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• An effectful dependently-typed functional language

a,b ::= ... | x:a → PURE b wpp 

            | x:a → DIV b wpd 

            | x:a → STATE b wps 

• Some resources:

• www.fstar-lang.org

• "Dependent Types and Multi-Monadic Effects in F*"           [POPL'16]

• "Dijkstra Monads for Free"                                              [POPL'17]

 PURE, DIV, STATE - Dijkstra monads 

• An effectful dependently-typed functional language

a,b ::= ... | x:a → PURE t2 wp 

            | x:a → DIV b wpd 

            | x:a → STATE b wps 

 weakest precondition predicate transformers 

http://www.fstar-lang.org


Outline

• A recurring phenomenon

• Preorder-respecting (Dijkstra) state monads F*

• Some examples

• A glimpse of the formal metatheory

• What are Dijkstra monads category theoretically?     
                                                      (if time permits)
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Example 1

let s   = get () in 
let _   = put (s + 1) in 
let s'  = get () in 
f () ; 

let s'' = get () in 
g ()

assert (s' > 0) ;

 f only increases the state 

assert (s'' > 0) ;
• How to prove the 2nd assert "for free"?  

 

• How to avoid global spec. in the type of f about s' ≤ s''?  
 

• Generalise to other preorders  and stable predicates?
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Example 2

val f : ref int → ST unit (fun s0 → True) 
                           (fun s0 _ s1 → True) 

let f r =  
  let r' = alloc 0 in 
  g r r'

 assert (r <> r') ;

• FStar.ST.recall is used pervasively in practice 

 

• Can't implement it - is taken as an axiom   
 

• It is intuitively correct - there is no dealloc op. in F*   
 

• How to make this intuition formal?

 FStar.ST.recall r ;
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Example 3

Monotonic references in FStar.Monotonic.RRef

type m_ref (reg:rid) (a:Type) (rel:preorder a)

Provides operations

• recall  - works as in FStar.ST.recall

• witness - witness a predicate holding value of a ref.

• testify - a previously witnessed predicate holds for a ref.

Used pervasively in mitls-fstar

• for monotone sequences, -counters and -logs

 also has to be 
 taken as an axiom 
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State monads in  

STATE :   a:Type  

      → wp:((a → state → Type0) → state → Type0) 

      → Effect

The state monad in F* has (roughly) the following type

val put : x:state  
        → STATE unit (fun p s → p () x)

WPs of state operations are familiar from Hoare Logic, e.g.
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High-level picture

Idea is based on axioms of FStar.ST.recall and mref 
and aims to be a replacement for them in long-term

At high-level, we:  
• index F* state monads by preorders on states

• ensure that writes respect them (think update monads)

• add an operation for witnessing stable predicates

• add an operation for recalling stable predicates

• introduce a ■-modality on stable predicates

"witnessed"
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Relations and preorders

let relation a = a → a → Type0 

let preorder a = rel:relation a 
  { (forall x     . rel x x) ∧ 
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Relations and predicates

Relations and preorders

let relation a = a → a → Type0 

let preorder a = rel:relation a 
  { (forall x     . rel x x) ∧ 
    (forall x y z . rel x y ∧ rel y z ⇒ rel x z) }

Predicates and stability

let predicate a     = a → Type0 

let stable_p #a rel = p:predicate a 
  { forall x y . p x ∧ rel x y ⇒ p y }
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PSTATE and PST
The signature of preorder-respecting state monads

PSTATE :   rel:preorder state 

       → a:Type 
       → wp:((a → state → Type0) → state → Type0) 

       → Effect

Note: Unfortunately, at the moment we can't define

But we can make sub-effecting work for instances of PSTATE!

sub_effect (forall state rel . Pure ⇝ PSTATE rel)

We add PSTATE into the effect hierarchy of F* via STATE



PSTATE and PST

Analogously to STATE, we again use syntactic sugar

PST :   rel:preorder state 
    → a:Type 
    → pre:(state → Type0) 

    → post:(state → a → state → Type0) 
    → Effect

The signature of preorder-respecting state monads

PSTATE :   rel:preorder state 

       → a:Type 
       → wp:((a → state → Type0) → state → Type0) 

       → Effect
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get and put

val get : #rel:preorder state 
        → PST rel state (fun _ → True) 

                        (fun s0 s s1 → s0 = s ∧ s = s1)

val put : #rel:preorder state 
        → x:state  

        → PST rel unit (fun s0 → rel s0 x) 

                       (fun _ _ s1 → s1 = x)

the change wrt. STATE and ST 

val put : #rel:preorder state 
        → x:state  

        → PST rel unit (fun s0 → rel s0 x) 

                       (fun _ _ s1 → s1 = x)

 pre and post are exactly as for STATE and ST 
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■-modality in  

