First-order answer set programming as constructive proof search

Paweł Urzyczyn
(joint work with Aleksy Schubert)

Logic Programming

A logic program:
$X:-Y, Z$;
$U:-Z, V$;
$Y:-Z$;
Z:- .

Logic Programming

A logic program:
$X:-Y, Z$;
$U:-Z, V$;
$Y:-Z$;
Z:- .

The meaning of this program is the set of derived atoms.

Logic Programming

A logic program:
$X:-Y, Z$;
$U:-Z, V$;
$Y:-Z$;
Z:- .

The meaning of this program is the set of derived atoms.
They are: Z,

Logic Programming

A logic program:
$X:-Y, Z$;
$U:-Z, V$;
$Y:-Z$;
Z:- .

The meaning of this program is the set of derived atoms.
They are: Z, Y,

Logic Programming

A logic program:
$X:-Y, Z$;
$U:-Z, V$;
$Y:-Z$;
Z:- .

The meaning of this program is the set of derived atoms.
They are: Z, Y, X,

Logic Programming

A logic program:
$X:-Y, Z$;
$U:-Z, V$;
$Y:-Z$;
Z:- .

The meaning of this program is the set of derived atoms.
They are: Z, Y, X, but neither U nor V.

A logic program with negations

$$
\begin{aligned}
& X:-Y, Z, U ; \\
& Y:-\neg Z ; \\
& Y:-Z ; \\
& Z:-\neg X, \neg U ; \\
& U:-Y, \neg Z ;
\end{aligned}
$$

Which atoms are "derivable" (forced true)?

A logic program with negations

$$
\begin{aligned}
& X:-Y, Z, U ; \\
& Y:-\neg Z ; \\
& Y:-Z ; \\
& Z:-\neg X, \neg U ; \\
& U:-Y, \neg Z ;
\end{aligned}
$$

Which atoms are "derivable" (forced true)?
There are many possible answers. One is...

Answer Set Programming

Kolaitis, Papadimitriou,
Why not Negation by Fixpoint?, PODS'88:

1. Guess which atoms should be forced.
2. Verify that exactly these atoms are forced.

Bad guess

$$
\begin{aligned}
& X:-Y, Z, U ; \\
& Y:-\neg Z ; \\
& Y:-Z ; \\
& Z:-\neg X, \neg U ; \\
& U:-Y, \neg Z ;
\end{aligned}
$$

Guess 1: Atoms X and Z are forced, atoms Y and U are not.

Bad guess

$X:-Y, Z, U$;
$Y:-\neg Z$; Red clauses are invalid.
$Y:-Z$;
$Z:-\neg X, \neg U$;
$U:-Y, \neg Z$.

Guess 1: Atoms X and Z are forced, atoms Y and U are not.

Bad guess

$X:-Y, Z, U$;
$Y:-\neg Z$; Red clauses are invalid.
$Y:-Z$; Nothing can be derived: this guess is wrong.
$Z:-\neg X, \neg U$;
$U:-Y, \neg Z$.

Guess 1: Atoms X and Z are forced, atoms Y and U are not.

Good guess

$$
\begin{aligned}
& X:-Y, Z, U ; \\
& Y:-\neg Z ; \\
& Y:-Z ; \\
& Z:-\neg X, \neg U ; \\
& U:-Y, \neg Z ;
\end{aligned}
$$

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Good guess

$X:-Y, Z, U$;
Green assumptions are satisfied.
$Y:-\neg Z$;
$Y:-Z$;
$Z:-\neg X, \neg U$; This clause is invalid.
$U:-Y, \neg Z$.

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Good guess

$X:-Y, Z, U$;
$Y:-\neg Z$;
$Y:-Z$;
$Z:-\neg X, \neg U$; This clause is invalid.
$U:-Y, \neg Z$.

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Good guess

$X:-Y, Z, U$;
Green assumptions are satisfied.
$Y:-\neg Z ; \quad Y$ can be derived
$Y:-Z$;
$Z:-\neg X, \neg U$; This clause is invalid.
$U:-Y, \neg Z . \quad U$ can be derived

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Another good guess

$$
\begin{aligned}
& X:-Y, Z, U ; \\
& Y:-\neg Z ; \\
& Y:-Z ; \\
& Z:-\neg X, \neg U ; \\
& U:-Y, \neg Z ;
\end{aligned}
$$

Guess 3: Atoms Z, Y are forced, others are not.

