

First-order answer set programming as constructive proof search

Paweł Urzyczyn
(joint work with Aleksy Schubert)

Logic Programming

A logic program:

$X := Y, Z;$

$U := Z, V;$

$Y := Z;$

$Z := .$

Logic Programming

A logic program:

$X := Y, Z;$

$U := Z, V;$

$Y := Z;$

$Z := .$

The meaning of this program is the set of derived atoms.

Logic Programming

A logic program:

$X := Y, Z;$

$U := Z, V;$

$Y := Z;$

$Z := .$

The meaning of this program is the set of derived atoms.

They are: Z ,

Logic Programming

A logic program:

$X := Y, Z;$

$U := Z, V;$

$Y := Z;$

$Z := .$

The meaning of this program is the set of derived atoms.

They are: Z , Y ,

Logic Programming

A logic program:

$X := Y, Z;$

$U := Z, V;$

$Y := Z;$

$Z := .$

The meaning of this program is the set of derived atoms.

They are: Z , Y , X ,

Logic Programming

A logic program:

$X := Y, Z;$

$U := Z, V;$

$Y := Z;$

$Z := .$

The meaning of this program is the set of derived atoms.

They are: Z , Y , X ,

but neither U nor V .

A logic program with negations

$X := Y, Z, U;$

$Y := \neg Z;$

$Y := Z;$

$Z := \neg X, \neg U;$

$U := Y, \neg Z;$

Which atoms are “derivable” (forced true)?

A logic program with negations

$X := Y, Z, U;$

$Y := \neg Z;$

$Y := Z;$

$Z := \neg X, \neg U;$

$U := Y, \neg Z;$

Which atoms are “derivable” (forced true)?

There are many possible answers. One is...

Answer Set Programming

Kolaitis, Papadimitriou,

Why not Negation by Fixpoint?, PODS'88:

1. Guess which atoms should be forced.
2. Verify that exactly these atoms are forced.

Bad guess

$X := Y, Z, U;$

$Y := \neg Z;$

$Y := Z;$

$Z := \neg X, \neg U;$

$U := Y, \neg Z;$

Guess 1: Atoms X and Z are forced, atoms Y and U are not.

Bad guess

$X := Y, Z, U;$

$Y := \neg Z;$ Red clauses are invalid.

$Y := Z;$

$Z := \neg X, \neg U;$

$U := Y, \neg Z.$

Guess 1: Atoms X and Z are forced, atoms Y and U are not.

Bad guess

$X := Y, Z, U;$

$Y := \neg Z$; Red clauses are invalid.

$Y := Z$; Nothing can be derived: this guess is wrong.

$Z := \neg X, \neg U;$

$U := Y, \neg Z.$

Guess 1: Atoms X and Z are forced, atoms Y and U are not.

Good guess

$X := Y, Z, U;$

$Y := \neg Z;$

$Y := Z;$

$Z := \neg X, \neg U;$

$U := Y, \neg Z;$

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Good guess

$X := Y, Z, U;$ Green assumptions are satisfied.

$Y := \neg Z;$

$Y := Z;$

$Z := \neg X, \neg U;$ This clause is invalid.

$U := Y, \neg Z.$

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Good guess

$X := Y, Z, U;$ Green assumptions are satisfied.

$Y := \neg Z;$ Y can be derived

$Y := Z;$

$Z := \neg X, \neg U;$ This clause is invalid.

$U := Y, \neg Z.$

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Good guess

$X := Y, Z, U;$ Green assumptions are satisfied.

$Y := \neg Z;$ Y can be derived

$Y := Z;$

$Z := \neg X, \neg U;$ This clause is invalid.

$U := Y, \neg Z.$ U can be derived

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Another good guess

$X := Y, Z, U;$

$Y := \neg Z;$

$Y := Z;$

$Z := \neg X, \neg U;$

$U := Y, \neg Z;$

Guess 3: Atoms Z, Y are forced, others are not.

Another good guess

$X := Y, Z, U;$ Green assumptions are satisfied.

$Y := \neg Z;$ Red clauses are invalid.

$Y := Z;$

$Z := \neg X, \neg U;$

$U := Y, \neg Z;$

Guess 3: Atom Z, Y are forced, others are not.

Another good guess

$X := Y, Z, U;$ Green assumptions are satisfied.

$Y := \neg Z;$ Red clauses are invalid.

