
First-order answer set programming
as constructive proof search

Paweł Urzyczyn
(joint work with Aleksy Schubert)

Logic Programming

A logic program:

X :− Y ,Z ;

U :− Z ,V ;

Y :− Z ;

Z :− .

The meaning of this program is the set of derived atoms.

They are: Z , Y , X ,

but neither U nor V .

◦

Logic Programming

A logic program:

X :− Y ,Z ;

U :− Z ,V ;

Y :− Z ;

Z :− .

The meaning of this program is the set of derived atoms.

They are: Z , Y , X ,

but neither U nor V .

◦

Logic Programming

A logic program:

X :− Y ,Z ;

U :− Z ,V ;

Y :− Z ;

Z :− .

The meaning of this program is the set of derived atoms.

They are: Z ,

Y , X ,

but neither U nor V .

◦

Logic Programming

A logic program:

X :− Y ,Z ;

U :− Z ,V ;

Y :− Z ;

Z :− .

The meaning of this program is the set of derived atoms.

They are: Z , Y ,

X ,

but neither U nor V .

◦

Logic Programming

A logic program:

X :− Y ,Z ;

U :− Z ,V ;

Y :− Z ;

Z :− .

The meaning of this program is the set of derived atoms.

They are: Z , Y , X ,

but neither U nor V .

◦

Logic Programming

A logic program:

X :− Y ,Z ;

U :− Z ,V ;

Y :− Z ;

Z :− .

The meaning of this program is the set of derived atoms.

They are: Z , Y , X ,

but neither U nor V .

◦

A logic program with negations

X :− Y ,Z ,U ;

Y :− ¬Z ;

Y :− Z ;

Z :− ¬X ,¬U ;

U :− Y ,¬Z ;

Which atoms are “derivable” (forced true)?

There are many possible answers. One is...

◦

A logic program with negations

X :− Y ,Z ,U ;

Y :− ¬Z ;

Y :− Z ;

Z :− ¬X ,¬U ;

U :− Y ,¬Z ;

Which atoms are “derivable” (forced true)?

There are many possible answers. One is...

◦

Answer Set Programming

Kolaitis, Papadimitriou,
Why not Negation by Fixpoint?, PODS’88:

1. Guess which atoms should be forced.
2. Verify that exactly these atoms are forced.

◦

Bad guess

X :− Y ,Z ,U ;

Y :− ¬Z ;

Y :− Z ;

Z :− ¬X ,¬U ;

U :− Y ,¬Z ;

Guess 1: Atoms X and Z are forced, atoms Y and U are not.

Bad guess

X :− Y ,Z ,U ;

Y :− ¬Z ; Red clauses are invalid.

Y :− Z ;

Nothing can be derived: this guess is wrong.

Z :− ¬X ,¬U ;

U :− Y ,¬Z .

Guess 1: Atoms X and Z are forced, atoms Y and U are not.

Bad guess

X :− Y ,Z ,U ;

Y :− ¬Z ; Red clauses are invalid.

Y :− Z ; Nothing can be derived: this guess is wrong.

Z :− ¬X ,¬U ;

U :− Y ,¬Z .

Guess 1: Atoms X and Z are forced, atoms Y and U are not.

Good guess

X :− Y ,Z ,U ;

Y :− ¬Z ;

Y :− Z ;

Z :− ¬X ,¬U ;

U :− Y ,¬Z ;

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Good guess

X :− Y ,Z ,U ; Green assumptions are satisfied.

Y :− ¬Z ;

Y can be derived

Y :− Z ;

Z :− ¬X ,¬U ; This clause is invalid.

U :− Y ,¬Z .

U can be derived

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Good guess

X :− Y ,Z ,U ; Green assumptions are satisfied.

Y :− ¬Z ; Y can be derived

Y :− Z ;

Z :− ¬X ,¬U ; This clause is invalid.

U :− Y ,¬Z .

U can be derived

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Good guess

X :− Y ,Z ,U ; Green assumptions are satisfied.

Y :− ¬Z ; Y can be derived

Y :− Z ;

Z :− ¬X ,¬U ; This clause is invalid.

U :− Y ,¬Z . U can be derived

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Another good guess

X :− Y ,Z ,U ;

Y :− ¬Z ;

Y :− Z ;

Z :− ¬X ,¬U ;

U :− Y ,¬Z ;

Guess 3: Atoms Z ,Y are forced, others are not.

Another good guess

X :− Y ,Z ,U ; Green assumptions are satisfied.

Y :− ¬Z ; Red clauses are invalid.

