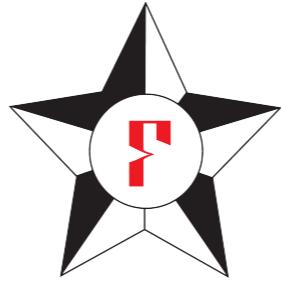


Recall for free: preorder-respecting state monads in

Danel Ahman
LFCS, University of Edinburgh

(joint work with Aseem Rastogi and Nikhil Swamy)

EUTypes WG Meeting in Lisbon
5 October 2016



- An effectful dependently-typed functional language

$a, b ::= \dots \mid x:a \rightarrow \mathbf{PURE} \ b \ wp_p$

$\mid x:a \rightarrow \mathbf{DIV} \ b \ wp_d$

$\mid x:a \rightarrow \mathbf{STATE} \ b \ wp_s$

- An effectful dependently-typed functional language

$a, b ::= \dots \mid x:a \rightarrow \mathbf{PURE} \ b \ wp_p$

$\mid x:a \rightarrow \mathbf{DIV} \ b \ wp_d$

$\mid x:a \rightarrow \mathbf{STATE} \ b \ wp_s$

PURE, DIV, STATE - Dijkstra monads

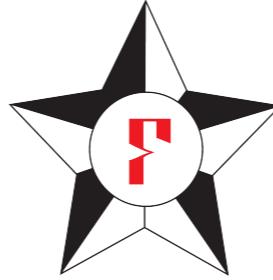
- An effectful dependently-typed functional language

a, b **weakest precondition predicate transformers**

$| \ x:a \rightarrow \mathbf{DIV} \ b \ wp_d$

$| \ x:a \rightarrow \mathbf{STATE} \ b \ wp_s$

PURE, DIV, STATE - Dijkstra monads



- An effectful dependently-typed functional language

a, b **weakest precondition predicate transformers**

$| \ x:a \rightarrow \mathbf{DIV} \ b \ wp_d$

$| \ x:a \rightarrow \mathbf{STATE} \ b \ wp_s$

- Some resources:

PURE, DIV, STATE - Dijkstra monads

- www.fstar-lang.org

- "Dependent Types and Multi-Monadic Effects in F*" [POPL'16]

- "Dijkstra Monads for Free" [POPL'17]

Outline

- A recurring phenomenon
- Preorder-respecting (Dijkstra) state monads F^*
- Some examples
- A glimpse of the formal metatheory
- What are Dijkstra monads category theoretically?
(if time permits)

A recurring phenomenon

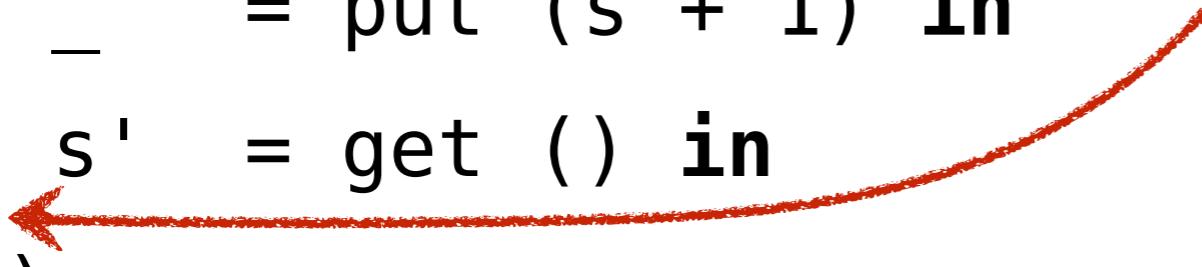
Example I

Example 1

```
let s      = get () in
let _      = put (s + 1) in
let s'    = get () in
f ();
let s''  = get () in
g ()
```

Example 1

```
let s      = get () in
let _      = put (s + 1) in
let s'     = get () in
f () ;
assert (s' > 0) ;
let s''   = get () in
g ()
```



Example I

```
let s      = get () in
let _      = put (s + 1) in
let s'     = get () in
f () ;
let s''   = get () in
g ()
```

assert (s' > 0) ;

f only increases the state

Example 1

```
let s      = get () in
let _      = put (s + 1) in
let s'     = get () in
f () ;
let s''    = get () in
g ()
```

assert (s' > 0) ;

f only increases the state

assert (s'' > 0) ;

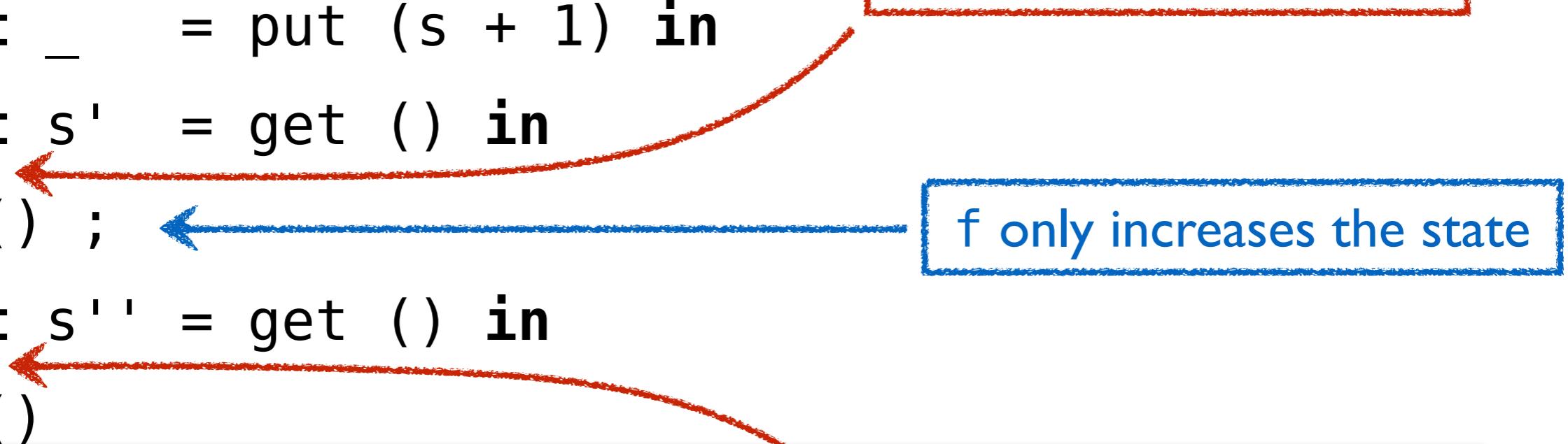
The diagram illustrates the flow of state `s` through two functions, `f` and `g`. The initial state `s` is captured by `s'` before `f` is called. The state after `f` is captured by `s''` before `g` is called. Red arrows point from `s` to `s'` and from `s''` to `s'`, indicating the flow of state. A blue arrow points from `f` to `s'`, indicating that `f` only increases the state. Two red boxes at the end of the flow lines contain assertions: `assert (s' > 0) ;` and `assert (s'' > 0) ;`.