$Y := Z;$

$Z := \neg X, \neg U;$ Z can be derived

$U := Y, \neg Z;$

Guess 3: Atom Z, Y are forced, others are not.

Another good guess

$X := Y, Z, U;$ Green assumptions are satisfied.

$Y := \neg Z;$ Red clauses are invalid.

$Y := Z;$ Y can be derived

$Z := \neg X, \neg U;$ Z can be derived

$U := Y, \neg Z;$

Guess 3: Atom Z, Y are forced, others are not.

Stable models

$X := Y, Z, U;$

$Y := \neg Z;$

$Y := Z;$

$Z := \neg X, \neg U;$

$U := Y, \neg Z;$

This program has two *stable models* $\{U, Y\}$ and $\{Z, Y\}$.

It *entails* Y under stable model semantics.

Write $P \models_{\text{sms}} Y$.

Main definition

Given a program P and model \mathfrak{M} , define program $P_{\mathfrak{M}}$ without negations, as follows:

- ▶ For $X \notin \mathfrak{M}$, delete $\neg X$ from the rhs of all clauses of P ;
- ▶ For $X \in \mathfrak{M}$, delete all clauses of P with $\neg X$ at the rhs.

The model \mathfrak{M} is *stable* (is an *answer set*) for P , when exactly the atoms in \mathfrak{M} are derivable from $P_{\mathfrak{M}}$.

ASP and intuitionistic logic

Characterizing ASP in terms of two-element Kripke models:

- ▶ David Pearce. [Stable inference as intuitionistic validity](#). *The Journal of Logic Programming*, 38(1):79–91, 1999.

ASP and intuitionistic logic

Characterizing ASP in terms of two-element Kripke models:

- ▶ David Pearce. [Stable inference as intuitionistic validity](#). *The Journal of Logic Programming*, 38(1):79–91, 1999.

Can this be done in terms of *intuitionistic logic* per se?

The plan

- ▶ Given program P and atom Ω , write a formula φ such that $P \models_{\text{SMS}} \Omega$ if and only if φ is provable.

The plan

- ▶ Given program P and atom Ω , write a formula φ such that $P \models_{\text{SMS}} \Omega$ if and only if φ is provable.
- ▶ Define a translation backward (for a class of formulas within co-NP).

The plan

- ▶ Given program P and atom Ω , write a formula φ such that $P \models_{\text{SMS}} \Omega$ if and only if φ is provable.
- ▶ Define a translation backward (for a class of formulas within co-NP).
- ▶ Do the same for datalog using a co-Nexptime complete class of first-order formulas.

Forward translation

- ▶ Define formula φ so that $P \models_{\text{SMS}} \Omega$ iff φ is provable.

Forward translation

- ▶ Define formula φ so that $P \models_{\text{SMS}} \Omega$ iff φ is provable.

We construct $\varphi = \psi_1 \rightarrow \psi_2 \rightarrow \dots \rightarrow \psi_m \rightarrow 0$.

Forward translation

- ▶ Define formula φ so that $P \models_{\text{SMS}} \Omega$ iff φ is provable.

We construct $\varphi = \psi_1 \rightarrow \psi_2 \rightarrow \dots \rightarrow \psi_m \rightarrow 0$.

The entailment should hold *in every model*. For example:

Assume P has only 4 atoms X, Y, Z , and Ω . Then among the axioms ψ_i there will be formulas:

$$(\bar{X} \rightarrow 1) \rightarrow (X \rightarrow 1) \rightarrow 0 \quad (\bar{Y} \rightarrow 2) \rightarrow (Y \rightarrow 2) \rightarrow 1$$
$$(\bar{Z} \rightarrow 3) \rightarrow (Z \rightarrow 3) \rightarrow 2 \quad (\bar{\Omega} \rightarrow 4) \rightarrow (\Omega \rightarrow 4) \rightarrow 3$$

No other axiom has 0,1,2,3 as target.

Forward translation

- ▶ Define formula φ so that $P \models_{\text{SMS}} \Omega$ iff φ is provable.

We construct $\varphi = \psi_1 \rightarrow \psi_2 \rightarrow \dots \rightarrow \psi_m \rightarrow 0$.

