
Finite Sets in Homotopy Type Theory

Dan Frumin Herman Geuvers Leon Gondelman
Niels van der Weide

Radboud University Nijmegen, The Netherlands

January 9, 2018, CPP

1/22

What Is Finiteness, Constructively?

I A set A is (Bishop)-finite if there are exactly n ∈ N elements
in it.

I A set A is (Kuratowski)-finite if there are at most n ∈ N
elements in it.

I Classically, these are equivalent, but constructively they are
different.

I Goal: explore Kuratowski-finite sets in the setting of
homotopy type theory.

I Material in this talk and more has been formalized in Coq
using the Coq-HoTT library.

2/22

First Attempt: Sets as Lists

I First attempt: represent a set as a list of elements.

I This datatype has propositional equality different from sets.

l1 ∼ l2 ⇐⇒ ∀x , member(x , l1)↔ member(x , l2)

I Operations on sets become operations on lists.

I Not all functions on lists are functions on sets (e.g., length);
functions have to respect ∼.

I This representation does not provide a useful proof principle.

3/22

Obtaining The Right Notion of Equality

I Setoids: no extra machinery required, but cumbersome, gives
bigger proof terms.

I Quotients: some extra machinery required, but some extra
work for lifting operations.

I Higher inductive types: give the right constructions, equations
and proof principles immediately.

4/22

Our Approach

HoTT with Univalence and Higher Inductive Types.

I In the lingo of HoTT: types are spaces, terms are points, and
proofs of equalities x = y are paths between x and y .

I Univalence allows us to identify equivalent types.

I HITs: both point and path constructors allowed.
I The exact syntax and semantics of HITs is still up to some

debate. We use the syntax from (Basold, Geuvers, Van der
Weide (2017), Dybjer, Moeneclaey (2017))

5/22

Finite Sets as a Higher Inductive Type

Inductive K (A : Type) :=
| ∅ : K A

| {·} : A → K A

| ∪ : K A → K A → K A

| nl :
∏

(x : K(A)), ∅ ∪ x = x
| nr :

∏
(x : K(A)), x ∪∅ = x

| idem :
∏

(a : A), {a} ∪ {a} = {a}
| assoc :

∏
(x , y , z : K(A)), x ∪ (y ∪ z) = (x ∪ y) ∪ z

| com :
∏

(x , y : K(A)), x ∪ y = y ∪ x .

Point constructors

Path constructors

6/22

Finite Sets as a Higher Inductive Type

Inductive K (A : Type) :=
| ∅ : K A

| {·} : A → K A

| ∪ : K A → K A → K A

| nl :
∏

(x : K(A)), ∅ ∪ x = x
| nr :

∏
(x : K(A)), x ∪∅ = x

| idem :
∏

(a : A), {a} ∪ {a} = {a}
| assoc :

∏
(x , y , z : K(A)), x ∪ (y ∪ z) = (x ∪ y) ∪ z

| com :
∏

(x , y : K(A)), x ∪ y = y ∪ x
| trunc :

∏
(x , y : K(A)),

∏
(p, q : x = y), p = q.

Point constructors

Path constructors

Truncation trunc identifies higher paths in the type, e.g., :

X ∪ X X ∪ X

comX ,X

1X∪X

?

6/22

Recursion Principle for Finite Sets

Y : Type
∅Y : Y

LY : A→ Y

∪Y : Y → Y → Y

nlY :
∏

(a : Y),∅Y ∪Y a = a

nrY :
∏

(a : Y), a ∪Y ∅Y = a

idemY :
∏

(a : A), {a}Y ∪Y {a}Y = {a}Y
assocY :

∏
(a, b, c : Y), a ∪Y (b ∪Y c) = (a ∪Y b) ∪Y c

comY :
∏

(a, b : Y), a ∪Y b = b ∪Y a

truncY :
∏

(x , y : Y),
∏

(p, q : x = y), p = q

K(A) rec(∅Y , Ly ,∪Y

,nlY ,nrY , idemY , . . .

) : K(A)→ Y

7/22

Recursion Principle for Finite Sets

Y : Type
∅Y : Y

LY : A→ Y

∪Y : Y → Y → Y

nlY :
∏

(a : Y),∅Y ∪Y a = a

nrY :
∏

(a : Y), a ∪Y ∅Y = a

idemY :
∏

(a : A), {a}Y ∪Y {a}Y = {a}Y
assocY :

∏
(a, b, c : Y), a ∪Y (b ∪Y c) = (a ∪Y b) ∪Y c

comY :
∏

(a, b : Y), a ∪Y b = b ∪Y a

truncY :
∏

(x , y : Y),
∏

(p, q : x = y), p = q

K(A) rec(∅Y , Ly ,∪Y ,nlY ,nrY , idemY , . . .) : K(A)→ Y

7/22

The Need for Truncation
Suppose we are proving an equation of finite sets, e.g.,∏

X :K(A)

X ∪ X = X

I For ∅ we provide nr : ∅ ∪∅ = ∅.

