨ B Γ, x:A ⊢M : C Γ, x:B ⊢M : C
Γ ⊢ case N (inl(x)⇒M | inr(x)⇒M) : C

Γ ⊢M : A
Γ ⊢inl(M) : A ∨	
 B

Γ ⊢M : B
Γ ⊢inr(M) : A ∨ B

Γ ⊢*:1
Γ ⊢M : A Γ ⊢N : B
Γ ⊢<M,N> : A ∧ B

Γ ⊢M : A ∧ B
Γ ⊢fst(M) : A

Γ ⊢M : A ∧ B
Γ ⊢snd(M) : B

Γ, x:A ⊢x:A Γ, x : A ⊢M : B
Γ⊢ λx:A.M : A→B

Γ ⊢M : A→B Γ ⊢N : A
Γ ⊢MN : B

11

Curry-Howard Correpondence

Proofs = Programs and Types = Propositions

Curry-Howard, Girard, Wadler
A proof denotes a “computational object”: program, process

Program execution = Proof reduction (cut-elimination)
Program equivalence = Proof conversion

Proof reduction preserves proof equivalence

Termination + Confluence = Consistency
Compositional Semantics via Logical Relations

12

Curry-Howard Design Space

Different logics yield different typed languages

Sequent calculus ⤳ explicit substitutions
Higher order logic ⤳ polymorphism

Classical logic ⤳ continuations, exceptions

Modal logic ⤳ monads, security
Linear Logic ⤳ resource control, behavioural types

“Powerful insights arise from linking two fields of study previously thought
separate […] as offered by the principle of Propositions as Types, which links
logic to computation. At first sight it appears to be a simple coincidence— almost
a pun—but it turns out to be remarkably robust, inspiring the design of
automated proof assistants and programming languages” [Wadler16]

13

Curry-Howard Design Space

Different logics yield different typed languages

Sequent calculus ⤳ explicit substitutions
Higher order logic ⤳ polymorphism

Classical logic ⤳ continuations, exceptions

Modal logic ⤳ monads, security
Linear Logic ⤳ resource control, behavioural types

“One can also extrapolate this correspondence and turn it into a predictive tool:
if a concept is present in type theory but absent in programming, or vice versa, it
can be very fruitful to both areas to investigate and see what the corresponding
concept might be in the other context.” [Cardelli89]

14

Curry Howard for Process Types?

15

Types for Processes

16

the π-calculus [Milner92]

P ::= 0 (inaction)
 | P | Q (composition)
 | (new x)P (restriction)
 | x(y).P (input)
 | x[y].P (free output)
 | !x(y).P (replicated input)
 | x(y).P := (new y)x[y].P (fresh output)

 Semantics:

 structural congruence (P ≡ Q) [static identity]
 reduction (P → Q) [dynamics]

the π-calculus [Milner92]

structural congruence (≡)

P | 0 ≡ P
P | Q ≡ Q | P
P | (Q | R) ≡ (P | Q) | R

(new x)0 ≡ 0
(new x)(P | Q) ≡ P | (new x)Q [x ∉ fn(P)]

the π-calculus [Milner92]

reduction (→)

 x(y).P | x[z].Q → P{z/y} | Q
 !x(y).P | x[z].Q → !x(y).P | P{z/y} | Q

 P → Q implies P | R → Q | R
 P → Q implies (new x)P → (new x)Q
 (P ≡ P´ and P´ → Q´ and Q´ ≡ Q) implies P → Q

Types for Processes

simple types [Milner92,Gay93]

IO-types [PierceSangiorgi93]

Linear Types [KobayashiPierceTurner96]

Session Types [Honda93,HKV98,GH05]

Session Types [Honda93,HKV98,GH05]

Session Types [Honda93,HKV98,GH05]

Session Types [GH05]

Γ; Δ1 ⊢ P Γ;Δ2 ⊢ Q
Γ; Δ1, Δ2 ⊢ P | Q

T ::= *T (shared channel)
| S (session type)

Γ; . ⊢ P
Γ; . ⊢ !P

S ::= end (base type)
| !T.S (output)
| ?T.S (input)

Γ; Δ, x+:S, x-:S ⊢ P
Γ; Δ ⊢ (new x)P

Γ;Δ1 ⊢ y:T Γ; Δ2, xp:S ⊢ P
Γ; Δ1, xp:!T.S, Δ2 ⊢ xp[y].P

Γ; xp:S, y:T ⊢ P
Γ; xp:?T.S ⊢ xp(y).P

Γ; x:U ⊢ x:U

Γ, x:U; . ⊢ x:*U
Γ, x:T; Δ ⊢ P
Γ; Δ ⊢ (new x)P

Γ, x:T; Δ ⊢ P
Γ; Δ, x:*T ⊢ P Γ; end ⊢ 0

Curry Howard for Process Types?

28

Session Types [Honda93]

Computational Interpretations of LL

Computational Interpretations of LL

Session Types
[CairesPfenning10,ToninhoCP11-16]

Session Types as Linear Propositions

S,U ::=
 | U⊸S (input)
 | U⊗S (output)

 | S⊕S (choice)
 | S&S (offer)
 | !U (shared replication)
 | 1 (end)

Duality on session types, the key insight of [H93], is captured by

duality (or left-write symmetry) at the logical level.
33

Linear Sequent Calculus [Andreolli92]

Γ; Δ, A ⊢ B
Γ; Δ ⊢ A⊸B

Γ; Δ, A, B ⊢ C
Γ; Δ, A⊗B ⊢ C

Γ; - ⊢ 1

Γ; Δ1 ⊢A Γ; Δ2, A ⊢ C
Γ; Δ1, Δ2 ⊢ CΓ; A ⊢ A

Γ; Δ1 ⊢ A Γ; Δ2 ⊢B
Γ; Δ1, Δ2 ⊢A⊗B

Γ; Δ1 ⊢ A Γ; Δ2, B ⊢ C
Γ; Δ1, Δ2, A⊸B ⊢ C

Γ; Δ ⊢ A
Δ linear context (multiset)

Γ cartesian context (set)

Γ; Δ ⊢ C
Γ; Δ, 1 ⊢ C

Sequent calculus presentation of DILL [BarberPlotkin91]

Linear Propositions as Session Types

Γ; Δ, z:A ⊢ P :: x:B
Γ; Δ ⊢ x(z).P :: x:A⊸B

Γ; Δ, z:A, x:B ⊢ P :: C
Γ; Δ, x:A⊗B ⊢ x(z).P :: C

Γ; ⊢ 0 :: y:1

Γ;Δ1 ⊢Q :: x:A Γ;Δ2, x:A ⊢ P :: C
Γ; Δ1, Δ2 ⊢ (new x)(Q | P) :: CΓ; x:A ⊢ [x↔y] :: y:A

Γ; Δ1 ⊢ Q :: y:A Γ;Δ2 ⊢P:: x:B
Γ; Δ1, Δ2 ⊢x(y).(Q | P) :: x:A⊗B

Γ; Δ1 ⊢ Q :: y:A Γ; Δ2, x:B ⊢ P :: C
Γ; Δ1, Δ2, x:A⊸B ⊢ x(y).(Q | P) :: C

Γ; Δ ⊢ P :: C
Γ; Δ, y:1 ⊢ P :: C

Linear Propositions as Session Types

Typing judgement
x1:A1, …, xn:An ⊢ P :: y:C

Intuition: judgement states a “rely-guarantee” property:

