Finite Sets in Homotopy Type Theory

Dan Frumin Herman Geuvers Leon Gondelman
Niels van der Weide

Radboud University Nijmegen, The Netherlands

January 9, 2018, CPP

1/22

What Is Finiteness, Constructively?

v

A set A is (Bishop)-finite if there are exactly n € N elements
in it.

A set A is (Kuratowski)-finite if there are at most n € N
elements in it.

Classically, these are equivalent, but constructively they are
different.

Goal: explore Kuratowski-finite sets in the setting of
homotopy type theory.

Material in this talk and more has been formalized in Coq
using the Cog-HoTT library.

2/22

First Attempt: Sets as Lists

> First attempt: represent a set as a list of elements.
» This datatype has propositional equality different from sets.
h ~ b <= Vx, member(x, ly) <> member(x, k)
» Operations on sets become operations on lists.
» Not all functions on lists are functions on sets (e.g., length);
functions have to respect ~.
» This representation does not provide a useful proof principle.

3/22

Obtaining The Right Notion of Equality

» Setoids: no extra machinery required, but cumbersome, gives
bigger proof terms.

» Quotients: some extra machinery required, but some extra
work for lifting operations.

» Higher inductive types: give the right constructions, equations
and proof principles immediately.

4/22

Our Approach

HoTT with Univalence and Higher Inductive Types.

> In the lingo of HoTT: types are spaces, terms are points, and
proofs of equalities x = y are paths between x and y.

» Univalence allows us to identify equivalent types.

» HITs: both point and path constructors allowed.

» The exact syntax and semantics of HITs is still up to some
debate. We use the syntax from (Basold, Geuvers, Van der
Weide (2017), Dybjer, Moeneclaey (2017))

5/22

Finite Sets as a Higher Inductive Type

Inductive K (A : Type) :=

| @: KA

| {{}:A=KA Point constructors

| U:KA=-KA—>KA

| nl:J](x:K(A)), 2Ux=x

| nr:J[(x: K(A), xUZ =x

| idem : [[(a: A), {a} U {a} = {a} Path constructors
| assoc: [](x,y,z:K(A)),xU(yUz)=(xUy)Uz

| com: [[(x,y:K(A)), xUy=yUx.

6/22

Finite Sets as a Higher Inductive Type

Inductive K (A : Type) :=

g KA

{}:A=>KaA Point constructors
U KA=-KA—=KA

nl: [[(x: K(A)), dUx = x

nr: [[(x: K(A), xUD = x

idem : [[(a: A), {a} U{a} ={a}

assoc : [[(x,y,z: K(A), xU(yUz)=(xUy)Uz
com : [[(x,y : K(A)), xUy =yUx

trunc : H(X»y : K(A))v H(paq - X :y)v p=q.

Path constructors

Truncation trunc identifies higher paths in the type, e.g., :

comy x

6/22

Recursion Principle for Finite Sets

Y : TYPE

Oy :Y

Ly :A—=Y
Uy: Y=Y =Y

K(A)rec(Dy,L,,Uy): K(A) =Y

7/22

Recursion Principle for Finite Sets

Y : TYPE
Oy :Y
Ly A=Y
Uy: Y=Y =Y
l’l|y:H(a: Y),@yUya:a
nry :[[(a: Y),aUy @y = a
idemy : [[(a: A),{a}y Uy {a}y = {a}yv
assocy : [[(a,b,c:Y),aUy (bUy c)=(aUy b)Uy ¢
comy : [[(a,b:Y),aUy b=bUy a
truncy : [[(x,y: Y),[l(p,g:x=y),p=gq
K(A) rec(zy, Ly,Uy,nly,nry,idemy,. .) : /C(A) —Y

7/22

The Need for Truncation
Suppose we are proving an equation of finite sets, e.g.,

H XUX =X
X:K(A)

» For & we provide nr : U QZ = @.