I For X1 ∪ X2 we provide
(X1 ∪ X1 = X1)→ (X2 ∪ X2 = X2)→
(X1 ∪ X2) ∪ (X1 ∪ X2) = (X1 ∪ X2)

pX1,X2(H1,H2) = assoc �(ap · · · comX1,X2)�(ap · · · assoc−1)�. . .

I Then for nl we need to provide a higher equality

nl∗(p∅,∅(nr∅,nr∅)) = nr∅ .

This is easy with the truncation trunc.

8/22

Propositional Truncation
Towards Propositional Membership

Definition (Propositions)

hProp is the universe of proof-irrelevant types (propositions), i.e.,
types A such that

∏
(x , y : A), x = y .

Definition (Propositional Truncation)

|| − || : Type→ hProp

Inductive ||A|| :=
| tr : A → ||A||
| trunc :

∏
(x , y : ||A||), x = y .

||A|| is A with all elements identified.

9/22

Defining Propositional Membership
Application of the Recursion Principle

We define ∈: A→ K(A)→ hProp by K(A)-recursion.

a ∈ ∅ := ⊥,
a ∈ {b} := ||a = b||,

a ∈ (x1 ∪ x2) := ||a ∈ x1 + a ∈ x2||

What about the path constructors?

I (hProp,⊥,∨) is a join semi-lattice;

I All paths between propositions are equal.

Requires univalence to show, e.g.,

||a ∈ x1 + a ∈ x2|| = ||a ∈ x2 + a ∈ x1||

10/22

Extensionality for Finite Sets

Theorem (Extensionality)

For all x , y : K(A) the types (x = y) and
(
∏

(a : A), (a ∈ x = a ∈ y)) are equivalent.

Proof sketch.
Through a chain of equivalences

(x = y) ' ((y ∪ x = x)× (x ∪ y = y)) ' (
∏
a:A

a ∈ x = a ∈ y)

Equational reasoning Nested induction on y and x

11/22

Extensionality for Finite Sets

Theorem (Extensionality)

For all x , y : K(A) the types (x = y) and
(
∏

(a : A), (a ∈ x = a ∈ y)) are equivalent.

Proof sketch.
Through a chain of equivalences

(x = y) ' ((y ∪ x = x)× (x ∪ y = y)) ' (
∏
a:A

a ∈ x = a ∈ y)

Equational reasoning Nested induction on y and x

11/22

From Finite Sets to Finiteness

I Each X : K(A) gives a subobject

(λx .x ∈ X) : A→ hProp

I We think of K(A) ↪→ hPropA as the collection of
Kuratowski-finite subobjects of A.

I A type A is finite if the maximal subobject >A is finite.

Definition (Kuratowski-finite types)

isKf(A) :=
∑

(X : K(A)),
∏

(a : A), a ∈ X

NB: For every type A, isKf(A) is a mere proposition – has at most
one inhabitant by extensionality.

12/22

Bishop-finiteness

Bishop-finiteness was previously explored in homotopy type theory

Definition (Bishop-finite types)

isBf(A) :=
∑

(n : N), ||A ' [n]||

I All finite cardinals [n] = {0, . . . , n−1} have decidable equality.

I It follows that every Bishop-finite type has decidable equality
as well.

I This contrasts with Kuratowski-finite types, which need not
have decidable equality.

13/22

Bishop-finiteness vs Kuratowski-finiteness

isKf(A) :=
∑

(X : K(A)),
∏

(a : A), a ∈ X

isBf(A) :=
∑

(n : N), ||A ' [n]||

I Bishop-finite types are Kuratowski-finite.

I The other direction does not hold in general.
(Counterexample: assuming univalence, S1 is
Kuratowski-finite, but not Bishop-finite because it doesn’t
have decidable equality).

I To better compare two notions we need to generalize
Bishop-finite types to finite subobjects.

A subobject P : A→ hProp is Bishop-finite if the subset∑
x :A P(x) is Bishop finite.

14/22

Comparison of Finite Subobjects
A type A has decidable mere equality if∏

x ,y :A

||x = y ||+ ||x 6= y ||

Bishop-finite subobjects Kuratowski-finite subobjects∑
X :A→hProp isBf(X) K(A)

∪ Iff A has decidable equality (given
that A is an hSet)

Always definable

{−} Iff A is an hSet Always contains singletons

∅ Always present Always present

∩ Iff A has decidable equality (given
that A is an hSet)

Iff A has decidable mere equality

∈d Iff A has decidable equality (given
that A is an hSet)

Iff A has decidable mere equality

15/22

Bishop-finiteness vs Kuratowski-finiteness (2)

Theorem
If A has decidable equality then isKf(A)→ isBf(A).

Corollary

If A has decidable equality then isKf(A) ' isBf(A).

16/22

An Interface for Finite Sets

Definition
A type T is an interpretation of finite sets over A if there are

I a term ∅T : T ;

I an operation ∪T : T → T → T ;

I for each a : A a term {a}T : T ;

I a family of predicates a ∈T − : T → hProp.