Whenever composed with any processes offering a session
of type Ai at xn, process P will offer a session of type C at y

Typing ensures fidelity and global progress (cut-elimination)

Γ;Δ1 ⊢Q :: x:A Γ;Δ2, x:A ⊢ P :: C
Γ; Δ1, Δ2 ⊢ (new x)(Q | P) :: C

Movie Server Session

SrvBody(s) ≜ s.case(s(title).s(card).s(movie).0;
 s(title).s(trailer).0)

Alice(s) ≜ s.inr;s(“solaris”).s(preview).0

System ≜ (new s)(SrvBody(s) | Alice(s))

ServerProto ≜ (Name ⊸ CardN ⊸ (MP4⊗1))&(Name ⊸ (MP4⊗1)

- ; - ⊢ SrvBody(s) :: s:ServerProto

- ; s:ServerProto ⊢ BClntBody(s) :: -:1

- ; - ⊢ System :: -:1

Shared Movie Server

Movies(srv) ≜ !srv(s). SrvBody(s)

SAlice(s) ≜ srv(s).s.inr;s(“solaris”).s(preview).0

SBob(s) ≜ srv(s).s.inl;s(“inception”).s(“8888”).s(movie).0

SSystem ≜ (new srv)(Movies(srv)) | SAlice(srv) | SBob(srv))

- ; - ⊢ Movies(srv) :: srv:!ServerProto

srv:ServerProto ; - ⊢ SAlice(srv) :: -:1

srv:ServerProto ; - ⊢ SBob(srv) :: -:1

- ; - ⊢ SSystem :: -:1

Send and Receive

Γ; Δ1 ⊢ Q :: y:A Γ;Δ2 ⊢P:: x:B
Γ; Δ1, Δ2 ⊢x(y).(Q | P) :: x:A⊗B

Γ; Δ3, z:A, x:B ⊢ R :: C
Γ; Δ3, x:A⊗B ⊢ x(z).R :: C

Γ; Δ1, Δ2, Δ3 ⊢(new x)(x(y).(Q | P) | x(z).R):: C
→

Send and Receive

→

Γ; Δ1 ⊢ Q :: y:A Γ;Δ2 ⊢P:: x:B
Γ; Δ1, Δ2 ⊢x(y).(Q | P) :: x:A⊗B

Γ; Δ3, y:A, x:B ⊢ R :: C
Γ; Δ3, x:A⊗B ⊢ x(y).R :: C

Γ; Δ1, Δ2, Δ3 ⊢(new x)(x(y).(Q | P) | x(y).R):: C

Send and Receive

Γ; Δ1, Δ2, Δ3⊢ (new x)(P | (new y)(Q | R)):: C

Γ; Δ1 ⊢ Q :: y:A Γ; Δ3, y:A, x:B ⊢ R :: C
Γ; Δ1, Δ3, x:B ⊢(new y)(Q | R) :: CΓ;Δ2 ⊢P:: x:B

→

Tcut[x](TR⊗[y](d1, d2), TL⊗[y](d3)) → Tcut[x](d2, Tcut[y](d1, d3))

Γ; Δ1 ⊢ Q :: y:A Γ;Δ2 ⊢P:: x:B
Γ; Δ1, Δ2 ⊢x(y).(Q | P) :: x:A⊗B

Γ; Δ3, y:A, x:B ⊢ R :: C
Γ; Δ3, x:A⊗B ⊢ x(y).R :: C

Γ; Δ1, Δ2, Δ3 ⊢(new x)(x(y).(Q | P) | x(y).R):: C

Send and Receive

Γ; Δ1, Δ2, Δ3 ⊢(new x)(x(y).P | x(y).(Q | R)):: C
→

Γ; Δ1, y:A ⊢ P :: x:B
Γ; Δ1 ⊢ x(y).P :: x:A⊸B

Γ; Δ2 ⊢ Q :: y:A Γ; Δ3, x:B ⊢ R :: C
Γ; Δ2, Δ3, x:A⊸B ⊢ x(y).(Q | R) :: C

Send and Receive

→

Tcut[x](TR⊸[y](d1), TL⊸[y](d2, d3)) → Tcut[x](Tcut[y](d2, d1), d3)

Γ; Δ1, Δ2, Δ3⊢(new x)((new y)(Q | P) | R):: C

Γ; Δ2 ⊢ Q :: y:A Γ; Δ1, y:A ⊢ P :: x:B
Γ; Δ2, Δ1, x:B ⊢(new y)(Q | P) :: x:B Γ; Δ3, x:B ⊢ R :: C

Γ; Δ1, Δ2, Δ3 ⊢(new x)(x(y).P | x(y).(Q | R)):: C
→

Γ; Δ1, y:A ⊢ P :: x:B
Γ; Δ1 ⊢ x(y).P :: x:A⊸B

Γ; Δ2 ⊢ Q :: y:A Γ; Δ3, x:B ⊢ R :: C
Γ; Δ2, Δ3, x:A⊸B ⊢ x(y).(Q | R) :: C

Replication and Sharing

Γ; ⊢ P :: y : A
Γ; ⊢ !x(y).P :: x : !A

Γ, x:A; Δ ⊢P :: C
Γ; Δ, x:!A ⊢ P :: C

Γ, x:A; Δ, y:A ⊢P :: C
Γ, x:A; Δ ⊢ x(y).P :: C

Γ, x:A; Δ, y:A ⊢ Q :: C
Γ, x:A ; Δ ⊢ x(y).Q :: C

Replication and Sharing

→

Tcut[x](TR![y](d1), TL![z](d2)) → Tcut[x](d1, Tcut![xy](d1, d2))

Γ; Δ ⊢(new y)(P | (new x)(!x(y).P | Q)):: C

Γ; Δ ⊢ (new x)(!x(y).P | x(y).Q) :: C

Γ; ⊢ P :: y:A
Γ; ⊢ !x(y).P :: x:!A

Γ; ⊢ P :: y:A Γ, x:A; Δ, y:A ⊢ Q :: C
Γ; Δ, y:A ⊢ (new x)(!x(y).P | Q) :: CΓ; ⊢ P :: y:A

Choice and Offer

Γ; Δ ⊢ Q :: x:A Γ; Δ ⊢P:: x:B
Γ; Δ ⊢x.case(Q,P) :: x:A&B

Γ; Δ ⊢P:: x:B
Γ; Δ ⊢x.inr;P :: x:A⊕B

Γ; Δ ⊢P:: x:A
Γ; Δ ⊢x.inl;P :: x:A⊕B

Γ; Δ, x:A ⊢ R :: C
Γ; Δ, x:A&B ⊢ x.inl;R :: C

Γ; Δ, x:B ⊢ R :: C
Γ; Δ, x:A&B ⊢ x.inr;R :: C

Γ; Δ, x:A ⊢ Q :: C Γ; Δ, x:B ⊢P:: C
Γ; Δ, x:A⊕B ⊢x.case(Q,P) :: C

Choice and Offer

Γ; Δ1, Δ2 ⊢ (new x)(Q | R):: C
Γ; Δ2, x:A ⊢ R :: CΓ; Δ1 ⊢ Q :: x:A

→

Tcut[x](TR&(d1, d2), TL1&(d3)) → Tcut[x](d1, d3)