» For X7 U X5 we provide
(X1UX1 :Xl) — (X2UX2 :XQ) —
(Xl U Xz) U (Xl U Xz) = (Xl U X2)

px,.x,(H1, H2) = assoc(ap - - - comy, x,)*(ap - - - assoc 1)-. ..
» Then for nl we need to provide a higher equality
nl.(pz.o(nrz,nry)) = nry.

This is easy with the truncation trunc.

8/22

Propositional Truncation

Towards Propositional Membership

Definition (Propositions)

HPROP is the universe of proof-irrelevant types (propositions), i.e.,
types A such that [[(x,y : A), x =y.

Definition (Propositional Truncation)
[|— | : TYPE — HPROP

Inductive ||A]] :=
| tr: A —|]A]|
| trunc < [I(x,y : [1All), x = y.

[|A]] is A with all elements identified.

9/22

Defining Propositional Membership

Application of the Recursion Principle

We define €: A — K(A) — HPROP by K(A)-recursion.

acg: =1,
a € {b}:=|la=bll,
ace(xpUx) :=|laex+ae x|

What about the path constructors?
» (HPRrROP, L, V) is a join semi-lattice;
» All paths between propositions are equal.

Requires univalence to show, e.g.,

llaexi+ae x| =|laex+ac x|

10/22

Extensionality for Finite Sets

Theorem (Extensionality)
For all x,y : IC(A) the types (x = y) and
(II(a: A), (a € x = a € y)) are equivalent.

11/22

Extensionality for Finite Sets

Theorem (Extensionality)
For all x,y : IC(A) the types (x = y) and
(II(a: A), (a € x = a € y)) are equivalent.

Proof sketch.
Through a chain of equivalences
(XZY)Z(()/UXZX)X(XUy:y))S(HaGX:aEy)
a:A

O

{Equational reasoningj [Nested induction on y and xj

11/22

From Finite Sets to Finiteness

» Each X : IC(A) gives a subobject
(Ax.x € X) : A— HPROP

» We think of K(A) < HPROP” as the collection of
Kuratowski-finite subobjects of A.

> A type A is finite if the maximal subobject T 4 is finite.

Definition (Kuratowski-finite types)

isKf(A) :=> (X :K(A), [[(a: A), ae X

NB: For every type A, isKf(A) is a mere proposition — has at most
one inhabitant by extensionality.

12/22

Bishop-finiteness

Bishop-finiteness was previously explored in homotopy type theory

Definition (Bishop-finite types)
isBf(A) :=) (n:N),||A~[n]||

» All finite cardinals [n] = {0, ..., n—1} have decidable equality.

> It follows that every Bishop-finite type has decidable equality
as well.

» This contrasts with Kuratowski-finite types, which need not
have decidable equality.

13/22

Bishop-finiteness vs Kuratowski-finiteness

isKf(A) :=> (X :K(A), [J(a: A), ae X
isBf(A) := > (n:N),||A~[n]|

» Bishop-finite types are Kuratowski-finite.

» The other direction does not hold in general.
(Counterexample: assuming univalence, St is
Kuratowski-finite, but not Bishop-finite because it doesn't
have decidable equality).

> To better compare two notions we need to generalize
Bishop-finite types to finite subobjects.

A subobject P : A — HPROP is Bishop-finite if the subset
> .4 P(x) is Bishop finite.

14/22

Comparison of Finite Subobjects

A type A has decidable mere equality if

I lIx=yll+lIx # Il

x,y:A

Bishop-finite subobjects
ZX:A%HPROP iSBf(X)

Kuratowski-finite subobjects

K(A)

U Iff A has decidable equality (given | Always definable
that A is an HSET)

{=}| Iff Alis an HSET Always contains singletons

(%] Always present Always present

N Iff A has decidable equality (given | Iff A has decidable mere equality
that A is an HSET)

€4 | Iff Ahas decidable equality (given | Iff A has decidable mere equality

that A is an HSET)

15/22

Bishop-finiteness vs Kuratowski-finiteness (2)

Theorem
If A has decidable equality then isKf(A) — isBf(A).

Corollary
If A has decidable equality then isKf(A) ~ isBf(A).

