
Presenting MetaCoq: A Safe Tactic

Language for Coq

Beta Ziliani

FAMAF, UNC and CONICET

In colaboration with
Yann Régis-Gianas and Jan-Oliver Kaiser

Contribs by Batrice Carré, Jacques-Pascal Deplaix,
and Thomas Refis.

January 13, 2017

Presenting MetaCoq

Introduction

False quotes from Coq’s power users

A tactic must succeed no matter what
— Adam Chlipala

A tactic must fail reliably
— Georges Gonthier

Presenting MetaCoq

Introduction

False quotes from Coq’s power users

A tactic must succeed no matter what
— Adam Chlipala

A tactic must fail reliably
— Georges Gonthier

Presenting MetaCoq

Introduction

A tactic must fail reliably

1. During the definition.
I A typechecker should catch as many errors as

possible.
I But without getting on our way.

2. During the execution.
I Proper error handling.
I Sensible (and formal) semantics.

Presenting MetaCoq

Introduction

Today: no fun writing tactics in Ltac

Today: The Ltac language (example)

Definition x in zyx : ∀ x y z :nat, x ∈ [z ; y ; x].
Proof.

intros.
apply in cons.
apply in cons.
apply in eq.

Qed.

OK for a beginner. . .

Presenting MetaCoq

Introduction

Today: no fun writing tactics in Ltac

Today: The Ltac language (example)

Definition x in zyx : ∀ x y z :nat, x ∈ [z ; y ; x].
Proof.

intros.
apply in cons.
apply in cons.
apply in eq.

Qed.

OK for a beginner. . .

Presenting MetaCoq

Introduction

Today: no fun writing tactics in Ltac

Today: The Ltac language (automated example)

Ltac solve in := repeat (apply in eq || apply in cons).

Definition x in zyx : ∀ x y z :nat, x ∈ [z ; y ; x].
Proof.

intros; solve in.
Qed.

Better, but can we abstract solve in for different domains?

Presenting MetaCoq

Introduction

Today: no fun writing tactics in Ltac

Today: The Ltac language (automated example)

Ltac solve in := repeat (apply in eq || apply in cons).

Definition x in zyx : ∀ x y z :nat, x ∈ [z ; y ; x].
Proof.

intros; solve in.
Qed.

Better, but can we abstract solve in for different domains?

Presenting MetaCoq

Introduction

Today: no fun writing tactics in Ltac

Today: The Ltac language (automated example 2)

Ltac apply one l :=
list fold left

ltac:

(λ a b ⇒ (b || apply (elem a))) l fail.

Ltac solve in := repeat (apply one [Dyn in eq; Dyn in cons]).

Definition x in zyx : ∀ x y z : nat, x ∈ [z ; y ; x].
Proof.

intros; solve in.
Qed.

Presenting MetaCoq

Introduction

Today: no fun writing tactics in Ltac

Today: The Ltac language (automated example 2)

Ltac apply one l :=
list fold left ltac:(λ a b ⇒ (b || apply (elem a))) l fail.

Ltac solve in := repeat (apply one [Dyn in eq; Dyn in cons]).

Definition x in zyx : ∀ x y z : nat, x ∈ [z ; y ; x].
Proof.

intros; solve in.
Qed.

Presenting MetaCoq

Introduction

Today: no fun writing tactics in Ltac

Today: The Ltac language (automated example 2)

Ltac apply one l :=
list fold left ltac:(λ a b ⇒ (b || apply (elem a))) fail l .

Ltac solve in := repeat (apply one [Dyn in eq; Dyn in cons]).

Definition x in zyx : ∀ x y z : nat, x ∈ [z ; y ; x].
Proof.

intros; solve in.
Qed.

Presenting MetaCoq

Introduction

Today: no fun writing tactics in Ltac

Today: The Ltac language (automated example 2)

Ltac apply one l :=
list fold left ltac:(λ a b ⇒ (b || apply (elem a))) .

Ltac solve in := repeat (apply one [Dyn in eq; Dyn in cons]).

Definition x in zyx : ∀ x y z : nat, x ∈ [z ; y ; x].
Proof.

intros; solve in.
Qed.

Presenting MetaCoq

Introduction

Today: no fun writing tactics in Ltac

Summary: Ltac

1. During the definition.
I The typechecker does not catch many errors.

2. During the execution.
I Improper error handling.
I Insensible semantics.

Presenting MetaCoq

Presenting Mtac

The Mtac language

I Gallina is a pure dependently-typed language.

I Can we add typed tactic programming to Gallina?

I Use a monad!