Γ; Δ1 ⊢ Q :: x:A Γ; Δ1 ⊢P:: x:B
Γ; Δ1 ⊢x.case(Q,P) :: x:A&B

Γ; Δ2, x:A ⊢ R :: C
Γ; Δ2, x:A&B ⊢ x.inl;R :: C

Γ; Δ1, Δ2 ⊢ (new x)(x.case(Q,P) | x.inl;R):: C

Tcut[x](TR&(d1, d2), TL2&(d3)) → Tcut[x](d2, d3)

Choice and Offer (labeled sums)

Γ; Δ ⊢Pi:: x:Ai
Γ; Δ ⊢x.case(li:Pi) :: x:&{li:Ai}

Γ; Δ ⊢P:: x:Ai
Γ; Δ ⊢x.li;P :: x:⊕{li:Ai}

Γ; Δ, x:Ai ⊢ Q :: C
Γ; Δ, x:&{li:Ai} ⊢ x.li;Q :: C

Γ; Δ, x:Ai ⊢ Pi :: C
Γ; Δ, x:⊕{li:Ai} ⊢x.case(li:Pi) :: C

&{li:Ai} ≜ A1 &	
 	
 A2 &	
 …	
 	
 &	
 	
 An
⊕{li:Ai} ≜ A1 ⊕	
 A2 ⊕	
 …	
 ⊕	
 An

Copycat Forwarder

→

Tcut[x](TA[xy], d)) → d{x/y}

Γ; x:A ⊢ [x↔y]:: y:A Γ; Δ, y:A ⊢P :: C
Γ; Δ, x:A ⊢(new x)([x↔y] | P):: C

Γ; Δ, x:A ⊢P{x/y}:: C

The axiom forwarder already appears in [Abramsky01], but used very differently.

Some Admissible Rules in DILL

Γ; Δ1 ⊢P :: 1 Γ; Δ2 ⊢Q :: C
Γ; Δ1, Δ2 ⊢P | Q : : C

Γ; 1 ⊢0 :: 1

Γ;Δ ⊢P:: x:B
Γ; y:A, Δ ⊢x[y].P :: x:A⊗B

x[y].P ≜ x(z).([z↔y]|P)

cf. the so-called mix rule
(independent composition)

cf. empty
(replacing T1R and T1L)
Exactly as in [GH05] Tend

cf. internal mobility
translation [Boreale98]

Duality in DILL

S ::= 1 | U⊗S | U⊸S | S⊕S | S&S

U⊗S = U⊸S
U⊸S = U⊗S
S⊕S = S&S S = S
S&S = S⊕S
1 = 1

Theorem. Γ; Δ ⊢ P :: x:U if and only if Γ; Δ, x:U ⊢ P :: -:1

Duality on session types captured by left-right symmetry

Proofs = Processes

P ::= 0 (inaction)
 | [x↔y] (linear forwarder)
 | (new x)(P | Q) (composition)
 | x(y).P (input)
 | x(y).P (output)
 | !x(y).P (replicated server)
 | x.case(P,Q) (offer)
 | x.inl;Q (choose left)
 | x.inr;Q (choose right)

Proof Conversions = Process Identities

Structural Conversions (≡)

Identify structurally identical proofs (e.g, commute cuts,
expose redexes)

Correspond to standard structural congruences (≡)

(new x)(0 | P) ≡ P
(new x)(P | (new y)(Q | R)) ≡ (new y)((new x)(P | Q) | R)
(new x)(P | (new y)(Q | R)) ≡ (new y)(Q | (new x)(P | R))

Proof Reductions = Process Reductions

Computational Conversions (→)

Reduce proofs into simpler ones (e.g, decreases types)

Correspond to standard process reductions (→)

(new x)(x(y).P | x(y).(Q | R)) → (new x)(P | (new y)(Q | R))
(new x)(x.case(Q,P) | x.inl;R) → (new x)(Q | R)
(new x)(!x(y).P | x(y).Q) → (new y)(P | (new x)(!x(y).P | Q))

Proof Conversions = Process Identities

Structural Conversions (≃)

Correspond to well known typed strong bisimilarities (≃)

 (new x)(!x(y).P | (new z)(Q | R)) ≃
 (new z)((new x)(!x(y).P | Q) | (new x)(!x(y).P | R))
 (new x)(!x(y).P | (new z)(!z(u).Q | R)) ≃
 (new z)(!z(u).(new x)(!x(y).P | Q) | (new x)(!x(y).P | R))
 (new x)(!x(y).P | Q) ≃ Q [x ∉ fn(Q)]

The sharpened replication lemmas of [SangiorgiWalker01]

Yet another remarkable bridge surfaces here

Proof Conversions = Process Identities

Structural Conversions (≡)

(≡) matched by π structural congruence (≡)

Computational Conversions (→)
(→) matched by π reduction (→)

Structural Conversions (≃)

(≃) matched by typed π observational equivalence (≡)

All Conversions (≅	
)

Curry-Howard Correspondence

Theorem (processes as proofs) [CairesPfenning10,CPT*]

If Γ; Δ ⊢ P :: C and P ≡ → ≡ Q then Γ; Δ ⊢ P ≅	
 → ≅ Q:: C

Theorem (proofs as processes) [CairesPfenning10,CPT*]

If Γ; Δ ⊢ P → Q :: C then P → Q

If Γ; Δ ⊢ P ≡ Q :: C then P ≡ Q

If Γ; Δ ⊢ P ≃ Q :: C then P ≃ Q

Curry-Howard Correspondence

Theorem (progress) [CairesPfenning10,CPT*]

live(P) ≜ P ≢ 0

If -; - ⊢ P :: -:1 and live(P) then P → Q

From Theorems to Code

Every provable sequent Γ; Δ ⊢ C “is” a process Γ; Δ ⊢ P :: C
We may “automatically” produce interface adapters for every
linear logic theorem, e.g., x:A ⊢ P :: y:B is a morphism A→B

Examples (try to figure out what the process is)

 x:X⊗Y ⊢ y:Y⊗X
 x:X ⊸ (Y&Z) ⊢ y: (X⊸Y) & (X⊸Z)
Generally [ESOP’12], an isomorphism A ⇋ B is process pair

(P, Q) such that x:A ⊢ P :: y:B and y:B ⊢ Q :: x:A and
 x:A ⊢ (new y)(P|Q{z/x}) ≈ [x↔z]:: z:A
y:B ⊢ (new z)(Q|P{z/y}) ≈ [y↔z]:: z:B

Movie Server Session

SrvBody(s) ≜ s.case(s(title).s(card).s(movie).0;
 s(title).s(trailer).0)

Alice(s) ≜ s.inr;s(“solaris”).s(preview).0

System ≜ (new s)(SrvBody(s) | Alice(s))

ServerProto ≜ (Name ⊸ CardN ⊸ (MP4⊗1))&(Name ⊸ (MP4⊗1)