Example I

```
let s      = get () in
let _      = put (s + 1) in
let s'     = get () in
f () ;
let s''    = get () in
g ()
```

assert (s' > 0) ;

f only increases the state



- How to prove the 2nd **assert** "for free"?
- How to avoid **global spec.** in the type of **f** about **s' ≤ s''**?
- Generalise to other **preorders** and **stable predicates**?

Example 2

Example 2

```
val f : ref int → ST unit (fun s0 → True)
                                (fun s0 _ s1 → True)

let f r =
  let r' = alloc 0 in
  g r r'
```

Example 2

```
val f : ref int → ST unit (fun s0 → True)  
          (fun s0 _ s1 → True)
```

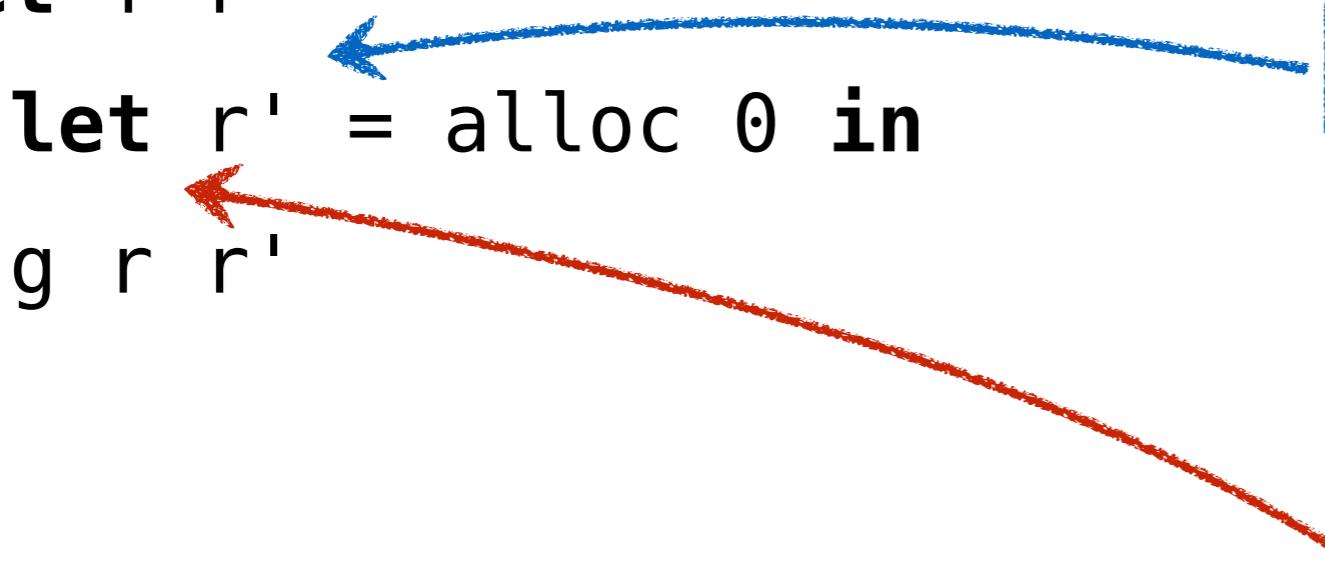
```
let f r =  
  let r' = alloc 0 in  
    g r r'
```

assert (r <> r') ;

Example 2

```
val f : ref int → ST unit (fun s0 → True)  
          (fun s0 _ s1 → True)
```

```
let f r =  
  let r' = alloc 0 in  
  g r r'  
  FStar.ST.recall r ;  
  assert (r <> r') ;
```



Example 2

```
val f : ref int → ST unit (fun s0 → True)  
          (fun s0 _ s1 → True)
```

```
let f r =  
  let r' = alloc 0 in  
    FStar.ST.recall r ;
```

- `FStar.ST.recall` is used pervasively in practice
- Can't implement it - is taken as an axiom
- It is **intuitively correct** - there is no dealloc op. in F*
`> r' ;`
- How to make this intuition formal?

Example 3

Example 3

Monotonic references in FStar.Monotonic.RRef

```
type m_ref (reg:rid) (a:Type) (rel:preorder a)
```

Example 3

Monotonic references in FStar.Monotonic.RRef

```
type m_ref (reg:rid) (a:Type) (rel:preorder a)
```

Provides operations

- **recall** - works as in FStar.ST.recall
- **witness** - witness a predicate holding value of a ref.
- **testify** - a previously witnessed predicate holds for a ref.

Example 3

Monotonic references in FStar.Monotonic.RRef

```
type m_ref (reg:rid) (a:Type) (rel:preorder a)
```

Provides operations

- **recall** - works as in FStar.ST.recall
- **witness** - witness a predicate holding value of a ref.
- **testify** - a previously witnessed predicate holds for a ref.

also has to be
taken as an axiom

Example 3

Monotonic references in FStar.Monotonic.RRef

```
type m_ref (reg:rid) (a:Type) (rel:preorder a)
```

Provides operations

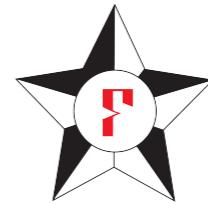
- **recall** - works as in FStar.ST.recall
- **witness** - witness a predicate holding value of a ref.
- **testify** - a previously witnessed predicate holds for a ref.

Used pervasively in mitls-fstar

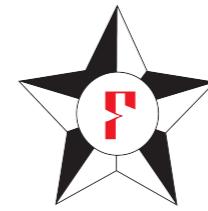
- for monotone sequences, -counters and -logs

also has to be
taken as an axiom

State monads in



State monads in



State monads in



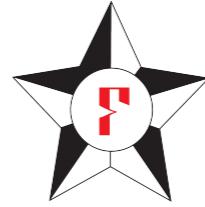
The **state monad** in F^* has (roughly) the following type

STATE : $a:\text{Type}$

$\rightarrow \text{wp}: ((a \rightarrow \text{state} \rightarrow \text{Type}_0) \rightarrow \text{state} \rightarrow \text{Type}_0)$

$\rightarrow \text{Effect}$

State monads in



The **state monad** in F^* has (roughly) the following type

STATE : $a:\text{Type}$

$\rightarrow \text{wp}: ((a \rightarrow \text{state} \rightarrow \text{Type}_0) \rightarrow \text{state} \rightarrow \text{Type}_0)$