16/22

An Interface for Finite Sets

Definition
A type T is an interpretation of finite sets over A if there are
» aterm @1 : T,
» anoperation Ut : T — T — T,
» foreach a: Aaterm {a},: T;
> a family of predicates a €7 —: T — HPROP.

Definition

A homomorphism between interpretations T and R is a function
f: T — R that commutes with all the operations.

fo1T =0r f(XUTy):fXURfy
f{a}t ={a}r aErx=acrfx

17/22

Implementations of Finite Sets

Definition
An implementation of finite sets consists of

» a type family T : TYPE — TYPE such that each T(A) is an
interpretation of finite sets;

» homomorphisms [-]a : T(A) — K(A).

The maps [-]a are always surjective. Furthermore,

» functions on /C(A) are carried over to any implementation of
finite sets;

» properties of these functions carry over.

18/22

Relating Lists and K

LIST(A) fold(@,AxAy.{x}Uy)

K(A)

Lists implement finite sets with
» nil : LisT(A),
» append : LisT(A) — LisT(A) — LisT(A),
» member : A — LisT(A) — HPROP,
» and the homomorphism
> [nil] = o,

> [hut] = {hU[t]

19/22

Lifting operations
We lift maps K(A) — B to L1sT(A) — B by composing with [-]a.

» Define V: (A — HPROP) — K(A) — HPROP such that

IT II (a€X) xv(P,X) = P(a).

a:A X:K(A)

20/22

Lifting operations
We lift maps K(A) — B to L1sT(A) — B by composing with [-]a.

» Define V: (A — HPROP) — K(A) — HPROP such that

IT II (a€X) xv(P,X) = P(a).

a:A X:K(A)

» It lifts to V, : (A — HPROP) — L1ST(A) — HPROP such that

IT II (member(a,i)xV.(P, 1)~ P(a).

a:A X:LisT(A)

Because

(member(a, /) x V. (P, 1)) = ((a € [I]) x Y(P,[]))
= P(a)

20/22

Lifting operations
We lift maps K(A) — B to L1sT(A) — B by composing with [-]a.

» Define V: (A — HPROP) — K(A) — HPROP such that

IT II (a€X) xv(P,X) = P(a).

a:A X:K(A)

» It lifts to V, : (A — HPROP) — L1ST(A) — HPROP such that

IT II (member(a,i)xV.(P, 1)~ P(a).

a:A X:LisT(A)

» Similarly if A has decidable mere equality, we can define
» size : K(A) — N lifting to size; : L1sT(A) - N

» €4: A— K(A) — Boo lifting to €4: A — LiST(A) — BOOL.

20/22

Summary

» Formalized development of finite sets using HITs.

» Comparative study of Bishop-finiteness and
Kuratowski-finiteness in HoTT.

» Interface for finite sets suitable for data refinement.

https://cs.ru.nl/~nweide/fsets/finitesets.html

Thank you for listening.

21/22

https://cs.ru.nl/~nweide/fsets/finitesets.html

Induction Principle for Kuratowski Sets

Y: K(A) — TYPE
oy : Y[2]
Ly :T1(a: A), Y[{a}]
Uy [y K(A)), YIx] x Yyl = Y[U(x, y)]
m: 1 KA TT(a: Yx]), Uv(2y,) =
n2 - [1(x - K(A)) [1(a = YI]), Uv(a DY) =n
iv : [I(a: A),Uy(Ly x,Ly x) =X, Ly x

x

a
a

ay : [[0y, z - KA IT(a = YIXDTI(b - YYD TI(e = Yiz2]),

UY(‘37 (UY(b7 C))) :;/ssoc UY(UY(‘37 b)? C)
cy 11y - K(A) I1(a: YIXDTI(b: Yv),
Uy(a7 b) g;m Uy (b a)
ty 1 [[(x : K(A)), Y[x] € HSET

IC(A) r'EC(Qy7 Ly, Uy, ay, ny1,Ny2,Cy, Iy) : H(X : ,C(A)), Y

22/22

	Introduction
	Definition and properties
	From Finite (Sub)sets to Finiteness
	Application: Relating to Implementations of Finite Sets