Y :− Z ;

Y can be derived

Z :− ¬X ,¬U ;

Z can be derived

U :− Y ,¬Z ;

Guess 3: Atom Z ,Y are forced, others are not.

◦

Another good guess

X :− Y ,Z ,U ; Green assumptions are satisfied.

Y :− ¬Z ; Red clauses are invalid.

Y :− Z ;

Y can be derived

Z :− ¬X ,¬U ; Z can be derived

U :− Y ,¬Z ;

Guess 3: Atom Z ,Y are forced, others are not.

◦

Another good guess

X :− Y ,Z ,U ; Green assumptions are satisfied.

Y :− ¬Z ; Red clauses are invalid.

Y :− Z ; Y can be derived

Z :− ¬X ,¬U ; Z can be derived

U :− Y ,¬Z ;

Guess 3: Atom Z ,Y are forced, others are not.

◦

Stable models

X :− Y ,Z ,U ;

Y :− ¬Z ;

Y :− Z ;

Z :− ¬X ,¬U ;

U :− Y ,¬Z ;

This program has two stable models {U ,Y } and {Z ,Y }.

It entails Y under stable model semantics.

Write P |=sms Y .

Main definition

Given a program P and model M, define program PM without
negations, as follows:

I For X 6∈M, delete ¬X from the rhs of all clauses of P ;
I For X ∈M, delete all clauses of P with ¬X at the rhs.

The model M is stable (is an answer set) for P , when exactly
the atoms in M are derivable from PM.

◦

ASP and intuitionistic logic

Characterizing ASP in terms of two-element Kripke models:

I David Pearce. Stable inference as intuitionistic validity.
The Journal of Logic Programming, 38(1):79–91, 1999.

Can this be done in terms of intuitionistic logic per se?

◦

ASP and intuitionistic logic

Characterizing ASP in terms of two-element Kripke models:

I David Pearce. Stable inference as intuitionistic validity.
The Journal of Logic Programming, 38(1):79–91, 1999.

Can this be done in terms of intuitionistic logic per se?

◦

The plan

I Given program P and atom Ω, write a formula ϕ
such that P |=sms Ω if and only if ϕ is provable.

I Define a translation backward (for a class of formulas
within co-NP).

I Do the same for datalog using a co-Nexptime complete
class of first-order formulas.

◦

The plan

I Given program P and atom Ω, write a formula ϕ
such that P |=sms Ω if and only if ϕ is provable.

I Define a translation backward (for a class of formulas
within co-NP).

I Do the same for datalog using a co-Nexptime complete
class of first-order formulas.

◦

The plan

I Given program P and atom Ω, write a formula ϕ
such that P |=sms Ω if and only if ϕ is provable.

I Define a translation backward (for a class of formulas
within co-NP).

I Do the same for datalog using a co-Nexptime complete
class of first-order formulas.

◦

Forward translation

I Define formula ϕ so that P |=sms Ω iff ϕ is provable.

We construct ϕ = ψ1 → ψ2 → · · · → ψm → 0.

The entailment should hold in every model . For example:

Assume P has only 4 atoms X , Y , Z , and Ω. Then among
the axioms ψi there will be formulas:

(X → 1)→ (X → 1)→ 0 (Y → 2)→ (Y → 2)→ 1

(Z → 3)→ (Z → 3)→ 2 (Ω→ 4)→ (Ω→ 4)→ 3

No other axiom has 0,1,2,3 as target.

To prove 0 from the initial assumptions one must derive 4
under an arbitrary choice of overlined and non-overlined atoms.

◦

Forward translation

I Define formula ϕ so that P |=sms Ω iff ϕ is provable.

We construct ϕ = ψ1 → ψ2 → · · · → ψm → 0.

The entailment should hold in every model . For example:

Assume P has only 4 atoms X , Y , Z , and Ω. Then among
the axioms ψi there will be formulas:

(X → 1)→ (X → 1)→ 0 (Y → 2)→ (Y → 2)→ 1

(Z → 3)→ (Z → 3)→ 2 (Ω→ 4)→ (Ω→ 4)→ 3

No other axiom has 0,1,2,3 as target.

To prove 0 from the initial assumptions one must derive 4
under an arbitrary choice of overlined and non-overlined atoms.

◦

Forward translation

I Define formula ϕ so that P |=sms Ω iff ϕ is provable.

We construct ϕ = ψ1 → ψ2 → · · · → ψm → 0.