$\rightarrow \text{Effect}$

WPs of state **operations** are familiar from Hoare Logic, e.g.

val `put` : $x:\text{state}$

$\rightarrow \text{STATE unit} (\text{fun } p \ s \rightarrow p () x)$

Preorder-respecting state monads in

High-level picture

High-level picture

Idea is based on axioms of `FStar.ST.recall` and `mref`

High-level picture

Idea is based on axioms of `FStar.ST.recall` and `mref`
and aims to be a `replacement` for them in long-term

High-level picture

Idea is based on axioms of `FStar.ST.recall` and `mref`
and aims to be a `replacement` for them in long-term

At high-level, we:

High-level picture

Idea is based on axioms of `FStar.ST.recall` and `mref`
and aims to be a `replacement` for them in long-term

At high-level, we:

- index F^* state monads by `preorders on states`

High-level picture

Idea is based on axioms of `FStar.ST.recall` and `mref` and aims to be a `replacement` for them in long-term

At high-level, we:

- index F^* state monads by `preorders on states`
- ensure that writes `respect them` (think update monads)

High-level picture

Idea is based on axioms of `FStar.ST.recall` and `mref` and aims to be a `replacement` for them in long-term

At high-level, we:

- index F^* state monads by `preorders on states`
- ensure that writes `respect them` (think update monads)
- add an operation for `witnessing stable predicates`

High-level picture

Idea is based on axioms of `FStar.ST.recall` and `mref` and aims to be a `replacement` for them in long-term

At high-level, we:

- index F^* state monads by `preorders on states`
- ensure that writes `respect them` (think update monads)
- add an operation for `witnessing stable predicates`
- add an operation for `recalling stable predicates`

High-level picture

Idea is based on axioms of `FStar.ST.recall` and `mref` and aims to be a `replacement` for them in long-term

At high-level, we:

- index F^* state monads by `preorders on states`
- ensure that writes `respect them` (think update monads)
- add an operation for `witnessing stable predicates`
- add an operation for `recalling stable predicates`
- introduce a \blacksquare -modality on stable predicates

High-level picture

Idea is based on axioms of `FStar.ST.recall` and `mref` and aims to be a `replacement` for them in long-term

At high-level, we:

- index F^* state monads by `preorders on states`
- ensure that writes `respect them` (think update monads)
- add an operation for `witnessing stable predicates`
- add an operation for `recalling stable predicates`
- introduce a \blacksquare -modality on stable predicates

Relations and predicates

Relations and predicates

Relations and preorders

```
let relation a = a → a → Type0
```

```
let preorder a = rel:relation a
{ (forall x . rel x x) ∧
  (forall x y z . rel x y ∧ rel y z ⇒ rel x z) }
```

Relations and predicates

Relations and preorders

```
let relation a = a → a → Type0
```

```
let preorder a = rel:relation a
  { (forall x . rel x x) ∧
    (forall x y z . rel x y ∧ rel y z ⇒ rel x z) }
```

Predicates and stability

```
let predicate a = a → Type0
```

```
let stable_p #a rel = p:predicate a
  { forall x y . p x ∧ rel x y ⇒ p y }
```

PSTATE and PST

PSTATE and PST

The signature of **preorder-respecting state monads**

PSTATE : `rel:preorder state`

→ `a:Type`

→ `wp:((a → state → Type0) → state → Type0)`

→ `Effect`

PSTATE and PST

The signature of **preorder-respecting state monads**

PSTATE : `rel:preorder state`

→ `a:Type`

→ `wp:((a → state → Type0) → state → Type0)`

→ `Effect`

We add **PSTATE** into the **effect hierarchy** of F^* via **STATE**

PSTATE and PST

The signature of **preorder-respecting state monads**

PSTATE : `rel:preorder state`

→ `a:Type`

→ `wp:((a → state → Type0) → state → Type0)`

→ `Effect`

We add **PSTATE** into the **effect hierarchy** of F^* via **STATE**

Note: Unfortunately, at the moment we can't define

`sub_effect (forall state rel . Pure ↪ PSTATE rel)`

But we can make sub-effecting work for **instances** of **PSTATE**!

PSTATE and PST

The signature of **preorder-respecting state monads**

PSTATE : `rel:preorder state`

→ `a:Type`

→ `wp:((a → state → Type0) → state → Type0)`

→ `Effect`

Analogously to STATE, we again use **syntactic sugar**

PST : `rel:preorder state`

→ `a:Type`

→ `pre:(state → Type0)`

→ `post:(state → a → state → Type0)`

→ `Effect`

get and put

get and put

```
val get : #rel:preorder state  
  → PST rel state (fun _ → True)  
  (fun s0 s s1 → s0 = s ∧ s = s1)
```

get and put

pre and post are exactly as for STATE and ST

val get : #rel:preorder state

→ PST rel state (fun _ → True)

(fun s_0 s s_1 → $s_0 = s \wedge s = s_1$)



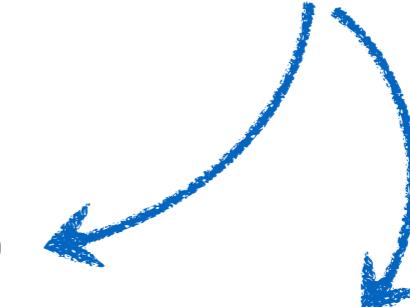
get and put

pre and post are exactly as for STATE and ST

val get : #rel:preorder state

→ **PST** rel state (**fun** _ → True)

(**fun** s₀ s s₁ → s₀ = s \wedge s = s₁)



val put : #rel:preorder state

→ x:state

→ **PST** rel unit (**fun** s₀ → rel s₀ x)

(**fun** _ _ s₁ → s₁ = x)

get and put

pre and post are exactly as for STATE and ST

val get : #rel:preorder state

→ **PST** rel state (**fun** _ → True)

(**fun** s_0 s s_1 → $s_0 = s \wedge s = s_1$)

the change wrt. STATE and ST

val put : #rel:preorder state

→ x:state

→ **PST** rel unit (**fun** s_0 → **rel** s_0 x)

(**fun** _ _ s_1 → $s_1 = x$)

■-modality in

■-modality in

We introduce an **uninterpreted function symbol**

```
val ■ : #rel:preorder state  
  → p:stable_p rel  
  → Type0
```

■-modality in

We introduce an **uninterpreted function symbol**

```
val ■ : #rel:preorder state  
  → p:stable_p rel  
  → Type0
```

We assume **logical axioms**, e.g., functoriality:

```
forall p p' . (forall s . p s ⇒ p' s) ⇒ (■ p ⇒ ■ p')
```