Another good guess

$X:-Y, Z, U$;
$Y:-\neg Z ; \quad$ Red clauses are invalid.
$Y:-Z$;
$Z:-\neg X, \neg U$;
$U:-Y, \neg Z$;

Guess 3: Atom Z, Y are forced, others are not.

Another good guess

$X:-Y, Z, U$;
Green assumptions are satisfied.
$Y:-\neg Z ; \quad$ Red clauses are invalid.
$Y:-Z$;
$Z:-\neg X, \neg U ; \quad Z$ can be derived
$U:-Y, \neg Z ;$

Guess 3: Atom Z, Y are forced, others are not.

Another good guess

$X:-Y, Z, U$;
Green assumptions are satisfied.
$Y:-\neg Z ; \quad$ Red clauses are invalid.
$Y:-Z ; \quad Y$ can be derived
$Z:-\neg X, \neg U ; \quad Z$ can be derived
$U:-Y, \neg Z ;$

Guess 3: Atom Z, Y are forced, others are not.

Stable models

$$
\begin{aligned}
& X:-Y, Z, U ; \\
& Y:-\neg Z ; \\
& Y:-Z ; \\
& Z:-\neg X, \neg U ; \\
& U:-Y, \neg Z ;
\end{aligned}
$$

This program has two stable models $\{U, Y\}$ and $\{Z, Y\}$. It entails Y under stable model semantics.

Write $P \models$ sms Y.

Main definition

Given a program P and model \mathfrak{M}, define program $P_{\mathfrak{M}}$ without negations, as follows:

- For $X \notin \mathfrak{M}$, delete $\neg X$ from the rhs of all clauses of P;
- For $X \in \mathfrak{M}$, delete all clauses of P with $\neg X$ at the rhs.

The model \mathfrak{M} is stable (is an answer set) for P, when exactly the atoms in \mathfrak{M} are derivable from $P_{\mathfrak{M}}$.

ASP and intuitionistic logic

Characterizing ASP in terms of two-element Kripke models:

- David Pearce. Stable inference as intuitionistic validity. The Journal of Logic Programming, 38(1):79-91, 1999.

ASP and intuitionistic logic

Characterizing ASP in terms of two-element Kripke models:

- David Pearce. Stable inference as intuitionistic validity. The Journal of Logic Programming, 38(1):79-91, 1999.

Can this be done in terms of intuitionistic logic per se?

The plan

- Given program P and atom Ω, write a formula φ such that $P \models_{\mathrm{sms}} \Omega$ if and only if φ is provable.

The plan

- Given program P and atom Ω, write a formula φ such that $P \models$ sms Ω if and only if φ is provable.
- Define a translation backward (for a class of formulas within co-NP).

The plan

- Given program P and atom Ω, write a formula φ such that $P \models$ sms Ω if and only if φ is provable.
- Define a translation backward (for a class of formulas within co-NP).
- Do the same for datalog using a co-Nexptime complete class of first-order formulas.

Forward translation

- Define formula φ so that $P \models \operatorname{sms} \Omega$ iff φ is provable.

Forward translation

- Define formula φ so that $P \models \operatorname{sms} \Omega$ iff φ is provable.

We construct $\varphi=\psi_{1} \rightarrow \psi_{2} \rightarrow \cdots \rightarrow \psi_{m} \rightarrow 0$.

Forward translation

- Define formula φ so that $P \models \operatorname{sms} \Omega$ iff φ is provable.

We construct $\varphi=\psi_{1} \rightarrow \psi_{2} \rightarrow \cdots \rightarrow \psi_{m} \rightarrow 0$.
The entailment should hold in every model. For example:
Assume P has only 4 atoms X, Y, Z, and Ω. Then among the axioms ψ_{i} there will be formulas:
$(\bar{X} \rightarrow 1) \rightarrow(X \rightarrow 1) \rightarrow 0$
$(\bar{Y} \rightarrow 2) \rightarrow(Y \rightarrow 2) \rightarrow 1$
$(\bar{Z} \rightarrow 3) \rightarrow(Z \rightarrow 3) \rightarrow 2$
$(\bar{\Omega} \rightarrow 4) \rightarrow(\Omega \rightarrow 4) \rightarrow 3$

No other axiom has $0,1,2,3$ as target.