- ; - ⊢ SrvBody(s) :: s:ServerProto

- ; s:ServerProto ⊢ BClntBody(s) :: -:1

- ; - ⊢ System :: -:1

Movie Server Session

- ; - ⊢ (new s)(SrvBody(s) | Alice(s)) :: -:1

→
- ; - ⊢ (new s)(s(title).s(trailer).0 | s(“solaris”).s(preview).0) :: -:1

→
- ; - ⊢ (new s)(s(trailer).0 | s(preview).0) :: -:1
→
- ; - ⊢ (new s)(0 | 0) :: -:1

≡
- ; - ⊢ 0 :: -:1

Tcut[s](TR&(d1, d2), TL2&(d3)) → Tcut[s](d1, d2)

Tcut[s](TR⊸(d1), TL⊸(d2, d3)) → Tcut[s](Tcut(d2, d1), d3)

Tcut[s](TR1, TL1(TR1)) ≡ TR1

Tcut[s](TR⊗(d1,d2), TL⊗(d3)) → Tcut[s](d1,Tcut(d2, d3))

Replication and Sharing

Γ; ⊢ P :: y : A
Γ; ⊢ !x(y).P :: x : !A

Γ, x:A; Δ ⊢P :: C
Γ; Δ, x:!A ⊢ P :: C

Γ, x:A; Δ, y:A ⊢P :: C
Γ, x:A; Δ ⊢ x(y).P :: C

Key idea of DILL [BarberPlotkin91]: postponing of contraction and
weakening (“fat axioms”).

Γ; ⊢ 0 :: y:1

Γ; x:A ⊢ [x↔y] :: y:A

Γ; ⊢ P :: y:A Γ, x:A; Δ ⊢ Q :: C
Γ; Δ ⊢ (new x)(!x(y).P | Q) :: C

Γ, x:A; Δ ⊢ Q :: C
Γ; x:!A, Δ ⊢ Q:: C

Replication and Sharing

≡

Γ; Δ ⊢ (new x)(!x(y).P | Q) :: C

Γ; ⊢ P :: y:A
Γ; ⊢ !x(y).P :: x:!A

Γ; ⊢ P :: y:A Γ, x:A; Δ ⊢ Q :: C
Γ; Δ ⊢ (new x)(!x(y).P | Q) :: C

Tcut[x](TR!(d1), TL![y](d2)) → Tcut![xy](d1,d2)

Γ, x:A; Δ, y:A ⊢ Q :: C
Γ, x:A ; Δ ⊢ x(y).Q :: C

Replication and Sharing

→

Tcut![xy](d1, Tcopy[xy](d2)) → Tcut[y](d1, Tcut![xy](d1, d2))

Γ; Δ ⊢(new y)(P | (new x)(!x(y).P | Q)):: C

Γ; Δ ⊢ (new x)(!x(y).P | x(y).Q) :: C
Γ; ⊢ P :: y:A

Γ; ⊢ P :: y:A Γ, x:A; Δ, y:A ⊢ Q :: C
Γ; Δ, y:A ⊢ (new x)(!x(y).P | Q) :: CΓ; ⊢ P :: y:A

Shared Movie Server

Movies(srv) ≜ !srv(s). SrvBody(s)

SAlice(s) ≜ srv(s).s.inr;s(“solaris”).s(preview).0

SBob(s) ≜ srv(s).s.inl;s(“inception”).s(“8888”).s(movie).0

SSystem ≜ (new srv)(Movies(srv)) | SAlice(srv) | SBob(srv))

- ; - ⊢ Movies(srv) :: srv:!ServerProto

srv:ServerProto ; - ⊢ SAlice(srv) :: -:1

srv:ServerProto ; - ⊢ SBob(srv) :: -:1

- ; - ⊢ SSystem :: -:1

Shared Movie Server

- ; - ⊢ (new srv)(Mov(srv) | SA(srv) | SB(srv))
≅

- ; - ⊢ (new srv)(Mov(srv) | SA(srv)) | (new srv)(Mov(srv) | SB(srv))

→ ≡
- ; - ⊢ (new srv)(Mov(srv) | (new s)(SrvBody(s) | Bob(s))
≅

- ; - ⊢ (new srv)(Mov(srv) | SA(srv) | (new s)(SrvBody(s) | Bob(s))

→*
- ; - ⊢ (new srv)(Mov(srv) | 0) ≅ 0

sharpened replication lemma (distribution of ! over |)

sharpened replication lemma (distribution of ! over |)

Tcut(TR!,TL!) followed by Tcut / Tcut! assoc

DILL and Locality

Γ; ⊢ P :: y : A
Γ; ⊢ !x(y).P :: x : !A

Γ, x:A; Δ ⊢P :: C
Γ; Δ, x:!A ⊢ P :: C

Γ, x:A; Δ, y:A ⊢P :: C
Γ, x:A; Δ ⊢ x(y).P :: C

!A type always offered at positive polarity for server offer

!A type always used at negative polarity for server invocation

So a process such as a(x).!x(y).P is not typable in DILL

DILL enforces locality on shared receptive names

(Of course, linear sessions may still output receptive names)

Dual Shared Types: !A and ?A

 !A
Type for a shared channel server name that can persistently
accept requests for a fresh session of type A.

?A
Type for a channel name that can request creation of a fresh
session of type A by communicating to a channel of type !A.
In [GH05] such (shared) names can be freely aliased at output
(invocation) and input (acceptance) modes.

However, this is not allowed in logical based disciplines.

Dual Shared Types: !A and ?A

Type for session that receives a channel to which server
invocations of type A can be sent, and continues as B:

 !A ⊸ B

Type for session that receives a channel from which server
invocations of type A can be received, and continues as B:

 ?A ⊸ B (not expressible in DILL)

In traditional session types [GH05], types !A and ?A get
amalgamated into a unique, unpolarised, shared type [A]
[GH05] does not enforce locality or uniform receptiveness, in
the sense of [Sangiorgi97] (no non-deterministic behaviour)

uniform receptiveness [Sangiorgi97]

uniform receptiveness [Sangiorgi97]

The continuation behaviour for each shared name is uniform

Corresponds to the unique definition of shared servers

Uniform receptivness [Sangiorgi97] relies on locality:

Only the output capability of shared names is passed around

 Processes forbidden to receive on shared received names

Allows “efficient” distributed implementations of name passing
and routing since no “impersonation” of addresses is possible.

the locality property was studied in [MerroSangiorgi04]

Locality [MerroSangiorgi04]

Duality for All Session Types

S ::= 1 | U⊗S | U ⅋S | S⊕S | S&S | !S	
 |	
 ?S

U⊗S = U⊸S = U ⅋ S
U⅋ S = U⊗S
S⊕S = S&S S = S
S&S = S⊕S
1 = 1
!S = ?S
?S = !S

Session Types as CLL Propositions

S ::= 1 | U⊗S | U ⅋S | S⊕S | S&S | !S	
 |	
 ?S

U⊗S = U⊸S = U ⅋ S
U⅋ S = U⊗S
S⊕S = S&S S = S
S&S = S⊕S
1 = 1 S = S⊥
!S = ?S U⊸S = U ⅋ S
?S = !S

Session Types as CLL Propositions

Session Types as CLL Propositions

Classical Linear Logic [Andreolli’90]