We introduce an uninterpreted function symbol

val ■ : #rel:preorder state 

     → p:stable_p rel 

     → Type0

We assume logical axioms, e.g., functoriality:

forall p p' . (forall s . p s ⇒ p' s) ⇒  (■ p ⇒ ■ p')

Two readings of  ■ p   
  p held at some past state of an PSTATE computation

  p holds at all states reachable from the current with PSTATE
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witness and recall

val witness : #rel:preorder state 
             → p:stable_p rel 

             → PST rel unit (fun s0 → p s0) 
                           (fun s0 _ s1 → s0 = s1 ∧ ■ p) 

val recall : #rel:preorder state 
            → p:stable_p rel  
            → PST rel unit (fun _ → ■ p) 
                          (fun s0 _ s1 → s0 = s1 ∧ p s1)
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Examples

• Recalling that allocated references remain allocated

• using FStar.Heap.heap 

(need a source of freshness for alloc)

using our own heap type

(source of freshness built into the heap)

• Immutable references and other preorders

• Monotonic references

Temporarily ignoring the constraint on put via snapshots
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Our heap and ref types

The heap and ref types

let heap  = h:(nat * (nat → option (a:Type0 & a))) 
              { ... } 

let ref a = nat 
 both ops. have (r ∈ h)
 refinements on references 

We can define sel and upd and gen_fresh operations

 freshness counter 
The heap and ref types

let heap  = h:(nat * (nat → option (a:Type0 & a))) 
              { ... } 

let ref a = nat 

and prove expected properties, e.g.:

r <> r'  ⇒  sel (upd h r x) r' = sel h r'

 Goal: use this heap as drop-in replacement for F*'s heap 

 (but in F*'s heap, sel and upd don't have (r ∈ h) refinements)

•  change the type of refs. to (let ref a = nat * a)

•  make use of the presence LEM in WPs for checking (r ∈ h)
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let rel h0 h1 = forall a r . r ∈ h0 ⇒ r ∈ h1 

AllocST a pre post = PST rel a pre post



Allocated references example
The type of refs. and preorder for recalling allocation

let ref a    = r:(Heap.ref a){ ■ (fun h → r ∈ h) } 

let rel h0 h1 = forall a r . r ∈ h0 ⇒ r ∈ h1 

AllocST a pre post = PST rel a pre post

AllocST operations crucially use witness and recall, e.g.,

let read #a (r:ref a) =  

  let h = get () in  

  recall (fun h → r ∈ h) ;  

  sel h r
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We first define snaphsot-capable state as

let s_state state = state * option state 

The snaphsot-capable preorder is indexed by rel on state
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val read : #rel:preorder state 
          → SST rel state  
               (fun s0 → True) 
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let write #rel x = ...



read and write

val write : #rel:preorder state 
           → x:state  
           → SST rel unit  
                (fun s0 → s_rel rel s0 (x,snd s0)) 
                (fun s0 _ s1 → s1 = (x,snd s0)) 
let write #rel x = ...

val read : #rel:preorder state 
          → SST rel state  
               (fun s0 → True) 

               (fun s0 s s1 → fst s0 = s ∧ s = fst s1 ∧
                              snd s0 = snd s1) 
let write #rel x = ...
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val witness : #rel:preorder state 
             → p:stable_p rel 

             → SST rel unit (fun s0 → p (fst s0) ∧ 
                                     snd s0 = None) 
                           (fun s0 _ s1 → s0 = s1 ∧ ■ p) 
let witness #rel p = ... 



witness and recall
val witness : #rel:preorder state 
             → p:stable_p rel 

             → SST rel unit (fun s0 → p (fst s0) ∧ 
                                     snd s0 = None) 
                           (fun s0 _ s1 → s0 = s1 ∧ ■ p) 
let witness #rel p = ... 

val recall : #rel:preorder state 
            → p:stable_p rel  
            → SST rel unit (fun s0 → ■ p ∧ snd s0 = None) 
                          (fun s0 _ s1 → s0 = s1 ∧  
                                         p (fst s1)) 
let recall #rel p = ...
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snap and ok
val snap : #rel:preorder state 
          → SST rel unit  
                (fun s0 → snd s0 = None) 
                (fun s0 _ s1 → fst s0 = fst s1 ∧  
                               snd s1 = Some (fst s0))  
let snap #rel = ...



snap and ok
val snap : #rel:preorder state 
          → SST rel unit  
                (fun s0 → snd s0 = None) 
                (fun s0 _ s1 → fst s0 = fst s1 ∧  
                               snd s1 = Some (fst s0))  
let snap #rel = ...

val ok : #rel:preorder state 
       → SST rel unit  
             (fun s0 → exists s . snd s0 = Some s ∧  
                                rel s (fst s0)) 
             (fun s0 _ s1 → fst s0 = fst s1 ∧  
                            snd s1 = None)  
let ok #rel = ...
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Example use of SST

x0 x1

y0

y1

• Implementing a 2D point using two locations

• E.g., want to enforce that    can only move along some line
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PSTATE formally