I Provide meta-programming primitives a Gallina type.
I Provide an interpreter to execute them.

Presenting MetaCoq

Presenting Mtac

The Mtac language

I Gallina is a pure dependently-typed language.

I Can we add typed tactic programming to Gallina?

I Use a monad!

I Provide meta-programming primitives a Gallina type.
I Provide an interpreter to execute them.

Presenting MetaCoq

Presenting Mtac

The Mtac language

I Gallina is a pure dependently-typed language.

I Can we add typed tactic programming to Gallina?

I Use a monad!

I Provide meta-programming primitives a Gallina type.
I Provide an interpreter to execute them.

Presenting MetaCoq

Presenting Mtac

The Mtac language

I Gallina is a pure dependently-typed language.

I Can we add typed tactic programming to Gallina?

I Use a monad!
I Provide meta-programming primitives a Gallina type.

I Provide an interpreter to execute them.

Presenting MetaCoq

Presenting Mtac

The Mtac language

I Gallina is a pure dependently-typed language.

I Can we add typed tactic programming to Gallina?

I Use a monad!
I Provide meta-programming primitives a Gallina type.
I Provide an interpreter to execute them.

Presenting MetaCoq

Presenting Mtac

The Mtac language

Definition solve in {A} (x :A) : ∀ l , M (x ∈ l) :=
mfix1 f (l : list A) : M (x ∈ l) :=

mmatch l with
| [? l ’] x :: l ’ ⇒ ret (in eq)
| [? y l ’] y :: l ’ ⇒ r ← f l ’;

ret (in cons r)
| ⇒ failwith ”Not found”
end.

Lemma x in zyx : ∀ x y z :nat, x ∈ [z ; y ; x].
Proof.

intros; mrun (solve in).
Qed.

Presenting MetaCoq

Presenting Mtac

The Mtac language

Definition solve in {A} (x :A) : ∀ l , M (x ∈ l) :=
mfix1 f (l : list A) : M (x ∈ l) :=

mmatch l with
| [? l ’] x :: l ’ ⇒ ret (in eq)
| [? y l ’] y :: l ’ ⇒ r ← f l ’;

ret (in cons r)
| ⇒ failwith ”Not found”
end.

Lemma x in zyx : ∀ x y z :nat, x ∈ [z ; y ; x].
Proof.

intros; mrun (solve in).
Qed.

Presenting MetaCoq

Presenting Mtac

The Mtac language

Definition solve in {A} (x :A) : ∀ l , M (x ∈ l) :=
mfix1 f (l : list A) : M (x ∈ l) :=

mmatch l with
| [? l ’] x :: l ’ ⇒ ret (in eq)
| [? y l ’] y :: l ’ ⇒ r ← f l ’;

ret (in cons r)
| ⇒ failwith ”Not found”
end.

Lemma x in zyx : ∀ x y z :nat, x ∈ [z ; y ; x].
Proof.

intros; mrun (solve in).
Qed.

Presenting MetaCoq

Presenting Mtac

The Mtac language

Definition solve in {A} (x :A) : ∀ l , M (x ∈ l) :=
mfix1 f (l : list A) : M (x ∈ l) :=

mmatch l with
| [? l ’] x :: l ’ ⇒ ret (in eq)
| [? y l ’] y :: l ’ ⇒ r ← f l ’;

ret (in cons r)
| ⇒ failwith ”Not found”
end.

Lemma x in zyx : ∀ x y z :nat, x ∈ [z ; y ; x].
Proof.

intros; mrun (solve in).
Qed.

Presenting MetaCoq

Presenting Mtac

The Mtac language

Definition solve in {A} (x :A) : ∀ l , M (x ∈ l) :=
mfix1 f (l : list A) : M (x ∈ l) :=

mmatch l with
| [? l ’] x :: l ’ ⇒ ret (in eq)
| [? y l ’] y :: l ’ ⇒ r ← f l ’;

ret (in cons r)
| ⇒ failwith ”Not found”
end.

Lemma x in zyx : ∀ x y z :nat, x ∈ [z ; y ; x].
Proof.

intros; mrun (solve in).
Qed.

Presenting MetaCoq

Presenting Mtac

Problem with the Mtac language

Compare

Ltac solve in := repeat (apply in eq || apply in cons).

with

Definition solve in {A} (x :A) : ∀ l , M (x ∈ l) :=
mfix1 f (l : list A) : M (x ∈ l) :=

mmatch l with
| [? l ’] x :: l ’ ⇒ ret (in eq)
| [? y l ’] y :: l ’ ⇒ r ← f l ’;

ret (in cons r)
| ⇒ failwith ”Not found”
end.