Forward translation

- Define formula φ so that $P \models \operatorname{sms} \Omega$ iff φ is provable.

We construct $\varphi=\psi_{1} \rightarrow \psi_{2} \rightarrow \cdots \rightarrow \psi_{m} \rightarrow 0$.
The entailment should hold in every model. For example:
Assume P has only 4 atoms X, Y, Z, and Ω. Then among the axioms ψ_{i} there will be formulas:

$$
\begin{array}{ll}
(\bar{X} \rightarrow 1) \rightarrow(X \rightarrow 1) \rightarrow 0 & (\bar{Y} \rightarrow 2) \rightarrow(Y \rightarrow 2) \rightarrow 1 \\
(\bar{Z} \rightarrow 3) \rightarrow(Z \rightarrow 3) \rightarrow 2 & (\bar{\Omega} \rightarrow 4) \rightarrow(\Omega \rightarrow 4) \rightarrow 3
\end{array}
$$

No other axiom has $0,1,2,3$ as target.
To prove 0 from the initial assumptions one must derive 4 under an arbitrary choice of overlined and non-overlined atoms.

How to ensure entailment

The entailment $P \models$ sms Ω means that one of the three cases holds in every model \mathfrak{M} :
Ω) either $\Omega \in \mathfrak{M}$, or
A) the model is unstable because too much is derivable ($P_{\mathfrak{M}}$ is unsound for \mathfrak{M}), or
B) the model is unstable because too little is derivable ($P_{\mathfrak{M}}$ is incomplete for \mathfrak{M}).

Three more axioms: $\quad \Omega \rightarrow 4, \quad A \rightarrow 4, \quad B \rightarrow 4$.

Proving unsoundness

We include in our formula the following axioms:

- $\bar{X}_{i} \rightarrow X_{i}!\rightarrow A$, for every atom X_{i} of P;
- all clauses of P where X_{i} is renamed as X_{i} ! and $\neg X_{i}$ is renamed as \bar{X}_{i}.

Let \mathfrak{M} be the model corresponding to the present context.
One can prove X_{i} ! if and only if the program $P_{\mathfrak{M}}$ derives X_{i}.
Thus A is provable if and only if $P_{\mathfrak{M}}$ derives some $X_{i} \notin \mathfrak{M}$.

Proving incompleteness

One proves B iff some $X_{i} \in \mathfrak{M}$ cannot be derived by $P_{\mathfrak{M}}$.

We include in our formula the axiom:

- $X_{i} \rightarrow X_{i} ? \rightarrow B$,
for every atom X_{i} of P.

Every proof of X_{i} ? represents a refutation of X_{i}. How?

Proving non-provability

Suppose we have only two clauses with target X :
$\mathrm{K} 1: X:-Y, Z, \neg U ; \quad \mathrm{K} 2: X:-V, U, \neg Z$.
Then we have the axiom:
$\left(X ? \rightarrow K_{1}\right) \rightarrow\left(X ? \rightarrow K_{2}\right) \rightarrow X ?$

Proving non-provability

Suppose we have only two clauses with target X :
$\mathrm{K} 1: X:-Y, Z, \neg U ; \quad \mathrm{K} 2: X:-V, U, \neg Z$.
Then we have the axiom:
$\left(X ? \rightarrow K_{1}\right) \rightarrow\left(X ? \rightarrow K_{2}\right) \rightarrow X ?$
In particular we need to derive K_{1} (using X ?).