⊢ 1; ϴ

⊢ Δ, A, B; ϴ
⊢ Δ, A ⅋ B; ϴ

⊢ Δ; ϴ
Δ linear context (multiset)

ϴ cartesian context (set)

⊢ A, A; ϴ ⊢ A, Δ1; ϴ ⊢ A, Δ2; ϴ
⊢ Δ1, Δ2; ϴ

⊢ Δ ; ϴ
⊢ Δ, ⊥ ; ϴ

 ⊢ Δ1; ϴ ⊢ Δ2; ϴ
⊢ Δ1, Δ2; ϴ

⊢ Δ1, A; ϴ ⊢ Δ2, B; ϴ
⊢ Δ1, Δ2 A⊗B; ϴ

NB. This system corresponds to a classical version of DILL

Classical Session Types [CPT’12-14,C14]

P ⊢ Δ, y:A, x:B; ϴ
x(y).P ⊢ Δ, x:A ⅋ B; ϴ

[x↔y] ⊢ x:A, y:A; ϴ

 Q ⊢ x:A, Δ1; ϴ P ⊢x:A, Δ2; ϴ
(new x)(Q | P) ⊢ Δ1, Δ2; ϴ

P ⊢ Δ ; ϴ
close;P ⊢ Δ, ⊥ ; ϴ

 Q ⊢ Δ1; ϴ P ⊢ Δ2; ϴ
Q | P ⊢ Δ1, Δ2; ϴ

0 ⊢ ; ϴ

close ⊢ 1; ϴ

Q ⊢ Δ1, y:A; ϴ P ⊢ Δ2, x:B; ϴ
x(y).(Q | P) ⊢ Δ1, Δ2 , x:A⊗B; ϴ

Classical Linear Logic [TCP’12-14]

P ⊢ Δ, x:B; ϴ
x.inr;P ⊢ Δ, x:A⊕B; ϴ

P ⊢ Δ, x:A; ϴ
x.inl;P ⊢ Δ, x:A⊕B; ϴ

Q ⊢ Δ, x:B; ϴ P ⊢ Δ, x:B; ϴ
x.case(Q,P) ⊢ Δ, x:A&B; ϴ

Classical Linear Logic [TCP’12-14]

P ⊢ Δ ; x:A, ϴ
P ⊢ Δ, x:?A; ϴ

P ⊢ y:A ; ϴ
!x(y).P ⊢ x:!A ; ϴ

P ⊢ Δ, y:A ; x:A, ϴ
x(y).P ⊢ Δ ; x:A, ϴ

 Q ⊢ y:A ; ϴ P ⊢ Δ ; x:A,ϴ
(new x)(!x(y).Q | P) ⊢ Δ ; ϴ

Replication Reduction

→

Γ; Δ ⊢(new y)(P | (new x)(!x(y).P | Q)):: C

P ⊢ y:A ; ϴ Q ⊢ Δ, y:A ; x:A, ϴ
Γ; Δ, y:A ⊢ (new x)(!x(y).P | Q) :: CP ⊢ y:A ; ϴ

Q ⊢ Δ, y:A ; x:A, ϴ
x(y).Q ⊢ Δ ; x:A, ϴ

(new x)(!x(y).P | x(z).Q) ⊢ Δ ; ϴ
P ⊢ y:A ; ϴ

Proofs = Processes

P ::= 0 (inaction)
 | [x↔y] (forwarder)
 | (new x)(P | Q) (composition)
 | x(y).P (input)
 | x(y).P (output)
 | !x(y).P (shared server)
 | x.case(P,Q) (offer)
 | x.inl;Q (choose left)
 | x.inr;Q (choose right)
 | x.close;Q (wait)
 | x.close (close)

Proof Conversions = Process Identities

Structural Conversions (≡)

(≡) matched by π structural congruence (≡)

Computational Conversions (→)
(→) matched by π reduction (→)

Structural Conversions (≃)

(≃) matched by typed π observational equivalence (≡)

All Conversions (≅	
)

Proof Conversions = Process Identities

Structural Conversions (≡)

Identify structurally identical proofs (e.g, commute cuts,
expose redexes)

Correspond to standard structural congruences (≡)

0 | P ≡ P
(new x)(P | (new y)(Q | R)) ≡ (new y)((new x)(P | Q) | R)
(new x)(P | (new y)(Q | R)) ≡ (new y)(Q | (new x)(P | R))
(new x)(P | (Q | R)) ≡ Q | (new x)(P | R) cut/mix conversions

cut/mix conversions

Proof Reductions = Process Reductions

Computational Conversions (→)

Reduce proofs into simpler ones (e.g, decreases types)

correspond to standard process reductions (→)

(new x)(x.close | x.close.P) → P
(new x)(x(y).(P|Q) | x(y).R) → (new y)(P | (new x)(Q | R))
(new x)(x.case(Q,P) | x.inl;R) → (new x)(Q | R)
(new x)(!x(y).P | x(y).Q) → (new y)(P | (new x)(!x(y).P | Q))

Proof Conversions = Process Identities

Structural Conversions (≃)

Correspond to well known typed strong bisimilarities (≃)

 (new x)(!x(y).P | (new z)(Q | R)) ≃
 (new z)((new x)(!x(y).P | Q) | (new x)(!x(y).P | R))
 (new x)(!x(y).P | (new z)(!z(u).Q | R)) ≃
 (new z)(!z(u).(new x)(!x(y).P | Q) | (new x)(!x(y).P | R))
 (new x)(!x(y).P | Q) ≃ Q [x ∉ fn(Q)]

The sharpened replication lemmas of [SangiorgiWalker01].

Proof Conversions = Process Identities

Structural Conversions (≃)

Correspond to well known typed strong bisimilarities (≃)

 (new x)(!x(y).P | Q | R) ≃
 (new x)(!x(y).P | Q) | (new x)(!x(y).P | R)
 (new x)(!x(y).P | (new z)(!z(u).Q | R)) ≃
 (new z)(!z(u).(new x)(!x(y).P | Q) | (new x)(!x(y).P | R))
 (new x)(!x(y).P | Q) ≃ Q [x ∉ fn(Q)]

The sharpened replication lemmas of [SangiorgiWalker01].

cut/mix conversions

CLL is non-local

SendBroad(a) ≜ a(q). (q(v1).q(v2).0 | Q)

System ≜ (new a)(SendBroad(a) | a(x).!x(s).P))

a(x).!x(s).P ⊢ a: ?A⊸?B ; -

q(v1).q(v2).0 | q(v3).0 ⊢ q: ?A ; - Q ⊢ a:!B

SendBroad(a) ⊢ a: ?A ⊗ !B ; - System ⊢ - ; -

Unlike DILL, CLL allows us to express full duality on shared
sessions, by dropping the (too strict) locality property.
Remarkably, the classical type structure still ensures uniform
receptiveness on shared names (thus confluence, no surprise)

CLL ensures uniform ω-receptiveness

SendBroadW(a) ≜ a(q). (q(v).p[q].Q | P)

⊢ SendBroadW(a) :: a:?A⊗B, p:!A⊗1; ϴ
⊢ q(v).p[q].Q :: q: ?A, p:!A⊗1; ϴ

⊢ p[q].Q :: p:!A⊗1; q:A,ϴ
⊢ p(h).!h(z).q(k).[k↔z] :: p:!A ; q:A,ϴ

Typing allows the receptive endpoint q- to be sent (on a) at
type ?A, linearly (exactly once), leading to a “unique server”.

