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* An effectful dependently-typed functional language

a,b | weakest precondltlon predlcate transformers f;'

| x:a - DIV b wpy €——"

| x:a > STATE b wps €«—

| PURE, DIV, STATE - Dijkstra monads

e Some resources:

 www.fstar-lang.org
* "Dependent Types and Multi-Monadic Effects in F*" POPL'1 6
* "Dijkstra Monads for Free" POPL'I7



http://www.fstar-lang.org

Qutline

A recurring phenomenon

Preorder-respecting (Dijkstra) state monads F*
Some examples

A glimpse of the formal metatheory

What are Dijkstra monads category theoretically?
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let s = get () in

let = put (s + 1) 1n
let s' = get () 1in

f ()

let s'' = get () 1in

g ()
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put (s + 1) in
let s get (
f () ;

let_s"~= et () in

T
a () T~

-} f only increases the state |

* How to prove the 2nd assert "for free™

* How to avoid global spec.in the type of f about s' < s° .?]

* Generalise to other preorders and stable predicates!?
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Example 2

val f : ref int — ST unit (fun sO — True)
(fun sO sl — True)

let T r =
letgf' = alloc O in

I —

 assert (r <> r') |




Example 2

val f : ref int — ST unit (fun sO — True)
(fun sO sl — True)

letftr =
let r'

0 ©—

AR e Rl

= alloc 0 in

fassert r<>r') :i




Example 2

val f : ref int — ST unit (fun sO — True)
(fun sO sl — True)

letftr =

let r'; alloc 0 1in

A R IR S RS RE

e FStar.ST.recall is used pervasively in practice
e Can't implement it - is taken as an axiom

e It is intuitively correct - there is no dealloc op.in F*

* How to make this intuition formal?
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» testify - a previously witnessed predicate holds for a ref.
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Example 3

Monotonic references in FStar.Monotonic.RRef

type m ref (reg:rid) (a:Type) (rel:preorder a)

Provides operations
 recall -worksasin FStar.ST.recall

« witness - witness a predicate holding value of a ref.

FRSTRE

* testify-a prewously withessed predlcate holds for a ref.

_{ also has to be
taken as an axiom |

Used pervasively in mitls-fstar

* for monotone sequences, -counters and -logs
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State monads in 7

The state monad in F* has (roughly) the following type
STATE : a:Type
= wp:((a = state — Typep) — state — Typeo)

— Effect

WVPs of state operations are familiar from Hoare Logic, e.g.

val put : x:state
— STATE unit (fun p s = p () x)
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|dea is based on axioms of FStar.ST.recall and mref

and aims to be a replacement for them in long-term

At high-level, we:

index F* state monads by preorders on states

ensure that writes respect them
add an operation for witnessing stable predicates

add an operation for recalling stable predicates

introduce a m-modality on stable predicates
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Relations and preorders

let relation a = a =+ a — Typep

let preorder a rel:relation a

{ (forall x . rel x x) A
(forall x y z . rel x y A rely z = rel x z) }



Relations and predicates

Relations and preorders

let relation a

let preorder a
{ (forall x

(forall x y z .

a = a — Typeo

rel:relation a
rel x x) A
rel x y Arely z = rel x z) }

Predicates and stability

let predicate a

a — Typeeo

let stable p #a rel = p:predicate a

{ forall x vy .

P XA relxy=py}
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PSTATE and PST

The signature of preorder-respecting state monads

PSTATE : rel:preorder state
— a:lype
= wp:((a = state — Types) — state — Typeo)

— Effect

We add PSTATE into the effect hierarchy of F* via STATE

Note: Unfortunately, at the moment we can't define

sub _effect (forall state rel . Pure - PSTATE rel)

But we can make sub-effecting work for instances of PSTATE !



PSTATE and PST

The signature of preorder-respecting state monads

PSTATE : rel:preorder state
— a:lype
= wp:((a = state — Types) — state — Typeo)

— Effect

Analogously to STATE, we again use syntactic sugar
PST : rel:preorder state

a:Type

pre:(state — Typeo)

post: (state =@ a — state — Typeo)

Effect

R
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val get :

get and put

#rel:preorder state

— PST rel state (fun — True)

(fun Ssg S S1 = So

S

AN

S

S1)
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get and put

RSNy

| pre and post are exactly as for STATE and ST |

val get : #rel:preorder state

— PST rel state (fun - True)*?‘fﬂ

(fun Ssg S s1 @ Sp = s A s S1)

val put : #rel:preorder state
— X:State
— PST rel unit (fun se¢ = rel sp X)

(fun S1 = S1 = X)



get and put

RSNy

| pre and post are exactly as for STATE and ST|

val get : #rel:preorder state

~ PST rel state (fun _ — True) €«

(fun Ssg S s1 @ Sp = s A s S1)