The entailment should hold in every model . For example:

Assume P has only 4 atoms X , Y , Z , and Ω. Then among
the axioms ψi there will be formulas:

(X → 1)→ (X → 1)→ 0 (Y → 2)→ (Y → 2)→ 1

(Z → 3)→ (Z → 3)→ 2 (Ω→ 4)→ (Ω→ 4)→ 3

No other axiom has 0,1,2,3 as target.

To prove 0 from the initial assumptions one must derive 4
under an arbitrary choice of overlined and non-overlined atoms.

◦

Forward translation

I Define formula ϕ so that P |=sms Ω iff ϕ is provable.

We construct ϕ = ψ1 → ψ2 → · · · → ψm → 0.

The entailment should hold in every model . For example:

Assume P has only 4 atoms X , Y , Z , and Ω. Then among
the axioms ψi there will be formulas:

(X → 1)→ (X → 1)→ 0 (Y → 2)→ (Y → 2)→ 1

(Z → 3)→ (Z → 3)→ 2 (Ω→ 4)→ (Ω→ 4)→ 3

No other axiom has 0,1,2,3 as target.

To prove 0 from the initial assumptions one must derive 4
under an arbitrary choice of overlined and non-overlined atoms.

◦

How to ensure entailment

The entailment P |=sms Ω means that one of the three cases
holds in every model M:

Ω) either Ω ∈M, or
A) the model is unstable because too much is derivable

(PM is unsound for M), or
B) the model is unstable because too little is derivable

(PM is incomplete for M).

Three more axioms: Ω→ 4, A→ 4, B → 4.

◦

Proving unsoundness

We include in our formula the following axioms:

I X i → Xi !→ A, for every atom Xi of P ;
I all clauses of P where Xi is renamed as Xi !

and ¬Xi is renamed as X i .

Let M be the model corresponding to the present context.

One can prove Xi ! if and only if the program PM derives Xi .

Thus A is provable if and only if PM derives some Xi 6∈M.

◦

Proving incompleteness

One proves B iff some Xi ∈M cannot be derived by PM.

We include in our formula the axiom:

I Xi → Xi?→ B ,

for every atom Xi of P .

Every proof of Xi? represents a refutation of Xi . How?

◦

Proving non-provability

Suppose we have only two clauses with target X :

K1: X :− Y ,Z ,¬U ; K2: X :− V ,U ,¬Z .

Then we have the axiom:

(X?→ K1)→ (X?→ K2)→ X?

In particular we need to derive K1 (using X?).

For that purpose we have axioms:

Y ?→K1, Z?→K1, U→K1,

If U ∈M then K1 is provable: clause K1 cannot derive X .

Otherwise we can try to prove e.g. Y ?
(Clause K1 can’t be used if Y is not derivable.)

◦

Proving non-provability

Suppose we have only two clauses with target X :

K1: X :− Y ,Z ,¬U ; K2: X :− V ,U ,¬Z .

Then we have the axiom:

(X?→ K1)→ (X?→ K2)→ X?

In particular we need to derive K1 (using X?).

For that purpose we have axioms:

Y ?→K1, Z?→K1, U→K1,

If U ∈M then K1 is provable: clause K1 cannot derive X .

Otherwise we can try to prove e.g. Y ?
(Clause K1 can’t be used if Y is not derivable.)

◦

Proving non-provability

Suppose we have only two clauses with target X :

K1: X :− Y ,Z ,¬U ; K2: X :− V ,U ,¬Z .

Then we have the axiom:

(X?→ K1)→ (X?→ K2)→ X?

In particular we need to derive K1 (using X?).

For that purpose we have axioms:

Y ?→K1, Z?→K1, U→K1,

If U ∈M then K1 is provable: clause K1 cannot derive X .

Otherwise we can try to prove e.g. Y ?
(Clause K1 can’t be used if Y is not derivable.)

◦

Proving non-provability

Suppose we have only two clauses with target X :

K1: X :− Y ,Z ,¬U ; K2: X :− V ,U ,¬Z .

Then we have the axiom:

(X?→ K1)→ (X?→ K2)→ X?

In particular we need to derive K1 (using X?).

For that purpose we have axioms:

Y ?→K1, Z?→K1, U→K1,

If U ∈M then K1 is provable: clause K1 cannot derive X .

Otherwise we can try to prove e.g. Y ?
(Clause K1 can’t be used if Y is not derivable.)

◦

Proving non-provability

Suppose we have only two clauses with target X :

K1: X :− Y ,Z ,¬U ; K2: X :− V ,U ,¬Z .

Then we have the axiom:

(X?→ K1)→ (X?→ K2)→ X?

In particular we need to derive K1 (using X?).

For that purpose we have axioms:

Y ?→K1, Z?→K1, U→K1,

If U ∈M then K1 is provable: clause K1 cannot derive X .