Typing enforces all positive uses of q (q+) to be sent only at
type !A, mediated by a proxy (via !R)

Building up

Behavioural Polymorphism and Parametricity
Dependent types

Asynchrony
Authorisation

LNL and Higher-Order processes

Logical Relations
Encoding Multiparty Systems

Non-determinism (forthcoming)

Behavioral Polymorphism

Behavioral Polymorphism

Polymorphism (aka “generics”) is an indispensable feature in
everyday programming, say Java

class LinkedList<T>

T is a type parameter than can be instantiated (at compile
time) by a given type (say, class or interface)

Parametric polymorphism was introduced in PL by Reynolds
and is linked by the Curry-Howard correspondence to
quantification in second-order logic by Girard

Repeating the exercise on logical session types we discover a
powerful notion of behavioural polymorphism, just too
hard to tackle by extant techniques [Turner,PierceSangiorgi]

simply typed λ-calculus [Church30]

Γ, x:A ⊢x:A

Γ, x : A ⊢M : B
Γ⊢ λx:A.M : A→B

Γ ⊢M : A→B Γ ⊢N : A
Γ ⊢MN : B

Tapp(Tlam([x]d1),d2) → d1{d2/x}

Polymorphic λ-calculus [Girard-Reynolds]

Ω; Γ ⊢M:A

Ω,X; Γ⊢M : B
Ω;Γ⊢ λX.M : ∀X.B

Ω; Γ ⊢M: ∀X.B Ω ⊢S ty
Ω; Γ ⊢MS : B{S/X}

TTapp(TTlam([X]d1),S) → d1{X/S}

Ω ⊢M ty

Ω;Γ ⊢M: B{S/X} Ω ⊢S ty
Ω;Γ ⊢<S,M> : ∃X.B

TTopen(TThide[X](d1,S),d2) → d2{X/S,x/d1}

Ω;Γ ⊢M: ∃X.B Ω,X;, x:X ⊢N:A
Ω;Γ ⊢ let <X,x>=M in N:A

Polymorphic λ-calculus [Girard-Reynolds]

Linear Propositions as Session Types

Typing judgement
Ω;Γ;Δ ⊢ P :: y:C

Intuition: judgement states a rely-guarantee property:

for all session types Ω,	
 whenever composed with processes
offering a session Ai at xn, P offers a session of type C at y

typing ensures fidelity and global progress (cut-elimination)

Ω;Γ;Δ1 ⊢Q :: x:A Ω;Γ;Δ2, x:A ⊢ P :: C
Ω;Γ; Δ1, Δ2 ⊢ (new x)(Q | P) :: C

Proofs = Processes

P ::= 0 (inaction)
 | [x↔y] (linear forwarder)
 | (new x)(P | Q) (composition)
 | x(y).P (input)
 | x(y).P (output)
 | !x(y).P (shared server)
 | x.case(P,Q) (offer)
 | x.inl;Q (choose left)
 | x.inr;Q (choose right)
 | x[S].P (type output)
 | x(X).Q (type input)

Linear Propositions as Session Types

Ω,X;Γ;Δ⊢ P :: x:B
Ω;Γ;Δ ⊢ x(X).P :: x:∀X.B

Ω,X;Γ; Δ, x:B ⊢ P :: C
Ω;Γ;Δ, x:∃X.B ⊢ x(X).P :: C

Ω	
 ⊢S ty Ω;Γ; Δ ⊢ P :: x:B{S/X}
Ω; Γ; Δ ⊢x[S].P :: x:∃X.B

Ω ⊢ S ty Γ; Δ, x:B{S/X} ⊢ P :: C
Γ; Δ, x:∀X.B ⊢ x[S].P :: C

Type Send and Receive

→

Tcut[x](TR∀[X](d1), TL∀(S, d2)) → Tcut[x](d1{S/X}, d2)

Ω; Γ; Δ1 ⊢ P{S/X} :: x:B{S/X} Ω;Γ; Δ2, x:B{S/X} ⊢ Q :: C
Ω; Γ; Δ1, Δ2 ⊢(new x)(P{S/X} | Q) :: C

→

Ω; Γ; Δ1, Δ2 ⊢(new x)(x(X).P | x[S].Q):: C

Ω,X; Γ; Δ1 ⊢ P :: x:B
Ω;Γ; Δ1 ⊢ x(X).P :: x:∀X.B

Ω ⊢ S ty Γ; Δ2, x:B{S/X} ⊢ Q :: C
Ω; Γ; Δ2, x:∀X.B ⊢ x[S].Q :: C

Type Send and Receive

→

Tcut[x](TR∃(S, d1), TL∃[X](d2)) → Tcut[x](d1, d2{S/X})

Ω; Γ; Δ1 ⊢ P :: x:B{S/X} Ω;Γ; Δ2, x:B{S/X} ⊢ Q{S/X} :: C
Ω; Γ; Δ1, Δ2 ⊢(new x)(P | Q{S/X}) :: C

→

Ω; Γ; Δ1, Δ2 ⊢(new x)(x[S].P | x(X).Q):: C

Ω	
 ⊢S ty Ω;Γ; Δ1 ⊢ P :: x:B{S/X}
Ω; Γ; Δ1 ⊢x[S].P :: x:∃X.B

Ω,X;Γ; Δ2, x:B ⊢ Q :: C
Ω;Γ; Δ2, x:∃X.B ⊢ x(X).Q :: C

Classical Typing Rules

Ω	
 ⊢S ty P ⊢ Δ, x:B{S/X}; ϴ; Ω
x[S].P ⊢ Δ, x:∃X.B; ϴ; Ω

P ⊢ Δ, x:A; ϴ; Ω,	
 X
x(X).P ⊢ Δ, x:∀X.A; ϴ; Ω

A Cloud Computing Server

The Generic Cloud Service

API ≜ !&{ rmov:(Name ⊸ MP4⊗1), wmov:(Name ⊸ MP4 ⊸ 1))

CloudServer ≜ ∀X.!(API ⊸ X) ⊸ !X

CS(a) ≜ a(Y).a(t).!a(w).t(s).s(ap).([ap↔api] | [s↔w])

 - ; api:API ⊢ CS(a) :: a:CloudServer

 - ; - ⊢ MDB(api) :: api:API

 - ; - ⊢ (new api)(MDB(api) | CS(a)) :: a:CloudServer

API ≜ !&{ rmov:(Name ⊸ MP4⊗1), wmov:(Name ⊸ MP4 ⊸ 1))

MCode(s,api) ≜ s(title).api(h).h.rmov;h(title).h(mfile).s(mfile).0

UserProto ≜ Name ⊸ MP4⊗1

- ; - ⊢ s(api).MCode(s) :: s: API ⊸ UserProto

ServiceCode(t) ≜ !t(s).s(api).MCode(s,api)