■-modality in

We introduce an **uninterpreted function symbol**

```
val ■ : #rel:preorder state  
  → p:stable_p rel  
  → Type0
```

We assume **logical axioms**, e.g., functoriality:

```
forall p p' . (forall s . p s ⇒ p' s) ⇒ (■ p ⇒ ■ p')
```

Two readings of ■ p

p held at **some past state** of an **PSTATE** computation

p holds at **all states reachable** from the current with **PSTATE**

witness and recall

witness and recall

```
val witness : #rel:preorder state
  → p:stable_p rel
  → PST rel unit (fun s0 → p s0)
    (fun s0 _ s1 → s0 = s1 ∧ ■ p)
```

witness and recall

```
val witness : #rel:preorder state
  → p:stable_p rel
  → PST rel unit (fun s0 → p s0)
    (fun s0 _ s1 → s0 = s1 ∧ □ p)

val recall : #rel:preorder state
  → p:stable_p rel
  → PST rel unit (fun _ → □ p)
    (fun s0 _ s1 → s0 = s1 ∧ p s1)
```

Examples

Examples

Examples

- Recalling that **allocated references** remain allocated
 - using `FStar.Heap.heap`
(need a source of freshness for alloc)
 - ★ using our own heap type
(source of freshness built into the heap)

Examples

- Recalling that **allocated references** remain allocated
 - using `FStar.Heap.heap`
(need a source of freshness for alloc)
 - ★ using our own heap type
(source of freshness built into the heap)
- **Immutable references** and other preorders

Examples

- Recalling that **allocated references** remain allocated
 - using `FStar.Heap.heap`
(need a source of freshness for alloc)
 - ★ using our own heap type
(source of freshness built into the heap)
- **Immutable references** and other preorders
- **Monotonic references**

Examples

- Recalling that **allocated references** remain allocated
 - using `FStar.Heap.heap`
(need a source of freshness for alloc)
 - ★ using our own heap type
(source of freshness built into the heap)
 - **Immutable references** and other preorders
 - **Monotonic references**
 - ★ Temporarily ignoring the constraint on `put` via snapshots

Our heap and ref types

Our heap and ref types

The **heap** and **ref** types

```
let heap = h:(nat * (nat → option (a:Type0 & a)))  
      { ... }
```

```
let ref a = nat
```

Our heap and ref types

The heap and ref types

freshness counter

```
let heap = h:(nat * (nat → option (a:Type0 & a)))  
{ ... }
```

```
let ref a = nat
```

Our heap and ref types

The heap and ref types

freshness counter

```
let heap = h:(nat * (nat → option (a:Type0 & a)))  
{ ... }
```

```
let ref a = nat
```

We can define sel and upd and gen_fresh operations

Our heap and ref types

The heap and ref types

```
let heap = h:(nat * (nat → option (a:Type0 & a)))  
{ ... }
```

```
let ref a = nat
```

freshness counter

both ops. have ($r \in h$)
refinements on references

We can define sel and upd and gen_fresh operations

Our heap and ref types

The heap and ref types

```
let heap = h:(nat * (nat → option (a:Type0 & a)))  
{ ... }
```

```
let ref a = nat
```

freshness counter

both ops. have ($r \in h$)
refinements on references

We can define sel and upd and gen_fresh operations

and prove expected properties, e.g.:

$$r \neq r' \Rightarrow \text{sel}(\text{upd } h \ r \ x) \ r' = \text{sel } h \ r'$$

Our heap and ref types

The heap and ref types

```
let heap = h:(nat * (nat → option (a:Type0 & a)))  
{ ... }
```

```
let ref a = nat
```

freshness counter

both ops. have ($r \in h$)
refinements on references

Goal: use this heap as drop-in replacement for F*'s heap

(but in F*'s heap, sel and upd don't have ($r \in h$) refinements)

- change the type of refs. to (let ref a = nat * a)
- make use of the presence LEM in WPs for checking ($r \in h$)

Allocated references example

Allocated references example

The type of **refs**. and **preorder** for recalling allocation

```
let ref a      = r:(Heap.ref a){ ▀ (fun h → r ∈ h) }
```

```
let rel h0 h1 = forall a r . r ∈ h0 ⇒ r ∈ h1
```

```
AllocST a pre post = PST rel a pre post
```

Allocated references example

The type of `refs.` and `preorder` for recalling allocation

```
let ref a      = r:(Heap.ref a){ ▀ (fun h → r ∈ h) }
```

```
let rel h0 h1 = forall a r . r ∈ h0 ⇒ r ∈ h1
```

```
AllocST a pre post = PST rel a pre post
```

`AllocST` operations crucially use `witness` and `recall`, e.g.,

```
let read #a (r:ref a) =  
  let h = get () in  
    recall (fun h → r ∈ h) ;  
  sel h r
```

Snapshots

Snapshots

We first define **snapshot-capable state** as

```
let s_state state = state * option state
```

Snapshots

We first define **snapshot-capable state** as

```
let s_state state = state * option state
```

The **snapshot-capable preorder** is indexed by rel on state

```
let s_rel (rel:preorder state) s0 s1 =  
  match (snd s0) (snd s1) with
```

Snapshots

We first define **snapshot-capable state** as

```
let s_state state = state * option state
```

The **snapshot-capable preorder** is indexed by `rel` on state

```
let s_rel (rel:preorder state) s0 s1 =  
  match (snd s0) (snd s1) with  
  | None      None      => rel (fst s0) (fst s1)
```

Snapshots

We first define **snapshot-capable state** as

```
let s_state state = state * option state
```

The **snapshot-capable preorder** is indexed by `rel` on state

```
let s_rel (rel:preorder state) s0 s1 =  
  match (snd s0) (snd s1) with  
  | None      None      => rel (fst s0) (fst s1)  
  | None      (Some s)  => rel (fst s0) s
```

Snapshots

We first define **snapshot-capable state** as

```
let s_state state = state * option state
```

The **snapshot-capable preorder** is indexed by rel on state

```
let s_rel (rel:preorder state) s0 s1 =  
  match (snd s0) (snd s1) with  
  | None      None      => rel (fst s0) (fst s1)  
  | None      (Some s)   => rel (fst s0) s  
  | (Some s)  None      => rel s (fst s1)
```

Snapshots

We first define **snapshot-capable state** as

```
let s_state state = state * option state
```