' the change wrt. STATE and ST|

val put : #rel:preorder state

— X:State y
— PST rel unit (fun sg = rel sp x)

(fun S1 = S1 = X)
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a-modality in 77

We introduce an uninterpreted function symbol

val B : #rel:preorder state
— p:stable p rel
— Typeg

We assume logical axioms, e.g., functoriality:

forall p p' . (forall' s . ps = p' s) = (Ap = mp"')

Two readings of mp
p held at some past state of an PSTATE computation
p holds at all states reachable from the current with PSTATE
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wiltness and recall

val witness : #rel:preorder state
— p:stable p rel

— PST rel unit (fun s¢ = p So)
(fun s S1 = Se =S1 A ED)

val recall : #rel:preorder state
— p:stable p rel

— PST rel unit (fun - HEp)
(fun s¢ sS1 = se = s1 A P s1)
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Examples

* Recalling that allocated references remain allocated

* using FStar.Heap.heap

(need a source of freshness for alloc)

* using our own heap type

(source of freshness built into the heap)
* |Immutable references and other preorders
* Monotonic references

* Temporarily ighoring the constraint on put via snapshots
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{ ...}

let ref a = nat
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Our heap and ref types

—| freshness counter |

The heap and ref types "

let heap h:(na* (nat — option (a:Typee & a)))

~ /7 | refinements on references |

SRV R

let ref a =

We can define sel and ud and gen fresh operations

and prove expected properties, €.8.:

r<>r' = sel (upd h r x) r' = sel h r'



Our heap and ref types

—| freshness counter |

The heap and ref types . -

h: (na* (nat — option (a:Typeo & a)))

let heap

let ref a = "| refinements on references |

Goal: use this heap as drop-in replacement for F*'s heap
(but in F*'s heap, sel and upd don't have (r € h) refinements)

* change the type of refs.to (let ref a = nat * a)
* make use of the presence LEM in WPs for checking (r € h)
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The type of refs. and preorder for recalling allocation

let ref a = r:(Heap.ref a){ m(fun h - r € h) }

let rel hg hi = forall a r . r € ho =2 r € h;

AllocST a pre post = PST rel a pre post



Allocated references example

The type of refs. and preorder for recalling allocation

let ref a = r:(Heap.ref a){ m(fun h - r € h) }

let rel hg hi = forall a r . r € ho =2 r € h;

AllocST a pre post = PST rel a pre post

AllocST operations crucially use witness and recall,e.g,
let read #a (r:ref a) =
let h = get () 1in
recall (fun h = r € h) ;

sel h r
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Snapshots

We first define snaphsot-capable state as

let s state state = state * option state

The snaphsot-capable preorder is indexed by rel on state

let s rel (rel:preorder state) se S1 =

match (snd se¢) (snd si1) with

| None None = rel (fst sg) (fst s1)
| None (Some s) = rel (fst so) s
| (Some s) None = rel s (fst si1)

| (Some s¢') (Some s1') = rel sp' s1'
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val read

read and write

: #rel:preorder state

— SST rel state
(fun s¢ = True)

(fun sp s s1 = fst so
snd S¢

s As = fst s1 A
snd si1)



read and write

val read : #rel:preorder state
— SST rel state
(fun se — True)

(fun sg s s1 =@ fst se = s As = fst s1 A
snd s¢ = snd si1)

val write : #rel:preorder state

— X:Sstate

— SST rel unit
(fun s = s rel rel sp (x,snd sg))

(fun s¢ s1 = s1 = (x,snd so))
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wiltness and recall

val witness : #rel:preorder state

— p:stable p rel

— SST rel unit (fun s¢ = p (fst se) A
snd se = None)

(fun s S1 = Se =S1 A HpP)



wiltness and recall

val witness : #rel:preorder state

— p:stable p rel

— SST rel unit (fun s¢ = p (fst se) A
snd se = None)

(fun se S1 = Se =S1 A HP)

val recall : #rel:preorder state
— p:stable p rel
— SST rel unit (fun s¢ @ BpP A snd se = None)

(fun se s1 = Se = s1 A
p (fst s1))
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snap and ok

val snap : #rel:preorder state
— SST rel unit
(fun s¢ @ snd sg = None)

(fun s¢ s1 = fst sg = fst s1 A
snd s1 = Some (fst sg))



snap and ok

(fun s¢ =@ snd so

51 — fst

None)
Sp = fst s1 A

snd s1 = Some (fst sp))

val snap : #rel:preorder state
— SST rel unit
(fun so
val ok

. #rel:preorder state

— SST rel unit

(fun s¢ — exists s

(fun so

51 = fst se

snd s1

. snd sg = Some s A

rel s (fst sg))

= fst s1 A
= None)
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Example use of SST

Xe X1
* Implementing a 2D point using two locations

* E.g., want to enforce that @ can only move along some line
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PSTATE formally

We work with a small calculus based on EMF* from DM4F

t, wp, ::= state | rel | x:tl — Tot t2 | x:t1l — PSTATE t2 wp | ...
e, o X | fun x:t > e | el e2 | (el,e2) | fst e | ...

return e | bind el x:t.e2

get e | put e | witness e | recall e

Typing judgements have the form

GFe : Tot t
GF e : PSTATE t wp

There is also a judgement for logical reasoning in VWPs

Glo = o

i nat. deduction for classical predicate logic !