- ; - ⊢ ServiceCode(t) :: t: !(API ⊸ UserProto)

Uploading Service to the Cloud

 - ; - ⊢ (new api)(MDB(api) | CS(a)) :: a:CloudServer

FreeViewProto(n) ≜ a[UserProto].a(t).(ServiceCode(t) | [a↔n])

- ; a:CloudServer ⊢ FreeViewProto(n) :: n:!UserProto

FreeOnCloud ≜ (new a)(CloudServer | FreeViewProto(n))

- ; - ⊢ FreeOnCloud:: n:!UserProto

Creating a Custom Service

 - ; - ⊢ (new api)(MDB(api) | CS(a)) :: a:CloudServer

FreeViewProto(n) ≜ a[UserProto].a(t).(ServiceCode(t) | [a↔n])

- ; a:CloudServer ⊢ FreeViewProto(n) :: n:!UserProto

FreeOnCloud ≜ (new a)(CloudServer | FreeViewProto(n))

- ; - ⊢ FreeOnCloud:: n:!UserProto

Isabel(n) ≜ n(a).a(“interstellar”).a(file)….

- ; n:!UserProto ⊢ Isabel(n) :: p:Fun

- ; - ⊢ (new n)(FreeOnCloud | Isabel(n))) :: p:Fun

Creating a Custom Service

Logical Relations and Parametricity

Being based on logic, our systems are amenable to well-
known reasoning techniques that can be used to establish
important meta properties.

We have developed (linear) logical relations and associated
proof techniques for our session type systems [ESOP12,
ESOP13, TGC14, BT15], addressing strong normalisation,
observational equivalences, parametricity.
N.B: Logical relations have been originally introduced by
[Tait58], but are currently a basic tool for studying general
semantic properties enforced by type systems [see A13].

A Logical Predicate Tηω⟦z:A⟧

P ∈ Tηω⟦z:X⟧ ≜ P ∈ η(X)(z)

P ∈ Tηω⟦z:1⟧ ≜ ∀Q. (P ⇒ Q ∧ Q →) ⊃ Q ≡! 0

P ∈ Tηω⟦z:A⊸B⟧ ≜ ∀Q.(P ⇒ Q) ⊃	

	
 	
 	
 	
 	
 	
 	
 	
 ∀R ∈ Tηω⟦y:A⟧. (new y)(R | Q) ∈ Tηω ⟦z:B⟧

P ∈ Tηω⟦z:A⊗B⟧ ≜ ∀Q.(P ⇒ Q) ⊃	

	
 	
 	
 	
 	
 	
 	
 	
 ∃P1,P2. P ≡! (P1 | P2) ∧	
 P1 ∈ Tηω ⟦y:A⟧ ∧ P2 ∈ Tηω ⟦z:B⟧

P ∈ Tηω⟦z:∀X.A⟧ ≜ ∀S,P´,R[:S]. (P ⇒ Q) ⊃	
 Q ∈ Tη[X/R[:S]]ω[X/S]⟦z:A⟧

P ∈ Tηω⟦z:∃X.A⟧ ≜ ∃S,P´,R[:S]. (P ⇒ Q) ⊃	
 Q ∈ Tη[X/R[:S]]ω[X/S]⟦z:A⟧

z(y)

z(y)

z(S)

z[S]

Logical Candidate

A logical candidate R⟦z:A⟧ is a set of processes such that:

P ∈ R⟦z:A⟧ implies -­‐;-;- ⊢ P :: z:A

P ∈ R⟦z:A⟧ implies P strongly terminates under →

P ∈ R⟦z:A⟧ and P ≡! Q implies Q ∈ R⟦z:A⟧

P ∈ R⟦z:A⟧ and P ⇒ Q implies Q ∈ R⟦z:A⟧

P ∈ R⟦z:A⟧ if for all Q such that P ⇒ Q we have Q ∈ R⟦z:A⟧

The defined notion of candidate [Girard] captures the
intended semantic property here, in this case termination.

Strong Termination

Theorem.

For all ω:Ω η:Ω, Tηω⟦z:A⟧ is a logical candidate R⟦z: ω(A)⟧

Theorem.

If Ω;Γ;Δ ⊢P:: y:C and ω:Ω, η:Ω then ω(P) ∈ Tηω⟦ Ω;Γ;Δ⊢ P:: y:C⟧

Theorem.

If Ω;Γ;Δ ⊢P:: y:C and ω:Ω	
 then ω(P) strongly terminates under →

Logical Relations and Parametricity

Parametricity states that polymorphic code operates in a
completely uniform way across all type instantiations

Traditionally, parametricity is important to establish e.g.,
representation independence or security properties of ADTs.

In [PCPT’13-ESOP] we have developed a powerful theory of
parametricity for polymorphic session types.
We show e.g., how observational equivalence of two
restaurant finding apps relying on completely different map
services (with very different interaction protocols).

Simple type based analysis technique shows that no client can
tell which map service is being used “under the hood”.

Interface Contracts and Assertions

Interface Contracts and Assertions

Session types just talk about the abstract communication
behaviour, but richer behavioural specifications will definitely
need to talk about properties of exchanged data as well

Traditionally, this involves considering notions of “contracts”
or “assertions”, in the spirit of axiomatic semantics [Hoare].
Along this lines, [BHTY10] studied one possible combination
of multiparty session types with FOL pre / post conditions.

Interface Contracts and Assertions

Following the Curry-Howard approach we may naturally
integrate session types (propositional linear logic) towards a
dependent type theory (intuitionistic first-order logic).

N.B. while basic values can be encoded as processes, we have
no perspective on how to define a consolidated type theory
for processes both as behaviours and as values that would
support a proper dependent type theory.

We now illustrate a typed integration of processes,
intuitionistic data types, proofs, and “processes as data”
inspired by the Mixed Linear-Non-Linear logic of Benton.

Mixed linear-non-linear Logic [Benton]

Ѱ ;Γ; Δ ⊢P :: z:S

Δ linear channel context (multiset)

Γ cartesian channel context (set)

Ѱ cartesian value context (set)

A :: = int | bool | nat | string | …
 | A → B
 | A ∧ B
 | A ∨ B
 | { z:S }
 | ∀x:A.B
 | ∃x:A.B

S :: = U⊗S | U⊸S
 | S⊕S | S&S
 | !U | 1 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 | 	
 	
 $A	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 |	
 	
 ∀x:A.S
 | ∃x:A.B

Ѱ; Γ ⊢M : A

Mixed linear-non-linear Logic [Benton]

Ѱ ;Γ ⊢M : A
Ѱ ;Γ; - ⊢[z ← M] :: z:$A

Ѱ ;Γ; - ⊢P :: z:S
Ѱ ;Γ ⊢{P} : {z:S}

Ѱ, z:A; Γ; Δ ⊢P : C
Ѱ ;Γ; Δ, z:$A ⊢P :: C

Δ linear channel context (multiset)

Γ cartesian channel context (set)

Ѱ cartesian value context (set)