The **snapshot-capable preorder** is indexed by rel on state

```
let s_rel (rel:preorder state) s0 s1 =  
  match (snd s0) (snd s1) with  
  | None None ⇒ rel (fst s0) (fst s1)  
  | None (Some s) ⇒ rel (fst s0) s  
  | (Some s0) None ⇒ rel s (fst s1)  
  | (Some s0) (Some s1) ⇒ rel s0 s1
```

read and write

read and write

```
val read : #rel:preorder state  
  → SST rel state  
  (fun s0 → True)  
  (fun s0 s s1 → fst s0 = s ∧ s = fst s1 ∧  
   snd s0 = snd s1)  
let write #rel x = ...
```

read and write

```
val read : #rel:preorder state
  → SST rel state
    (fun s₀ → True)
    (fun s₀ s s₁ → fst s₀ = s ∧ s = fst s₁ ∧
      snd s₀ = snd s₁)
let write #rel x = ...
```

```
val write : #rel:preorder state
  → x:state
  → SST rel unit
    (fun s₀ → s_rel rel s₀ (x, snd s₀))
    (fun s₀ _ s₁ → s₁ = (x, snd s₀))
let write #rel x = ...
```

witness and recall

witness and recall

```
val witness : #rel:preorder state
  → p:stable_p rel
  → SST rel unit (fun s0 → p (fst s0) ∧
                     snd s0 = None)
                     (fun s0 _ s1 → s0 = s1 ∧ ■ p)
let witness #rel p = ...
```

witness and recall

```
val witness : #rel:preorder state
  → p:stable_p rel
  → SST rel unit (fun s0 → p (fst s0) ∧
                     snd s0 = None)
                     (fun s0 _ s1 → s0 = s1 ∧ ■ p)

let witness #rel p = ...

val recall : #rel:preorder state
  → p:stable_p rel
  → SST rel unit (fun s0 → ■ p ∧ snd s0 = None)
                     (fun s0 _ s1 → s0 = s1 ∧
                     p (fst s1))

let recall #rel p = ...
```

snap and ok

snap and ok

```
val snap : #rel:preorder state
  → SST rel unit
  (fun s0 → snd s0 = None)
  (fun s0 _ s1 → fst s0 = fst s1 ∧
    snd s1 = Some (fst s0))
let snap #rel = ...
```

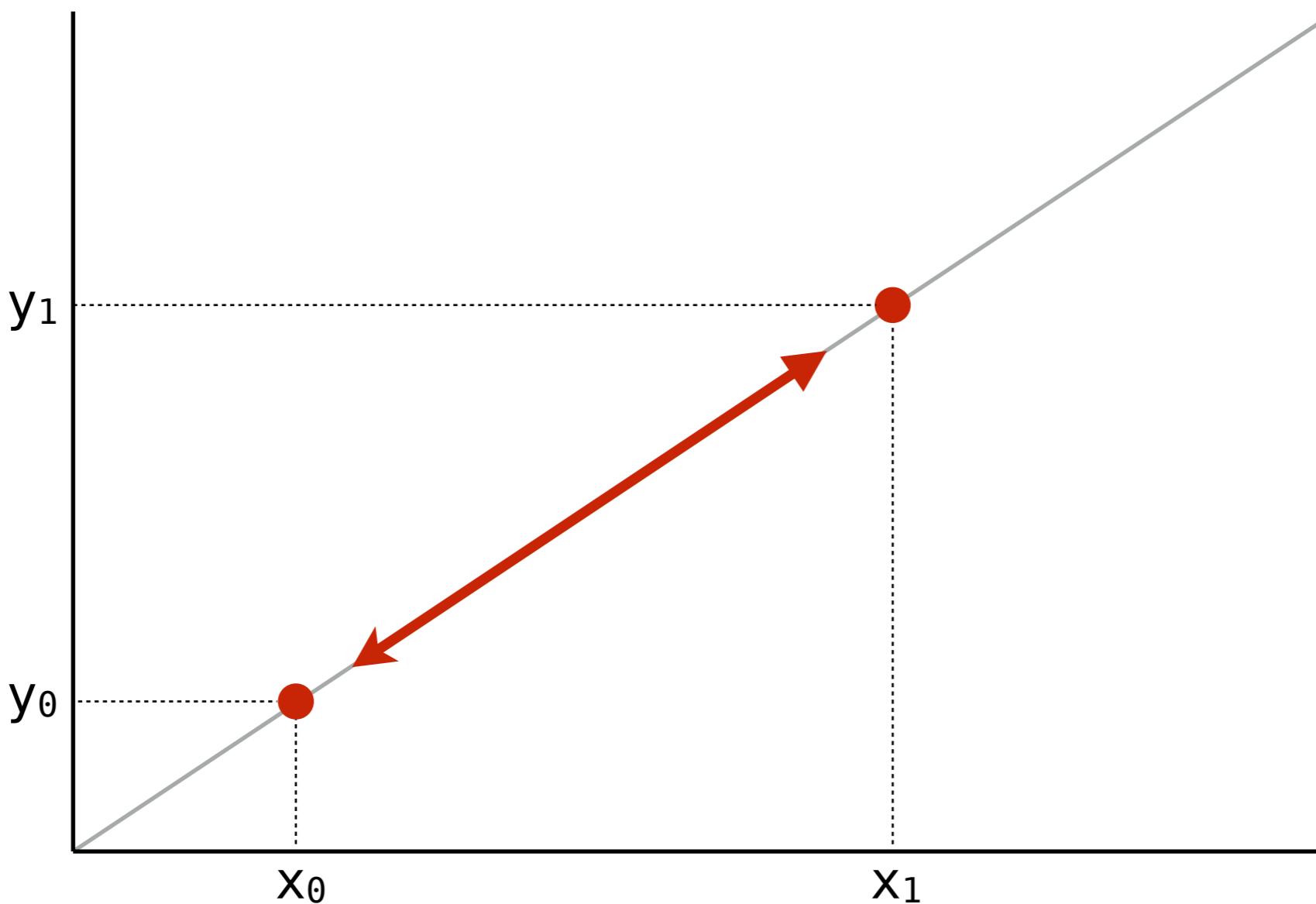
snap and ok

```
val snap : #rel:preorder state
  → SST rel unit
    (fun s0 → snd s0 = None)
    (fun s0 _ s1 → fst s0 = fst s1 ∧
      snd s1 = Some (fst s0))
let snap #rel = ...

val ok : #rel:preorder state
  → SST rel unit
    (fun s0 → exists s . snd s0 = Some s ∧
      rel s (fst s0))
    (fun s0 _ s1 → fst s0 = fst s1 ∧
      snd s1 = None)
let ok #rel = ...
```

Example use of SST

Example use of SST



- Implementing a 2D point using two locations
- E.g., want to enforce that ● can only move along some line