Presenting MetaCoq

Presenting Mtac

Problems with Mtac

Adding tactics to Mtac

I Add a type for tactics.

goal→ M (list goal)

(But what is a goal?)

I Write basic tactics (intros, assumption, . . .) in Mtac.

I Insufficient primitives!
I Inconvenient semantics!

Presenting MetaCoq

Presenting Mtac

Problems with Mtac

Adding tactics to Mtac: IMPOSSIBLE!

I Add a type for tactics.

goal→ M (list goal)

(But what is a goal?)

I Write basic tactics (intros, assumption, . . .) in Mtac.
I Insufficient primitives!
I Inconvenient semantics!

Presenting MetaCoq

Presenting Mtac

Mtac2: improving Mtac

Mtac2: improving Mtac

I Several new primitives.
I hypotheses, abs prod, abs let, abs fix, unify, . . .

I Revised semantics.
I Backtracking of meta-context.

I mmatch in Gallina.

Presenting MetaCoq

MetaCoq at last

MetaCoq

I Builds on top of Mtac2.

I Adds a type for tactics and goals.

I Adds a proof environment MProof.

I Several basic tactics:
I intros, apply, assumption, reflexivity, generalize, clear,

constructor, pose, assert, simpl, cbv, fix, repeat, . . .

I Several tactic combinators:
I &〉, |1〉, |l〉
I Insert your combinator here.

Presenting MetaCoq

MetaCoq at last

MetaCoq (example)

Definition apply one l : tactic :=
fold left (λ a b⇒a or (apply (elem b))) l (fail CantApply).

Definition solve in := repeat (apply one [Dyn in eq; Dyn in cons]).

Goal ∀ x y z : nat, x ∈ [z ; y ; x].
MProof.

intros &〉 solve in.
Qed.

Tactics that fail reliably with MetaCoq

Presenting MetaCoq

MetaCoq at last

MetaCoq (example)

Definition apply one l : tactic :=
fold left (λ a b⇒a or (apply (elem b))) l (fail CantApply).

Definition solve in := repeat (apply one [Dyn in eq; Dyn in cons]).

Goal ∀ x y z : nat, x ∈ [z ; y ; x].
MProof.

intros &〉 solve in.
Qed.

Tactics that fail reliably with MetaCoq

Presenting MetaCoq

MetaCoq at last

MetaCoq (example)

Definition apply one l : tactic :=
fold left (λ a b⇒a or (apply (elem b))) l (fail CantApply).

Definition solve in := repeat (apply one [Dyn in eq; Dyn in cons]).

Goal ∀ x y z : nat, x ∈ [z ; y ; x].
MProof.

intros &〉 solve in.
Qed.

Tactics that fail reliably with MetaCoq

Presenting MetaCoq

MetaCoq at last

MetaCoq (example)

Definition apply one l : tactic :=
fold left (λ a b⇒a or (apply (elem b))) l (fail CantApply).

Definition solve in := repeat (apply one [Dyn in eq; Dyn in cons]).

Goal ∀ x y z : nat, x ∈ [z ; y ; x].
MProof.

intros &〉 solve in.
Qed.

Tactics that fail reliably with MetaCoq

Presenting MetaCoq

MetaCoq at last

MetaCoq (example)

Definition apply one l : tactic :=
fold left (λ a b⇒a or (apply (elem b))) l (fail CantApply).

Definition solve in := repeat (apply one [Dyn in eq; Dyn in cons]).

Goal ∀ x y z : nat, x ∈ [z ; y ; x].
MProof.

intros &〉 solve in.
Qed.

Tactics that fail reliably with MetaCoq

Presenting MetaCoq

MetaCoq at last

MetaCoq (example)

Definition apply one l : tactic :=
fold left (λ a b⇒a or (apply (elem b))) l (fail CantApply).

Definition solve in := repeat (apply one [Dyn in eq; Dyn in cons]).

Goal ∀ x y z : nat, x ∈ [z ; y ; x].
MProof.

intros &〉 solve in.
Qed.

Tactics that fail reliably with MetaCoq

Presenting MetaCoq

MetaCoq at last

MetaCoq (example)

Definition apply one l : tactic :=
fold left (λ a b⇒a or (apply (elem b))) l (fail CantApply).

Definition solve in := repeat (apply one [Dyn in eq; Dyn in cons]).

Goal ∀ x y z : nat, x ∈ [z ; y ; x].
MProof.

intros &〉 solve in.
Qed.

Tactics that fail reliably with MetaCoq

Presenting MetaCoq

MetaCoq at last

Bonus track: Ever happened to you. . .