Ѱ ;Γ ⊢ M : {z:S} Ѱ ;Γ; Δ, z:S ⊢Q :: C
Ѱ ;Γ; Δ ⊢ spawn. z (M || Q): C

Ѱ; Γ ⊢M : A
Ѱ ;Γ; Δ ⊢P :: z:S

Certifying Session Interfaces

“Standard” Session Type (talks about behaviour)

BankST ≜&{ with: nat ⊗	
 nat ⊸ &{ ok;1,ko;1},
 deposit: nat	
 ⊗	
 &{ ok;1, ko;1} }

Dependent Session Type (talks about behaviour + data exchanged)

BankCI ≜&{ with: ∃b:nat. ∀v:nat.∀p: [v ≤ b]. &{ ok;1,ko;1},
 deposit:∀v:nat. ∀p: [0 ≤ v]. &{ ok;1,ko;1}}

Dependent Session Types

Ѱ,y:A;Γ;Δ ⊢ P :: x:S
Ѱ;Γ;Δ ⊢ x(y).P :: x: ∀y:A.S

Ѱ; Γ ⊢M : A Ѱ;Γ; Δ ⊢ P :: x:S{M/x}
Ѱ; Γ; Δ ⊢x[M].P :: x: ∃x:A.S

Certifying Session Interfaces

BankCI ≜&{ with: ∃b:nat. ∀v:nat.∀p: [v ≤ b]. &{ ok;1,ko;1},
 deposit:∀v:nat. ∀p: [0 < v]. &{ ok;1,ko;1}}

Client(b) ≜ b.with.s(bv).s(bv/2).s[ltehalf(bv)].ok;1

Ѱ; Γ; b: BankCI ⊢ Client(b) :: - 1

Ѱ	
 contains	
 a	
 binding	
 for	
 ltehalf: ∀b:nat. b/2 ≤ b

Mixed linear-non-linear Logic [Benton]

Ѱ ;Γ ⊢M : A
Ѱ ;Γ; - ⊢[z ← M] :: z:$A

Ѱ ;Γ; - ⊢P :: z:S
Ѱ ;Γ ⊢{P} : {z:S}

Ѱ, z:A; Γ; Δ ⊢P : C
Ѱ ;Γ; Δ, z:$A ⊢P :: C

Δ linear channel context (multiset)

Γ cartesian channel context (set)

Ѱ cartesian value context (set)

Ѱ ;Γ ⊢ M : {z:S} Ѱ ;Γ; Δ, z:S ⊢Q :: C
Ѱ ;Γ; Δ ⊢ spawn. z (M || Q): C

Ѱ; Γ ⊢M : A
Ѱ ;Γ; Δ ⊢P :: z:S

App Store

AppStore ≜&{ game:{ g: API ⊸ Game},
 maps: { g: API ⊸ GPS ⊸ Maps }

 cam:{ g: API ⊸ CAM ⊸ Cam} }
Cam ≜ … some session type describing the camera App behaviour

A toy App Store

AppStore ≜&{ game:{ g: API ⊸ Game},
 maps: { g: API ⊸ GPS ⊸ Maps }

 cam:{ g: API ⊸ CAM ⊸ Cam} }
Cam ≜ … some session type describing the camera App behaviour

Betty(as,gps) ≜
 as.maps.as(code).spawn g. (code | g(api).g(gps).[g↔c]): c:Maps

as: AppStore, api:GPS ⊢ Betty(as,api) :: c: Maps

The Cloud Server Type (redux)

API ≜ !&{ rmov:(Name ⊸ MP4⊗ 1),

 wmov:(Name ⊸ MP4 ⊸ 1)}

CloudServer ≜ ∀X.{c:API ⊸ X} ⊸ !X

Building up

Behavioural Polymorphism and Parametricity
Dependent types

Asynchrony
Authorisation

LNL and Higher-Order processes

Logical Relations
Encoding Multiparty Systems

Non-determinism (forthcoming)

Core References

Caires, Pfenning: Session Types as Intuitionistic Linear Propositions. CONCUR 10

Toninho, Caires, Pfenning: Dependent session types via intuitionistic linear type theory. PPDP 11
Caires, Pfenning, Toninho: Towards concurrent type theory. TLDI 12

Toninho, Caires, Pfenning: Functions as Session-Typed Processes. FoSSaCS 12

Pérez, Caires, Pfenning, Toninho: Linear Logical Relations for Session-Based Concurrency. ESOP 12

DeYoung, Caires, Pfenning, Toninho: Cut Reduction in Linear Logic as Asynchronous Session-Typed
Communication. CSL 12

Wadler: Propositions as sessions. ICFP 12 (also JFP 14)
Toninho, Caires, Pfenning: Higher-Order Processes, Functions, and Sessions: A Monadic Integration.
ESOP 13

Caires, Pérez, Pfenning, Toninho: Behavioral Polymorphism and Parametricity in Session-Based
Communication. ESOP 13

Toninho, Caires, Pfenning: Corecursion and Non-divergence in Session-Typed Processes. TGC 14

Caires, Pfenning:, Toninho, Linear Logic Propositions as Session Types. MSCS 16
Caires, Pérez: Multiparty Session Types Within a Canonical Binary Theory, and Beyond. FORTE 16

Background

Wadler: Propositions as types. Commun. ACM 58(12) (2015)

Cardelli: Typeful Programming, IFIP State-of-the-Art Reports (1989)

Milner, Parrow, Walker: A Calculus of Mobile Processes, I. Inf. Comput. 100(1): 1-40 (1992)

Milner: Functions as Processes. Mathematical Structures in Computer Science 2(2): (1992)

Gay: A Sort Inference Algorithm for the Polyadic Pi-Calculus. POPL 1993

Pierce, Sangiorgi: Behavioral equivalence in the polymorphic pi-calculus. J. ACM 47(3): (2000)

Pierce, Sangiorgi: Typing and Subtyping for Mobile Processes. Mathematical Structures in Computer
Science 6(5) (1996)

Merro, Sangiorgi: On Asynchrony in Name-Passing Calculi. ICALP 1998

Sangiorgi: The Name Discipline of Uniform Receptiveness. ICALP 1997

Kobayashi, Pierce, Turner: Linearity and the pi-calculus. ACM Trans. Program. Lang. Syst. 21(5): 7 (1999)

Honda: Types for Dyadic Interaction. CONCUR 1993

Honda, Vasconcelos, Kubo: Language Primitives and Type Discipline for Structured Communication-
Based Programming. ESOP 1998

Gay, Hole: Subtyping for session types in the pi calculus. Acta Inf. 42(2-3) (2005)

Giunti, Vasconcelos: A Linear Account of Session Types in the Pi Calculus. CONCUR 2010

Background

Honda, Laurent: An exact correspondence between a typed pi-calculus and polarised proof-nets.
Theor. Comput. Sci. 411(22-24): (2010)

Bellin, Scott: On the pi-Calculus and Linear Logic. Theor. Comput. Sci. 135(1): (1994)

Abramsky: Computational Interpretations of Linear Logic. Theor. Comput. Sci. 111(1&2): (1993)

Andreoli: Logic Programming with Focusing Proofs in Linear Logic. J. Log. Comput. 2(3): 347 (1992)

Barber, Plotkin: Dual Intuitionistic Linear Logic, ECS-LFCS-96-347, 1996.

Benton: A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models. CSL 1994

127