Otherwise we can try to prove e.g. Y ?
(Clause K1 can’t be used if Y is not derivable.)

◦

Termination

Can this process go forever?

To prove X? we attempt to prove Y ?,
this makes us try to prove Z? etc.

Recall the axiom: (X?→ K1)→ (X?→ K2)→ X?

Each time we address a proof goal X?
we add the assumption X?

Should X? appear as a proof goal again, we win instantly.

Note that such judgments are only classically valid:

. . . , (X?→ K1)→ (X?→ K2)→ X?, · · · ` X?

◦

Termination

Can this process go forever?

To prove X? we attempt to prove Y ?,
this makes us try to prove Z? etc.

Recall the axiom: (X?→ K1)→ (X?→ K2)→ X?

Each time we address a proof goal X?
we add the assumption X?

Should X? appear as a proof goal again, we win instantly.

Note that such judgments are only classically valid:

. . . , (X?→ K1)→ (X?→ K2)→ X?, · · · ` X?

◦

Termination

Can this process go forever?

To prove X? we attempt to prove Y ?,
this makes us try to prove Z? etc.

Recall the axiom: (X?→ K1)→ (X?→ K2)→ X?

Each time we address a proof goal X?
we add the assumption X?

Should X? appear as a proof goal again, we win instantly.

Note that such judgments are only classically valid:

. . . , (X?→ K1)→ (X?→ K2)→ X?, · · · ` X?

◦

Termination

Can this process go forever?

To prove X? we attempt to prove Y ?,
this makes us try to prove Z? etc.

Recall the axiom: (X?→ K1)→ (X?→ K2)→ X?

Each time we address a proof goal X?
we add the assumption X?

Should X? appear as a proof goal again, we win instantly.

Note that such judgments are only classically valid:

. . . , (X?→ K1)→ (X?→ K2)→ X?, · · · ` X?

◦

Termination

Can this process go forever?

To prove X? we attempt to prove Y ?,
this makes us try to prove Z? etc.

Recall the axiom: (X?→ K1)→ (X?→ K2)→ X?

Each time we address a proof goal X?
we add the assumption X?

Should X? appear as a proof goal again, we win instantly.

Note that such judgments are only classically valid:

. . . , (X?→ K1)→ (X?→ K2)→ X?, · · · ` X?

◦

Backward translation

ASP entailment is NP-complete. Intutionistic propositional
logic is Pspace-complete. Backward translation is only possible
for formulas of a simple shape (pseudo-DNF formulas).

The principle of backward translation: for a given formula ϕ
write a program P so that

ϕ is not provable if and only if P has a stable model.

Slogan: stable model ≡ refutation.

◦

Backward translation

ASP entailment is NP-complete. Intutionistic propositional
logic is Pspace-complete. Backward translation is only possible
for formulas of a simple shape (pseudo-DNF formulas).

The principle of backward translation: for a given formula ϕ
write a program P so that

ϕ is not provable if and only if P has a stable model.

Slogan: stable model ≡ refutation.

◦

The first-order case

The plan

First-order datalog ASP is Nexptime-complete.
The appropriate first-order fragment should be
co-Nexptime-complete.

I We translate the entailment P |=sms Ω into a first-order
Σ1 formula ϕ with nullary targets.

I Such formulas can be replaced by monadic Σ1 formulas
(with only unary predicates).

I Refutability of bounded-arity Σ1 formulas reduces to ASP.
(Refutation soup ⇒ stable model.)

◦

The class Σ1

We only consider formulas written with ∀ and →.

Positions of ∀ are classified as “positive” (covariant)
and “negative” (contravariant). The class Σ1 has ∀
only at negative positions.

Provability of Σ1 formulas is Expspace-complete in general.

Provability of Σ1 formulas with nullary targets
is co-Nexptime-complete.

Same for Σ1 formulas with bounded-arity predicates.

In fact all we need is this pattern:
~∀(. . .)→ ~∀(. . .)→ · · · → ~∀(. . .)→ a

◦

The class Σ1

We only consider formulas written with ∀ and →.

Positions of ∀ are classified as “positive” (covariant)
and “negative” (contravariant). The class Σ1 has ∀
only at negative positions.

Provability of Σ1 formulas is Expspace-complete in general.

Provability of Σ1 formulas with nullary targets
is co-Nexptime-complete.

Same for Σ1 formulas with bounded-arity predicates.

In fact all we need is this pattern:
~∀(. . .)→ ~∀(. . .)→ · · · → ~∀(. . .)→ a

◦

The class Σ1

We only consider formulas written with ∀ and →.