A glimpse of the formal metatheory

PSTATE formally

PSTATE formally

We work with a **small calculus** based on EMF* from DM4F

```
t, wp, ::= state | rel | x:t1 → Tot t2 | x:t1 → PSTATE t2 wp | ...  
e, φ     | x | fun x:t → e | e1 e2 | (e1,e2) | fst e | ...  
          | return e | bind e1 x:t.e2  
          | get e | put e | witness e | recall e
```

PSTATE formally

We work with a **small calculus** based on EMF* from DM4F

```
t, wp, ::= state | rel | x:t1 → Tot t2 | x:t1 → PSTATE t2 wp | ...
e, φ    | x | fun x:t → e | e1 e2 | (e1,e2) | fst e | ...
          | return e | bind e1 x:t.e2
          | get e | put e | witness e | recall e
```

Typing judgements have the form

$$G \vdash e : \mathbf{Tot} \ t$$
$$G \vdash e : \mathbf{PSTATE} \ t \ wp$$

PSTATE formally

We work with a **small calculus** based on EMF* from DM4F

```
t, wp, ::= state | rel | x:t1 → Tot t2 | x:t1 → PSTATE t2 wp | ...
e, φ    | x | fun x:t → e | e1 e2 | (e1,e2) | fst e | ...
          | return e | bind e1 x:t.e2
          | get e | put e | witness e | recall e
```

Typing judgements have the form

$$G \vdash e : \mathbf{Tot} \ t$$
$$G \vdash e : \mathbf{PSTATE} \ t \ wp$$

There is also a judgement for **logical reasoning** in WPs

$$G \mid \Phi \models \varphi$$

PSTATE formally

We work with a **small calculus** based on EMF* from DM4F

```
t, wp, ::= state | rel | x:t1 → Tot t2 | x:t1 → PSTATE t2 wp | ...
e, φ    | x | fun x:t → e | e1 e2 | (e1,e2) | fst e | ...
          | return e | bind e1 x:t.e2
          | get e | put e | witness e | recall e
```

Typing judgements have the form

$$G \vdash e : \mathbf{Tot} \ t$$
$$G \vdash e : \mathbf{PSTATE} \ t \ wp$$

There is also a judgement for **logical reasoning** in WPs

$$G \mid \Phi \models \varphi$$

nat. deduction for classical predicate logic

Operational semantics

Operational semantics

Small-step call-by-value **reduction relation**

$$(\Phi, s, e) \longrightarrow (\Phi', s', e')$$

where

- Φ is a finite set of (witnessed) stable predicates
- s is a value of type state
- e is an expression

Operational semantics

Small-step call-by-value **reduction relation**

$$(\Phi, s, e) \longrightarrow (\Phi', s', e')$$

where

- Φ is a finite set of (witnessed) stable predicates
- s is a value of type state
- e is an expression

Examples of **reduction rules**

$$(\Phi, s, \text{put } v) \longrightarrow (\Phi, v, \text{return } ())$$

$$(\Phi, s, \text{witness } v) \longrightarrow (\Phi \cup \{v\}, s, \text{return } ())$$

Progress thm. for PSTATE

Progress thm. for PSTATE

$\forall f t wp .$

$\vdash f : \mathbf{PSTATE} t wp$

\Rightarrow

1. $\exists v . f = \text{return } v$

\vee

2. $\forall \Phi s . \exists \Phi' s' f' . (\Phi, s, f) \longrightarrow (\Phi', s', f')$

Preservation thm. for PSTATE

Preservation thm. for PSTATE

$\forall f t \text{ wp } \Phi s \Phi' s' f' .$

$\vdash f : \mathbf{PSTATE} t \text{ wp} \wedge (\Phi, s) \text{ wf} \wedge$
 $(\Phi, s, f) \longrightarrow (\Phi', s', f')$

\Rightarrow

$\forall \text{ post} . \blacksquare \Phi \models \text{wp post s}$

\Rightarrow

$\Phi \subseteq \Phi' \wedge (\Phi', s') \text{ wf} \wedge$

$\blacksquare \Phi \models \text{rel s s'} \wedge$

$\exists \text{ wp}' . \vdash f' : \mathbf{PSTATE} t \text{ wp}' \wedge$

$\blacksquare \Phi' \models \text{wp}' \text{ post s'}$

Preservation thm. for PSTATE

$\forall f t \text{ wp } \Phi s \Phi' s' f' .$

$\vdash f : \mathbf{PSTATE} t \text{ wp} \wedge (\Phi, s) \text{ wf} \wedge$
 $(\Phi, s, f) \longrightarrow (\Phi', s', f')$

\Rightarrow

$\forall \text{ post} . \blacksquare \Phi \vDash \text{wp post s}$

$\blacksquare \Phi = \blacksquare (\mathbf{fun} x \rightarrow \varphi_1 x \wedge \dots \wedge \varphi_n x)$

\Rightarrow

$\Phi \subseteq \Phi' \wedge (\Phi', s') \text{ wf} \wedge$

$\blacksquare \Phi \vDash \text{rel s s'} \wedge$

$\exists \text{ wp}' . \vdash f' : \mathbf{PSTATE} t \text{ wp}' \wedge$

$\blacksquare \Phi' \vDash \text{wp}' \text{ post s'}$

The proof requires an **inversion property** (in empty context)

$$\frac{\models \blacksquare \varphi \Rightarrow \blacksquare \psi}{\models \text{forall } x . \varphi x \Rightarrow \psi x} (\blacksquare\text{-inv})$$

We justify (\blacksquare -inv) via a **cut-elimination** in sequent calculus

- where we have a single derivation rule for \blacksquare

$$G \vdash \Phi_1$$

$$G \vdash \Phi_2$$

$$G, x \mid \Phi_1, \varphi_1 x, \dots, \varphi_n x \vdash \psi_1 x, \dots, \psi_m x, \Phi_2$$

$$G \mid \Phi_1, \blacksquare \varphi_1, \dots, \blacksquare \varphi_n \vdash \blacksquare \psi_1, \dots, \blacksquare \psi_m, \Phi_2$$

Future work: model theory of \blacksquare

Conclusion

Conclusion

In this talk we covered:

- preorder-respecting state monads in F^*
- their formal metatheory
- some of the examples of these monads

Conclusion

In this talk we covered:

- preorder-respecting state monads in F^*
- their formal metatheory
- some of the examples of these monads

Ongoing and future work:

- change F^* 's libraries to use **PSTATE**
- **PSTATE** in DM4F setting? (how to reify it safely?)
- model theory of ■
- categorical semantics of Dijkstra monads (rel. monads.)

Dijkstra monad T in CT?

Dijkstra monad T in CT?