. . . that you couldn’t write the proof you like?

Presenting MetaCoq

MetaCoq at last

An example using Ssreflect

Definition add0 : ∀ n, n + 0 = n.
Proof.

elim; first reflexivity.
move⇒ n /= →; reflexivity.

Qed.

Presenting MetaCoq

MetaCoq at last

An example using Ssreflect

Definition add0 : ∀ n, n + 0 = n.
Proof.

elim; first reflexivity.
move⇒ n /= →; reflexivity.

Qed.

Presenting MetaCoq

MetaCoq at last

An example using Ssreflect

Definition add0 : ∀ n, n + 0 = n.
Proof.

elim; first reflexivity.
move⇒ n /= →; reflexivity.

Qed.

Presenting MetaCoq

MetaCoq at last

In MetaCoq

Definition add0 : ∀ n, n + 0 = n.
MProof.

elim &〉 case 0 do reflexivity.
intros &〉 simpl. select (=) rrewrite &〉 reflexivity.

Qed.

More understandable and robust

proofs with MetaCoq

Presenting MetaCoq

MetaCoq at last

In MetaCoq

Definition add0 : ∀ n, n + 0 = n.
MProof.

elim &〉 case 0 do reflexivity.
intros &〉 simpl. select (=) rrewrite &〉 reflexivity.

Qed.

More understandable and robust

proofs with MetaCoq

Presenting MetaCoq

MetaCoq at last

In MetaCoq

Definition add0 : ∀ n, n + 0 = n.
MProof.

elim &〉 case 0 do reflexivity.
intros &〉 simpl. select (=) rrewrite &〉 reflexivity.

Qed.

More understandable and robust

proofs with MetaCoq

Presenting MetaCoq

MetaCoq at last

In MetaCoq

Definition add0 : ∀ n, n + 0 = n.
MProof.

elim &〉 case 0 do reflexivity.
intros &〉 simpl. select (=) rrewrite &〉 reflexivity.

Qed.

More understandable and robust

proofs with MetaCoq

Presenting MetaCoq

Appendix

Page intentionally left blank

Presenting MetaCoq

Appendix

case in MetaCoq (2)

01 Definition get constrs :=
02 mfix1 fill (T : Type) : M (list dyn) :=
03 mmatch T with
04 | [? A B] A → B ⇒ fill B
05 | ⇒ l ← constrs T ; let (, l ’) := l in ret l ’
06 end.
07
08 Definition index {A} (c: A) :=
09 l ← get constrs A;
10 (mfix2 f (i : nat) (l : list dyn) : M nat :=
11 mmatch l with
12 | [? l ’] (Dyn c :: l ’) ⇒ ret i
13 | [? d ’ l ’] (d ’ :: l ’) ⇒ f (S i) l ’
14 end) 0 l .

Presenting MetaCoq

Appendix

“Type” error in Coq 8.6

In nested Ltac calls to "apply_one_of"

and "list_fold_left", last call

failed.

Error:

Must evaluate to a closed term

offending expression:

l

this is a closure with body

fail

in environment

Presenting MetaCoq

Appendix

Type error in MetaCoq

Toplevel input, characters 85-99:

Error:

In environment

l : ?T

The term "fail exception" has type "tactic" while it is expected to have type

"list dyn".

Presenting MetaCoq

Appendix

Being honest

Current issues with MetaCoq:

I Performance.

I Performance.

I Seriously, performance.

I Some coercions unavoidable.

I Some issues with universes (so far avoidable).

Presenting MetaCoq

Appendix

Being honest

Current issues with MetaCoq:

I Performance.

I Performance.

I Seriously, performance.

I Some coercions unavoidable.

I Some issues with universes (so far avoidable).

Presenting MetaCoq

Appendix

Being honest

Current issues with MetaCoq:

I Performance.

I Performance.

I Seriously, performance.

I Some coercions unavoidable.

I Some issues with universes (so far avoidable).

Presenting MetaCoq

Appendix

Being honest

Current issues with MetaCoq:

I Performance.

I Performance.

I Seriously, performance.

I Some coercions unavoidable.

I Some issues with universes (so far avoidable).

Presenting MetaCoq

Appendix

Being honest

Current issues with MetaCoq:

I Performance.

I Performance.

I Seriously, performance.

I Some coercions unavoidable.

I Some issues with universes (so far avoidable).

	Introduction
	Today: no fun writing tactics in Ltac

	Presenting Mtac
	Problems with Mtac
	Mtac2: improving Mtac

	MetaCoq at last
	Appendix
	Appendix