SRR R RN
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Operational semantics

Small-step call-by-value reduction relation

(®,s,e) —+ (®',s',e")

where

* @ is a finite set of (witnessed) stable predicates

* s is a value of type state

* €IS an expression

Examples of reduction rules

(&,s,put v) — (®,v,return ())

(0,s,witness v) — (& U {v},s,return ())
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Progress thm. for PSTATE

VFftw.

- f : PSTATE t wp

—

1. d v . f = return v

\Y

2. Vds . 3@ s' " . (&d,s,f) — (¢',s',f")
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Preservation thm. for PSTATE

Vtwdsd s' f'.
- f : PSTATE t wp A (®,5) wf A

(®,s,f) - (9',s',f")
—

V post . m® = wp post s

—
d C &' A (&',5'") wf A

B = rel s s' A

J wp' . - f' : PSTATE t wp' A

md' = wp' post s'



Preservation thm. for PSTATE

Vtwdsd s' f'.
- f : PSTATE t wp A (®,5) wf A

(®,s,f) - (¢',s',f")

PRV AP PRI AP PARSNST

= /iICIJ:l(funx—'(mx/\.../\(pnx)

P Vi o e o v

V post . m® = wp post s

—
d C &' A (&',5'") wf A

B = rel s s' A

J wp' . - f' : PSTATE t wp' A

md' = wp' post s'



X - | A

The proof requires an inversion property (in empty context)

B0 = HY
forall X . ¢ X = Y X

(m-inv)

We justify (m- inv) via a cut-elimination in sequent calculus

* where we have a single derivation rule for m

G + &1

G F &

G,Xx|®1,¢01 X,...,0n X F Y1 X,...,Un X, &
G|é1,mQ1,... , ®QPn - WY1,...,HYn, &

Future work: model theory of =

- T -
1 1
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Conclusion

In this talk we covered:

* preorder-respecting state monads in F*
* their formal metatheory

* some of the examples of these monads

Ongoing and future work:

* change F*'s libraries to use PSTATE
e PSTATE in DMA4F setting? (how to reify it safely?)
* model theory of m

* categorical semantics of Dijkstra monads (rel. monads.)
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Dijkstra monad T in CT?

Type formation rule for a Dijkstra monad

I'Hr: Type I'Fwp:WPA
I'ETtwp: Type

The unit of a Dijkstra monad

I'Fe:t
['Freturne: Tt (WP.returne)

The Kleisli extension of a Dijkstra monad

I'EM: Tt wpq I'1 I'x:ti EN:T tp wpo
['Fbind e x.ex : T 1t (WPbind wp| x.wp3)




Dijkstra monad T in CT?

We'll work in the setting of closed comprehension cats,, i.e.,

* B models contexts
* "V models types in context

* terms in context [ are modeled as global elements in V]

B~ < P %

cod

» Pis fully faithful B



Dijkstra monad T in CT?

For modeling Dijkstra monads, we assume:
* a split fibred monad WP : p — P

e afunctor T : V = V
st. poT={—}0oWP
T preserves Cartesian morphisms on-the-nose

B P %

I'-e:t
['Freturne: Tt (WP.return e)

cod

‘B
Can we model the unit and Kleisli ext. for T in known terms?
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Dijkstra monad T in CT?

For modeling Dijkstra monads, we assume:
* a split fibred monad WP : p — P

eafunctor T: V - V
st. poT={—}oWp&e

T preserves Cartesian morphisms on-the-nose

f B ? %
I'He:t

['Freturne: Tt (WP.return e)

2 PP S e

| closed under substitution

e e

cod

‘B
Can we model the unit and Kleisli ext. for T in known terms?
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Dijkstra monad T in B~

The unit of a Dijkstra monad

{A} {T(A)}
NA ; idgay 7 (4)
{4} e {WP(a)}

The Kleisli extension of a Dijkstra monad

{A} ! {T(B)} (T(A)}
( id {4} 7 (B) )* ; T (4)
{A} {(WP(B)} {WP(A)}

{8}




Dijkstra monad T in B~

The unit of a Dijkstra monad

{A} {T(A)}

This data and the associated laws are

precisely those for a relative monad

7% —im({-}){-}

T(A) £ {T(A)) — s (wp(A))
on
IV s m{-) L)
id{A}

T(A) £ A} —— {A)