We work with a small calculus based on EMF* from DM4F

  t, wp, ::= state | rel | x:t1 → Tot t2 | x:t1 → PSTATE t2 wp | ... 

  e, φ     | x | fun x:t → e | e1 e2 | (e1,e2) | fst e | ... 

           | return e | bind e1 x:t.e2  

           | get e | put e | witness e | recall e

Typing judgements have the form

  G ⊢ e : Tot t 

  G ⊢ e : PSTATE t wp

There is also a judgement for logical reasoning in WPs

  G | Φ ⊨  φ  nat. deduction for classical predicate logic 
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Operational semantics

Small-step call-by-value reduction relation

    (Φ,s,e) -------------→ (Φ',s',e') 

where

• Φ is a finite set of (witnessed) stable predicates

• s is a value of type state

• e is an expression

Examples of reduction rules

    (Φ,s,put v)     -------------→ (Φ,v,return ()) 

    (Φ,s,witness v) -------------→ (Φ ∪ {v},s,return ()) 
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Progress thm. for PSTATE

∀ f t wp .  

   ⊢ f : PSTATE t wp 

   ⇒

   1. ∃ v . f = return v 

   ∨

   2. ∀ Φ s . ∃ Φ' s' f' . (Φ,s,f) -------------→ (Φ',s',f')
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∀ f t wp Φ s Φ' s' f'.  
   ⊢ f : PSTATE t wp  ∧  (Φ,s) wf  ∧ 

   (Φ,s,f) -------------→ (Φ',s',f') 

   ⇒
   ∀ post . ■ Φ ⊨ wp post s 

            ⇒
            Φ ⊆ Φ'  ∧  (Φ',s') wf  ∧
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In this talk we covered: 

• preorder-respecting state monads in F*
• their formal metatheory

• some of the examples of these monads



Conclusion

Ongoing and future work: 

• change F*'s libraries to use PSTATE

• PSTATE in DM4F setting? (how to reify it safely?)

• model theory of  ■

• categorical semantics of Dijkstra monads (rel. monads.)

In this talk we covered: 

• preorder-respecting state monads in F*
• their formal metatheory

• some of the examples of these monads
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The unit of a Dijkstra monad

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y )

f (1Y )�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

G ` e : t
G ` return e : T t (WP.return e)

G ` M : T t1 wp1 G ` t2 G,x : t1 ` N : T t2 wp2
G ` bind e1 x.e2 : T t2 (WP.bind wp1 x.wp2)

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A )
�! p(A); and by
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We'll work in the setting of closed comprehension cats., i.e., 

•  B models contexts

•  V models types in context 

•  terms in context Γ are modeled as global elements in V[[Γ]] 

•  P is fully faithful
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For modeling Dijkstra monads, we assume:

•  a split fibred monad   WP  :  p  →  p 

•  a functor  T  :  V  →  V     
 s.t.    p ◦ T = { --- } ◦ WP  
         T preserves Cartesian morphisms on-the-nose

 
 

 
Can we model the unit and Kleisli ext. for T in known terms?
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dependency on WP 
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dependency on WP 
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Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A )
�! p(A); and by
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sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y )

f (1Y )�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.
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sketch the definitions used to prove both directions. First, in the if -direction, we define
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f (1Y )�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.
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a category V having a terminal object precisely when the unique functor ! : V �! 1
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sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y )

f (1Y )�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.
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{A} //

id{A}

✏✏

{T (A)}

pT (A)

✏✏

hA :

{A}
{WP.hA}

// {WP(A)}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A )
�! p(A); and by
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sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y )

f (1Y )�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

bT : V �! im({�})/{�} bT (A) def
= {T (A)}

pT (A)
�����!{WP(A)}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A )
�! p(A); and by
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sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y )

f (1Y )�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

J : V �! im({�})/{�} J(A) def
= {A}

id{A}
�����!{A}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A )
�! p(A); and by
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sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y )

f (1Y )�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [9, Section 1.8], this characterisation is a fibred analogue of a

category V having a terminal object precisely when the unique functor ! : V �! 1 has

a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

bT : V �! im({�}) # {�} bT (A) def
= {T (A)}

pT (A)
�����!{WP(A)}

J : V �! im({�}) # {�} J(A) def
= {A}

id{A}
�����!{A}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [9, Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A )
�! p(A); and by
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sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y )

f (1Y )�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [9, Section 1.8], this characterisation is a fibred analogue of a

category V having a terminal object precisely when the unique functor ! : V �! 1 has

a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}
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a a

B

1

OO

bT : V �! im({�}) # {�} bT (A) def
= {T (A)}

pT (A)
�����!{WP(A)}

J : V �! im({�}) # {�} J(A) def
= {A}

id{A}
�����!{A}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [9, Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A )
�! p(A); and by