The entailment should hold *in every model*. For example:

Assume P has only 4 atoms X, Y, Z , and Ω . Then among the axioms ψ_i there will be formulas:

$$(\overline{X} \rightarrow 1) \rightarrow (X \rightarrow 1) \rightarrow 0 \quad (\overline{Y} \rightarrow 2) \rightarrow (Y \rightarrow 2) \rightarrow 1$$
$$(\overline{Z} \rightarrow 3) \rightarrow (Z \rightarrow 3) \rightarrow 2 \quad (\overline{\Omega} \rightarrow 4) \rightarrow (\Omega \rightarrow 4) \rightarrow 3$$

No other axiom has 0,1,2,3 as target.

To prove 0 from the initial assumptions one must derive 4 under an arbitrary choice of overlined and non-overlined atoms.

How to ensure entailment

The entailment $P \models_{\text{SMS}} \Omega$ means that one of the three cases holds in every model \mathfrak{M} :

- Ω) either $\Omega \in \mathfrak{M}$, or
- A) the model is unstable because too much is derivable ($P_{\mathfrak{M}}$ is unsound for \mathfrak{M}), or
- B) the model is unstable because too little is derivable ($P_{\mathfrak{M}}$ is incomplete for \mathfrak{M}).

Three more axioms: $\Omega \rightarrow 4$, $A \rightarrow 4$, $B \rightarrow 4$.

Proving unsoundness

We include in our formula the following axioms:

- ▶ $\overline{X}_i \rightarrow X_i! \rightarrow A$, for every atom X_i of P ;
- ▶ all clauses of P where X_i is renamed as $X_i!$ and $\neg X_i$ is renamed as \overline{X}_i .

Let \mathfrak{M} be the model corresponding to the present context.

One can prove $X_i!$ if and only if the program $P_{\mathfrak{M}}$ derives X_i .

Thus A is provable if and only if $P_{\mathfrak{M}}$ derives some $X_i \notin \mathfrak{M}$.

Proving incompleteness

One proves B iff some $X_i \in \mathfrak{M}$ cannot be derived by $P_{\mathfrak{M}}$.

We include in our formula the axiom:

- $X_i \rightarrow X_i? \rightarrow B,$

for every atom X_i of P .

Every proof of $X_i?$ represents a *refutation* of X_i . How?

Proving non-provability

Suppose we have only two clauses with target X :

K1: $X := Y, Z, \neg U$; K2: $X := V, U, \neg Z$.

Then we have the axiom:

$(X? \rightarrow K_1) \rightarrow (X? \rightarrow K_2) \rightarrow X?$

Proving non-provability

Suppose we have only two clauses with target X :

$$K1: X := Y, Z, \neg U; \quad K2: X := V, U, \neg Z.$$

Then we have the axiom:

$$(X? \rightarrow K_1) \rightarrow (X? \rightarrow K_2) \rightarrow X?$$

In particular we need to derive K_1 (using $X?$).

Proving non-provability

Suppose we have only two clauses with target X :

$K_1: X := Y, Z, \neg U;$ $K_2: X := V, U, \neg Z.$

Then we have the axiom:

$(X? \rightarrow K_1) \rightarrow (X? \rightarrow K_2) \rightarrow X?$

In particular we need to derive K_1 (using $X?$).

For that purpose we have axioms:

$Y? \rightarrow K_1, \quad Z? \rightarrow K_1, \quad U \rightarrow K_1,$

Proving non-provability

Suppose we have only two clauses with target X :

$K_1: X := Y, Z, \neg U;$ $K_2: X := V, U, \neg Z.$

Then we have the axiom:

$(X? \rightarrow K_1) \rightarrow (X? \rightarrow K_2) \rightarrow X?$

In particular we need to derive K_1 (using $X?$).

For that purpose we have axioms:

$Y? \rightarrow K_1, \quad Z? \rightarrow K_1, \quad U \rightarrow K_1,$

If $U \in \mathfrak{M}$ then K_1 is provable: clause K_1 cannot derive X .

Proving non-provability

Suppose we have only two clauses with target X :

$$K1: X := Y, Z, \neg U; \quad K2: X := V, U, \neg Z.$$

Then we have the axiom:

$$(X? \rightarrow K_1) \rightarrow (X? \rightarrow K_2) \rightarrow X?$$

In particular we need to derive K_1 (using $X?$).

For that purpose we have axioms:

$$Y? \rightarrow K_1, \quad Z? \rightarrow K_1, \quad U \rightarrow K_1,$$

If $U \in \mathfrak{M}$ then K_1 is provable: clause K1 cannot derive X .