Type **formation rule** for a Dijkstra monad

$$\frac{\Gamma \vdash t : \text{Type} \quad \Gamma \vdash wp : WP A}{\Gamma \vdash T t wp : \text{Type}}$$

The **unit** of a Dijkstra monad

$$\frac{\Gamma \vdash e : t}{\Gamma \vdash \text{return } e : T t (WP.\text{return } e)}$$

The **Kleisli extension** of a Dijkstra monad

$$\frac{\Gamma \vdash M : T t_1 wp_1 \quad \Gamma \vdash t_2 \quad \Gamma, x:t_1 \vdash N : T t_2 wp_2}{\Gamma \vdash \text{bind } e_1 x.e_2 : T t_2 (WP.\text{bind } wp_1 x.wp_2)}$$

Dijkstra monad T in CT?

We'll work in the setting of **closed comprehension cats.**, i.e.,

- \mathcal{B} models **contexts**
- \mathcal{V} models **types in context**
- **terms in context Γ** are modeled as global elements in $\mathcal{V}_{\llbracket \Gamma \rrbracket}$



- \mathcal{P} is fully faithful

Dijkstra monad T in CT?

For modeling Dijkstra monads, we assume:

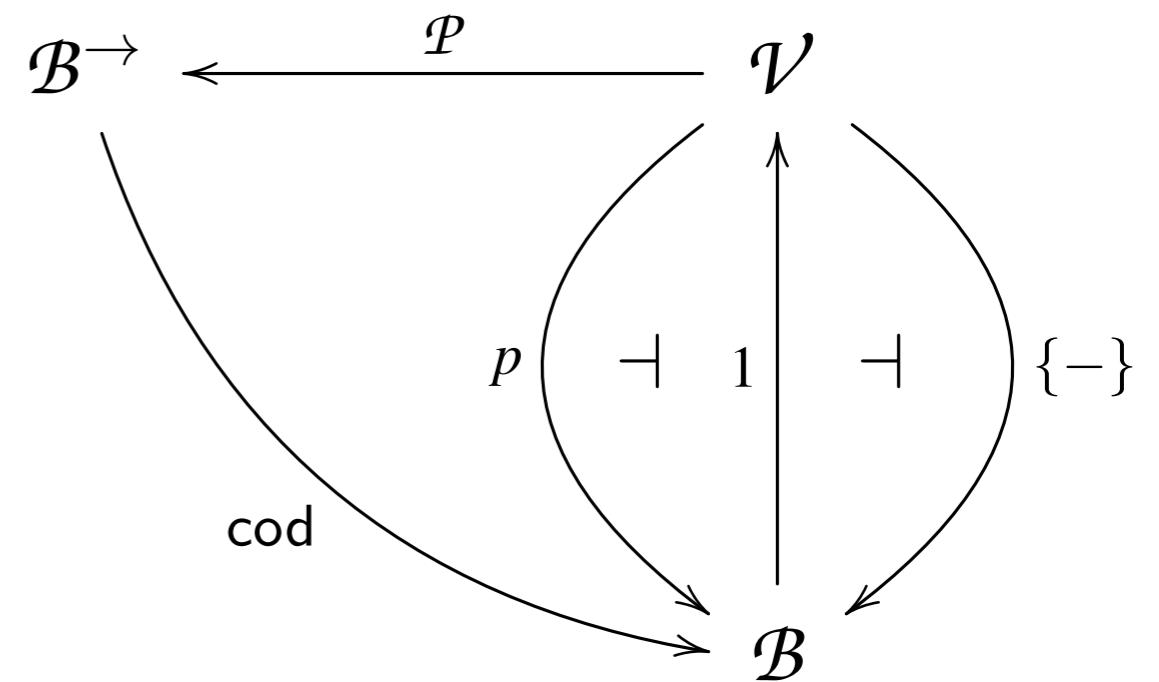
- a **split fibred monad** $WP : \mathcal{P} \rightarrow \mathcal{P}$

- a **functor** $T : \mathcal{V} \rightarrow \mathcal{V}$

s.t. $p \circ T = \{ - \} \circ WP$

T preserves Cartesian morphisms on-the-nose

$$\frac{\Gamma \vdash e : t}{\Gamma \vdash \text{return } e : T t \ (WP.\text{return } e)}$$



Can we model the **unit** and **Kleisli ext.** for T in known terms?

Dijkstra monad T in CT?

For modeling Dijkstra monads, we assume:

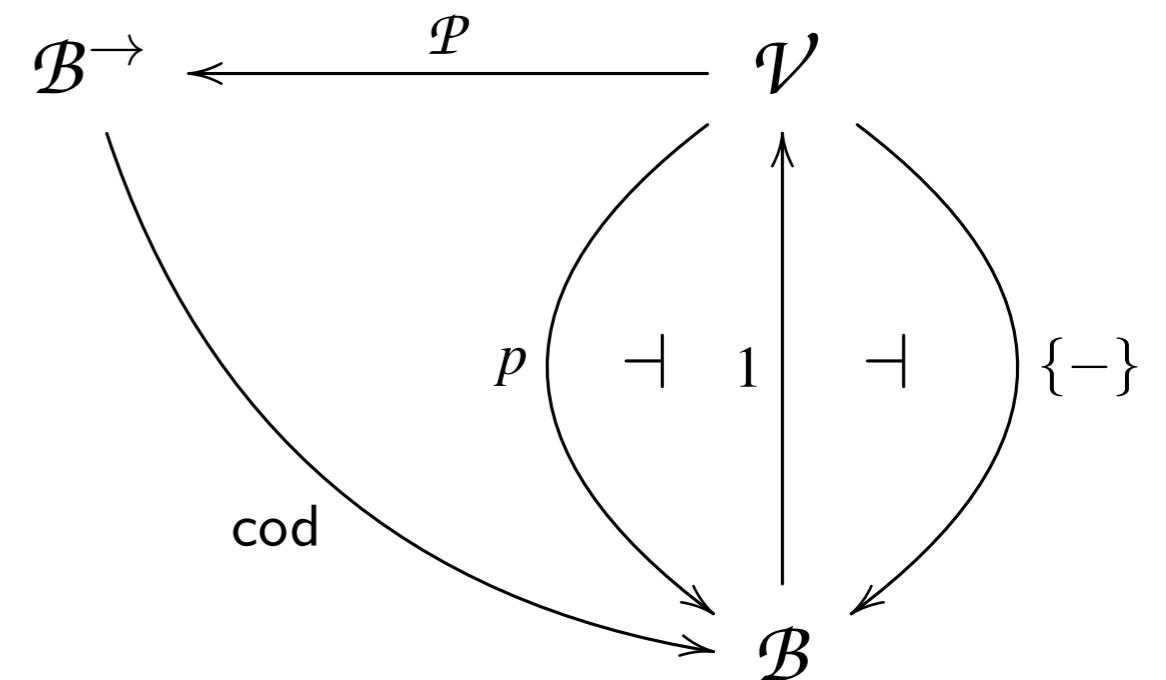
- a **split fibred monad** $WP : \mathcal{P} \rightarrow \mathcal{P}$
- a **functor** $T : \mathcal{V} \rightarrow \mathcal{V}$

s.t. $p \circ T = \{ - \} \circ WP$

dependency on WP

T preserves Cartesian morphisms on-the-nose

$$\frac{\Gamma \vdash e : t}{\Gamma \vdash \text{return } e : T t \ (WP.\text{return } e)}$$



Can we model the **unit** and **Kleisli ext.** for T in known terms?