Definition
A homomorphism between interpretations T and R is a function
f : T → R that commutes with all the operations.

f ∅T = ∅R f (x ∪T y) = f x ∪R f y

f {a}T = {a}R a ∈T x = a ∈R f x

17/22

Implementations of Finite Sets

Definition
An implementation of finite sets consists of

I a type family T : Type→ Type such that each T (A) is an
interpretation of finite sets;

I homomorphisms J·KA : T (A)→ K(A).

The maps J·KA are always surjective. Furthermore,

I functions on K(A) are carried over to any implementation of
finite sets;

I properties of these functions carry over.

18/22

Relating Lists and K

List(A)
fold(∅,λxλy .{x}∪y)−−−−−−−−−−−−−−−−−−−−−−−→ K(A)

Lists implement finite sets with

I nil : List(A),

I append : List(A)→ List(A)→ List(A),

I member : A→ List(A)→ hProp,
I and the homomorphism

I JnilK = ∅,
I Jh :: tK = {h} ∪ JtK

19/22

Lifting operations

We lift maps K(A)→ B to List(A)→ B by composing with J·KA.

I Define ∀ : (A→ hProp)→ K(A)→ hProp such that∏
a:A

∏
X :K(A)

(a ∈ X)× ∀(P,X)→ P(a).

I It lifts to ∀L : (A→ hProp)→ List(A)→ hProp such that∏
a:A

∏
X :List(A)

(member(a, l)× ∀L(P, l))→ P(a).

I Similarly if A has decidable mere equality, we can define
I size : K(A)→ N lifting to sizeL : List(A)→ N
I ∈d : A→ K(A)→ Bool lifting to ∈d : A→ List(A)→ Bool.

20/22

Lifting operations

We lift maps K(A)→ B to List(A)→ B by composing with J·KA.

I Define ∀ : (A→ hProp)→ K(A)→ hProp such that∏
a:A

∏
X :K(A)

(a ∈ X)× ∀(P,X)→ P(a).

I It lifts to ∀L : (A→ hProp)→ List(A)→ hProp such that∏
a:A

∏
X :List(A)

(member(a, l)× ∀L(P, l))→ P(a).

Because

(member(a, l)× ∀L(P, l)) = ((a ∈ JlK)× ∀(P, JlK))

=⇒ P(a)

I Similarly if A has decidable mere equality, we can define
I size : K(A)→ N lifting to sizeL : List(A)→ N
I ∈d : A→ K(A)→ Bool lifting to ∈d : A→ List(A)→ Bool.

20/22

Lifting operations

We lift maps K(A)→ B to List(A)→ B by composing with J·KA.

I Define ∀ : (A→ hProp)→ K(A)→ hProp such that∏
a:A

∏
X :K(A)

(a ∈ X)× ∀(P,X)→ P(a).

I It lifts to ∀L : (A→ hProp)→ List(A)→ hProp such that∏
a:A

∏
X :List(A)

(member(a, l)× ∀L(P, l))→ P(a).

I Similarly if A has decidable mere equality, we can define
I size : K(A)→ N lifting to sizeL : List(A)→ N
I ∈d : A→ K(A)→ Bool lifting to ∈d : A→ List(A)→ Bool.

20/22

Summary

I Formalized development of finite sets using HITs.

I Comparative study of Bishop-finiteness and
Kuratowski-finiteness in HoTT.

I Interface for finite sets suitable for data refinement.

https://cs.ru.nl/~nweide/fsets/finitesets.html

Thank you for listening.

21/22

https://cs.ru.nl/~nweide/fsets/finitesets.html

Induction Principle for Kuratowski Sets

Y : K(A)→ Type

∅Y : Y [∅]

LY :
∏

(a : A),Y [{a}]
∪Y :

∏
(x , y : K(A)),Y [x]× Y [y]→ Y [∪(x , y)]

n1 :
∏

(x : K(A))
∏

(a : Y [x]),∪Y (∅Y , a) =Y
nl a

n2 :
∏

(x : K(A))
∏

(a : Y [x]),∪Y (a,∅Y) =Y
nr a

iY :
∏

(a : A),∪Y (LY x , LY x) =Y
idem LY x

aY :
∏

(x , y , z : K(A))
∏

(a : Y [x])
∏

(b : Y [y])
∏

(c : Y [z]),

∪Y (a, (∪Y (b, c))) =Y
assoc ∪Y (∪Y (a, b), c)

cY :
∏

(x , y : K(A))
∏

(a : Y [x])
∏

(b : Y [y]),

∪Y (a, b) =Y
com ∪Y (b, a)

tY :
∏

(x : K(A)),Y [x] ∈ hSet

K(A) rec(∅Y , Ly ,∪Y , aY , nY ,1, nY ,2, cY , iY) :
∏

(x : K(A)),Y

22/22

	Introduction
	Definition and properties
	From Finite (Sub)sets to Finiteness
	Application: Relating to Implementations of Finite Sets