Otherwise we can try to prove e.g. $Y?$

(Clause K1 can't be used if Y is not derivable.)

Termination

Can this process go forever?

Termination

Can this process go forever?

To prove $X?$ we attempt to prove $Y?$,
this makes us try to prove $Z?$ etc.

Termination

Can this process go forever?

To prove $X?$ we attempt to prove $Y?$,
this makes us try to prove $Z?$ etc.

Recall the axiom: $(X? \rightarrow K_1) \rightarrow (X? \rightarrow K_2) \rightarrow X?$

Each time we address a proof goal $X?$
we add the assumption $X?$

Termination

Can this process go forever?

To prove $X?$ we attempt to prove $Y?$,
this makes us try to prove $Z?$ etc.

Recall the axiom: $(X? \rightarrow K_1) \rightarrow (X? \rightarrow K_2) \rightarrow X?$

Each time we address a proof goal $X?$
we add the assumption $X?$

Should $X?$ appear as a proof goal again, we win instantly.

Termination

Can this process go forever?

To prove $X?$ we attempt to prove $Y?$,
this makes us try to prove $Z?$ etc.

Recall the axiom: $(X? \rightarrow K_1) \rightarrow (X? \rightarrow K_2) \rightarrow X?$

Each time we address a proof goal $X?$
we add the assumption $X?$

Should $X?$ appear as a proof goal again, we win instantly.

Note that such judgments are only classically valid:

$\dots, (X? \rightarrow K_1) \rightarrow (X? \rightarrow K_2) \rightarrow X?, \dots \vdash X?$

Backward translation

ASP entailment is NP-complete. Intuitionistic propositional logic is Pspace-complete. Backward translation is only possible for formulas of a simple shape (pseudo-DNF formulas).

Backward translation

ASP entailment is NP-complete. Intuitionistic propositional logic is Pspace-complete. Backward translation is only possible for formulas of a simple shape (pseudo-DNF formulas).

The principle of backward translation: for a given formula φ write a program P so that

φ is not provable if and only if P has a stable model.

Slogan: stable model \equiv refutation.

The first-order case

The plan

First-order datalog ASP is NexpTime-complete.
The appropriate first-order fragment should be
co-NexpTime-complete.

- ▶ We translate the entailment $P \models_{\text{SMS}} \Omega$ into a first-order Σ_1 formula φ with nullary targets.
- ▶ Such formulas can be replaced by monadic Σ_1 formulas (with only unary predicates).
- ▶ Refutability of bounded-arity Σ_1 formulas reduces to ASP.
(Refutation soup \Rightarrow stable model.)

The class Σ_1

We only consider formulas written with \forall and \rightarrow .

Positions of \forall are classified as “positive” (covariant) and “negative” (contravariant). The class Σ_1 has \forall only at negative positions.

The class Σ_1

We only consider formulas written with \forall and \rightarrow .

Positions of \forall are classified as “positive” (covariant) and “negative” (contravariant). The class Σ_1 has \forall only at negative positions.

Provability of Σ_1 formulas is Expspace-complete in general.

The class Σ_1

We only consider formulas written with \forall and \rightarrow .

Positions of \forall are classified as “positive” (covariant) and “negative” (contravariant). The class Σ_1 has \forall only at negative positions.

Provability of Σ_1 formulas is Expspace-complete in general.

Provability of Σ_1 formulas with nullary targets is co-Nexptime-complete.

The class Σ_1

We only consider formulas written with \forall and \rightarrow .

Positions of \forall are classified as “positive” (covariant) and “negative” (contravariant). The class Σ_1 has \forall only at negative positions.

Provability of Σ_1 formulas is Expspace-complete in general.

Provability of Σ_1 formulas with nullary targets is co-Nexptime-complete.

Same for Σ_1 formulas with bounded-arity predicates.

The class Σ_1

We only consider formulas written with \forall and \rightarrow .

Positions of \forall are classified as “positive” (covariant) and “negative” (contravariant). The class Σ_1 has \forall only at negative positions.

Provability of Σ_1 formulas is Expspace-complete in general.

Provability of Σ_1 formulas with nullary targets is co-Nexptime-complete.

Same for Σ_1 formulas with bounded-arity predicates.