Positions of ∀ are classified as “positive” (covariant)
and “negative” (contravariant). The class Σ1 has ∀
only at negative positions.

Provability of Σ1 formulas is Expspace-complete in general.

Provability of Σ1 formulas with nullary targets
is co-Nexptime-complete.

Same for Σ1 formulas with bounded-arity predicates.

In fact all we need is this pattern:
~∀(. . .)→ ~∀(. . .)→ · · · → ~∀(. . .)→ a

◦

The class Σ1

We only consider formulas written with ∀ and →.

Positions of ∀ are classified as “positive” (covariant)
and “negative” (contravariant). The class Σ1 has ∀
only at negative positions.

Provability of Σ1 formulas is Expspace-complete in general.

Provability of Σ1 formulas with nullary targets
is co-Nexptime-complete.

Same for Σ1 formulas with bounded-arity predicates.

In fact all we need is this pattern:
~∀(. . .)→ ~∀(. . .)→ · · · → ~∀(. . .)→ a

◦

The class Σ1

We only consider formulas written with ∀ and →.

Positions of ∀ are classified as “positive” (covariant)
and “negative” (contravariant). The class Σ1 has ∀
only at negative positions.

Provability of Σ1 formulas is Expspace-complete in general.

Provability of Σ1 formulas with nullary targets
is co-Nexptime-complete.

Same for Σ1 formulas with bounded-arity predicates.

In fact all we need is this pattern:
~∀(. . .)→ ~∀(. . .)→ · · · → ~∀(. . .)→ a

◦

Forward translation: first-order case

Given program P and atom Ω, write a formula

ϕ = ψ1 → ψ2 → · · · → ψm → loop

such that P |=sms Ω.

Model construction in every branch of the proof:

∀~z((R(~z)→ loop)→ (R(~z)→ loop)→ loop)

Case dispatch as before:

Ω→ loop, A→ loop, and B→ loop

◦

Forward translation: first-order case

Given program P and atom Ω, write a formula

ϕ = ψ1 → ψ2 → · · · → ψm → loop

such that P |=sms Ω.

Model construction in every branch of the proof:

∀~z((R(~z)→ loop)→ (R(~z)→ loop)→ loop)

Case dispatch as before:

Ω→ loop, A→ loop, and B→ loop

◦

Forward translation: first-order case

Given program P and atom Ω, write a formula

ϕ = ψ1 → ψ2 → · · · → ψm → loop

such that P |=sms Ω.

Model construction in every branch of the proof:

∀~z((R(~z)→ loop)→ (R(~z)→ loop)→ loop)

Case dispatch as before:

Ω→ loop, A→ loop, and B→ loop

◦

Proving unsoundness with nullary targets

Instead of X i → Xi !→ A we use axioms

∀~x .R(~x)→ (R!(~x)→ •)→ A,

That is, we prove •, accumulating knowledge of derivation
goals R!(~c) visited so far. For a clause like

R(~x) :− P(~x),Q(~x),¬S(~x)

we have an axiom of the form:

∀~x .R!(~x)→ (P!(~x)→ •)→ (Q!(~x)→ •)→ S(~x)→ •,

Proof succeeds when we arrive at a fact (no more subgoals).

◦

Proving incompletenenss with nullary targets

The basic axiom scheme is

∀~x .R(~x)→ (R?(~x)→ ◦)→ B.

(Oversimplified) axiom scheme for R?(~x) is

∀~x .R?(~x)→ (K1(~x)→ K 1)→ · · · → (Kn(~x)→ K n)→ ◦,

where Ki are clauses of target R?(~x).
This time we accumulate a history of a refuting play.

◦

Proving incompletenenss, cont’d

If clause Ki is e.g. R(~x) :− P(~x),Q(~x),¬S(~x)

then we have this axiom, where RP “remembers”
a single refutation step.

∀~x .Ki(~x)→ (P?(~x)→ RP(~x)→ ◦)→ K i

This “memory” is made transitive with axioms:

∀~x~y~z(RP(~x , ~y)→ PQ(~y , ~z)→ (RQ(~x , ~z)→ ◦)→ ◦)

The refuter can win by discovering a loop:

∀~x(PP(~x , ~x)→ ◦).

◦

Backward translation

Given a monadic formula ϕ define a program P so that stable
models of P represent refutations of ϕ.

Refutations must be made concise (exponential size).

◦

Backward translation

Given a monadic formula ϕ define a program P so that stable
models of P represent refutations of ϕ.

Refutations must be made concise (exponential size).

◦