Dijkstra monad T in CT?

For modeling Dijkstra monads, we assume:

- a **split fibred monad** $WP : \mathcal{P} \rightarrow \mathcal{P}$

- a **functor** $T : \mathcal{V} \rightarrow \mathcal{V}$

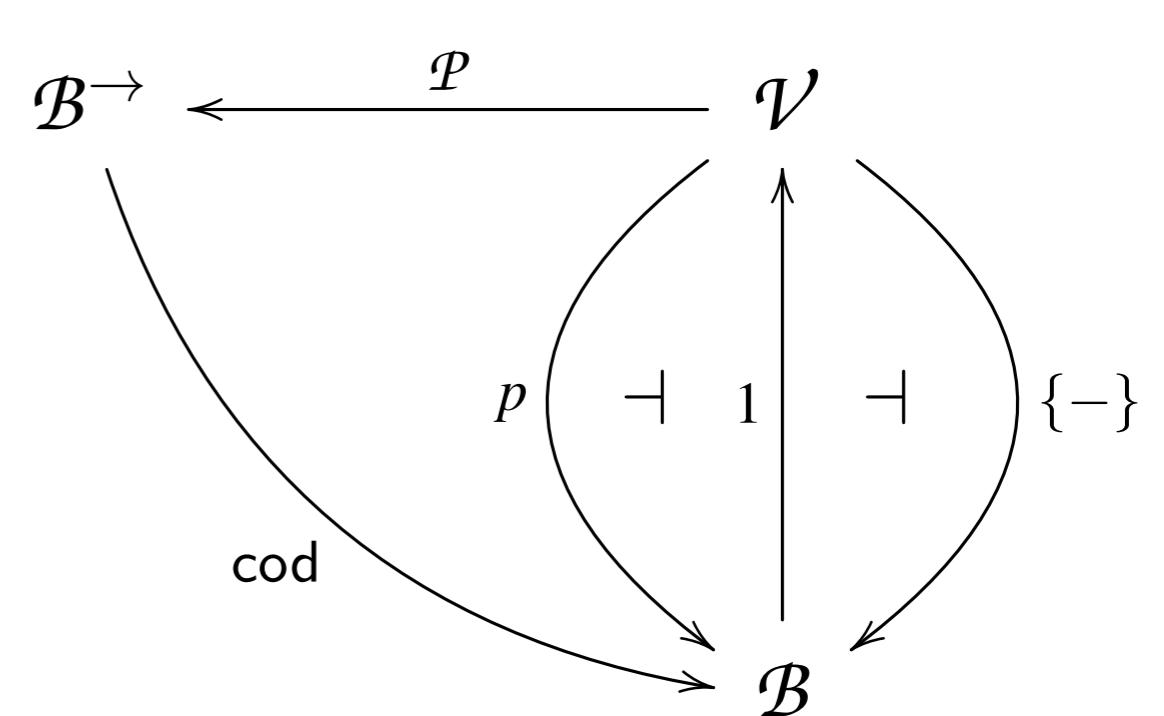
$$\text{s.t. } p \circ T = \{ - \} \circ WP$$

dependency on WP

T preserves Cartesian morphisms on-the-nose

closed under substitution

$$\frac{\Gamma \vdash e : t}{\Gamma \vdash \text{return } e : T t \ (WP.\text{return } e)}$$



Can we model the **unit** and **Kleisli ext.** for T in known terms?

Dijkstra monad T in \mathcal{B}^\rightarrow

Dijkstra monad T in \mathcal{B}^\rightarrow

The **unit** of a Dijkstra monad

$$\begin{array}{ccc} \{A\} & \xrightarrow{\quad} & \{T(A)\} \\ \eta_A : \text{id}_{\{A\}} \downarrow & & \downarrow \pi_{T(A)} \\ \{A\} & \xrightarrow{\{WP\eta_A\}} & \{WP(A)\} \end{array}$$

Dijkstra monad T in \mathcal{B}^\rightarrow

The **unit** of a Dijkstra monad

$$\begin{array}{ccc}
 \{A\} & \xrightarrow{\quad} & \{T(A)\} \\
 \eta_A : \text{id}_{\{A\}} \downarrow & & \downarrow \pi_{T(A)} \\
 \{A\} & \xrightarrow{\{WP\eta_A\}} & \{WP(A)\}
 \end{array}$$

The **Kleisli extension** of a Dijkstra monad

$$\begin{array}{ccc}
 \{A\} & \xrightarrow{f} & \{T(B)\} & \{T(A)\} & \xrightarrow{\quad} & \{T(B)\} \\
 \text{id}_{\{A\}} \downarrow & & \downarrow \pi_{T(B)} & \text{id}_{\{T(A)\}} \downarrow & & \downarrow \pi_{T(B)} \\
 \{A\} & \xrightarrow{\{g\}} & \{WP(B)\} & \{WP(A)\} & \xrightarrow{\{WP.(-)^*(g)\}} & \{WP(B)\}
 \end{array}$$

Dijkstra monad T in \mathcal{B}^\rightarrow

The **unit** of a Dijkstra monad

$$\{A\} \xrightarrow{\quad} \{T(A)\}$$

This data and the associated laws are

precisely those for a **relative monad**

$$\widehat{T} : \mathcal{V} \longrightarrow \overline{\text{im}}(\{-\}) \downarrow \{-\}$$

$$\widehat{T}(A) \stackrel{\text{def}}{=} \{T(A)\} \xrightarrow{\pi_{T(A)}} \{WP(A)\}$$

on

$$J : \mathcal{V} \longrightarrow \overline{\text{im}}(\{-\}) \downarrow \{-\}$$

$$J(A) \stackrel{\text{def}}{=} \{A\} \xrightarrow{\text{id}_{\{A\}}} \{A\}$$

onad

$$\{T(A)\} \xrightarrow{\quad} \{T(B)\}$$

$$\pi_{T(A)}$$

$$\pi_{T(B)}$$

$$\{WP(A)\} \xrightarrow{\{WP.(-)^*(g)\}} \{WP(B)\}$$