In fact all we need is this pattern:

$$\vec{\forall}(\dots) \rightarrow \vec{\forall}(\dots) \rightarrow \dots \rightarrow \vec{\forall}(\dots) \rightarrow a$$

Forward translation: first-order case

Given program P and atom Ω , write a formula

$$\varphi = \psi_1 \rightarrow \psi_2 \rightarrow \cdots \rightarrow \psi_m \rightarrow \text{loop}$$

such that $P \models_{\text{SMS}} \Omega$.

Forward translation: first-order case

Given program P and atom Ω , write a formula

$$\varphi = \psi_1 \rightarrow \psi_2 \rightarrow \cdots \rightarrow \psi_m \rightarrow \text{loop}$$

such that $P \models_{\text{SMS}} \Omega$.

Model construction in every branch of the proof:

$$\forall \vec{z} ((R(\vec{z}) \rightarrow \text{loop}) \rightarrow (\overline{R}(\vec{z}) \rightarrow \text{loop}) \rightarrow \text{loop})$$

Forward translation: first-order case

Given program P and atom Ω , write a formula

$$\varphi = \psi_1 \rightarrow \psi_2 \rightarrow \cdots \rightarrow \psi_m \rightarrow \text{loop}$$

such that $P \models_{\text{SMS}} \Omega$.

Model construction in every branch of the proof:

$$\forall \vec{z}((R(\vec{z}) \rightarrow \text{loop}) \rightarrow (\overline{R}(\vec{z}) \rightarrow \text{loop}) \rightarrow \text{loop})$$

Case dispatch as before:

$$\Omega \rightarrow \text{loop}, \quad A \rightarrow \text{loop}, \quad \text{and} \quad B \rightarrow \text{loop}$$

Proving unsoundness with nullary targets

Instead of $\overline{X}_i \rightarrow X_i! \rightarrow A$ we use axioms

$$\forall \vec{x}. \overline{R}(\vec{x}) \rightarrow (R!(\vec{x}) \rightarrow \bullet) \rightarrow A,$$

That is, we prove \bullet , accumulating knowledge of derivation goals $R!(\vec{c})$ visited so far. For a clause like

$$R(\vec{x}) :- P(\vec{x}), Q(\vec{x}), \neg S(\vec{x})$$

we have an axiom of the form:

$$\forall \vec{x}. R!(\vec{x}) \rightarrow (P!(\vec{x}) \rightarrow \bullet) \rightarrow (Q!(\vec{x}) \rightarrow \bullet) \rightarrow \overline{S}(\vec{x}) \rightarrow \bullet,$$

Proof succeeds when we arrive at a fact (no more subgoals).

Proving incompleteness with nullary targets

The basic axiom scheme is

$$\forall \vec{x}. R(\vec{x}) \rightarrow (R?(\vec{x}) \rightarrow \circ) \rightarrow B.$$

(Oversimplified) axiom scheme for $R?(\vec{x})$ is

$$\forall \vec{x}. R?(\vec{x}) \rightarrow (K_1(\vec{x}) \rightarrow \bar{K}_1) \rightarrow \dots \rightarrow (K_n(\vec{x}) \rightarrow \bar{K}_n) \rightarrow \circ,$$

where K_i are clauses of target $R?(\vec{x})$.

This time we accumulate a history of a refuting play.

Proving incompleteness, cont'd

If clause K_i is e.g. $R(\vec{x}) :- P(\vec{x}), Q(\vec{x}), \neg S(\vec{x})$

then we have this axiom, where RP “remembers” a single refutation step.

$$\forall \vec{x}. K_i(\vec{x}) \rightarrow (P?(\vec{x}) \rightarrow RP(\vec{x}) \rightarrow \circ) \rightarrow \bar{K}_i$$

This “memory” is made transitive with axioms:

$$\forall \vec{x} \vec{y} \vec{z} (RP(\vec{x}, \vec{y}) \rightarrow PQ(\vec{y}, \vec{z}) \rightarrow (RQ(\vec{x}, \vec{z}) \rightarrow \circ) \rightarrow \circ)$$

The refuter can win by discovering a loop:

$$\forall \vec{x} (PP(\vec{x}, \vec{x}) \rightarrow \circ).$$

Backward translation

Given a monadic formula φ define a program P so that stable models of P represent refutations of φ .

Backward translation

Given a monadic formula φ define a program P so that stable models of P represent refutations of φ .

Refutations must be made concise (exponential size).