Proving non-provability

Suppose we have only two clauses with target X :

$$
\mathrm{K} 1: X:-Y, Z, \neg U ; \quad \mathrm{K} 2: X:-V, U, \neg Z .
$$

Then we have the axiom:
$\left(X ? \rightarrow K_{1}\right) \rightarrow\left(X ? \rightarrow K_{2}\right) \rightarrow X ?$
In particular we need to derive K_{1} (using X ?).
For that purpose we have axioms:
$Y ? \rightarrow K_{1}, \quad Z ? \rightarrow K_{1}, \quad U \rightarrow K_{1}$,

Proving non-provability

Suppose we have only two clauses with target X :
$\mathrm{K} 1: X:-Y, Z, \neg U ; \quad \mathrm{K} 2: X:-V, U, \neg Z$.
Then we have the axiom:
$\left(X ? \rightarrow K_{1}\right) \rightarrow\left(X ? \rightarrow K_{2}\right) \rightarrow X ?$
In particular we need to derive K_{1} (using X ?).
For that purpose we have axioms:
$Y ? \rightarrow K_{1}, \quad Z ? \rightarrow K_{1}, \quad U \rightarrow K_{1}$,
If $U \in \mathfrak{M}$ then K_{1} is provable: clause K 1 cannot derive X.

Proving non-provability

Suppose we have only two clauses with target X :
$\mathrm{K} 1: X:-Y, Z, \neg U ; \quad \mathrm{K} 2: X:-V, U, \neg Z$.
Then we have the axiom:
$\left(X ? \rightarrow K_{1}\right) \rightarrow\left(X ? \rightarrow K_{2}\right) \rightarrow X ?$
In particular we need to derive K_{1} (using X ?).
For that purpose we have axioms:
$Y ? \rightarrow K_{1}, \quad Z ? \rightarrow K_{1}, \quad U \rightarrow K_{1}$,
If $U \in \mathfrak{M}$ then K_{1} is provable: clause K 1 cannot derive X.
Otherwise we can try to prove e.g. Y ?
(Clause K1 can't be used if Y is not derivable.)

Termination

Can this process go forever?

Termination

Can this process go forever?
To prove X ? we attempt to prove Y ?, this makes us try to prove Z ? etc.

Termination

Can this process go forever?
To prove X ? we attempt to prove Y ?, this makes us try to prove Z ? etc.

Recall the axiom: $\left(X ? \rightarrow K_{1}\right) \rightarrow\left(X ? \rightarrow K_{2}\right) \rightarrow X$?
Each time we address a proof goal X ? we add the assumption X ?

Termination

Can this process go forever?
To prove X ? we attempt to prove Y ?, this makes us try to prove Z ? etc.

Recall the axiom: $\left(X ? \rightarrow K_{1}\right) \rightarrow\left(X ? \rightarrow K_{2}\right) \rightarrow X$?
Each time we address a proof goal X ? we add the assumption X ?

Should X ? appear as a proof goal again, we win instantly.

Termination

Can this process go forever?
To prove X ? we attempt to prove Y ?, this makes us try to prove Z ? etc.

Recall the axiom: $\left(X ? \rightarrow K_{1}\right) \rightarrow\left(X ? \rightarrow K_{2}\right) \rightarrow X$?
Each time we address a proof goal X ? we add the assumption X ?

Should X ? appear as a proof goal again, we win instantly. Note that such judgments are only classically valid:
$\ldots,\left(X ? \rightarrow K_{1}\right) \rightarrow\left(X ? \rightarrow K_{2}\right) \rightarrow X ?, \cdots \vdash X$?

Backward translation

ASP entailment is NP-complete. Intutionistic propositional logic is Pspace-complete. Backward translation is only possible for formulas of a simple shape (pseudo-DNF formulas).

Backward translation

ASP entailment is NP-complete. Intutionistic propositional logic is Pspace-complete. Backward translation is only possible for formulas of a simple shape (pseudo-DNF formulas).

The principle of backward translation: for a given formula write a program P so that
φ is not provable if and only if P has a stable model.
Slogan: stable model \equiv refutation.

The first-order case

The plan

First-order datalog ASP is Nexptime-complete.
The appropriate first-order fragment should be co-Nexptime-complete.

- We translate the entailment $P \models$ sms Ω into a first-order Σ_{1} formula φ with nullary targets.
- Such formulas can be replaced by monadic Σ_{1} formulas (with only unary predicates).
- Refutability of bounded-arity Σ_{1} formulas reduces to ASP. (Refutation soup \Rightarrow stable model.)

The class Σ_{1}

We only consider formulas written with \forall and \rightarrow.
Positions of \forall are classified as "positive" (covariant) and "negative" (contravariant). The class Σ_{1} has \forall only at negative positions.

The class Σ_{1}

We only consider formulas written with \forall and \rightarrow.
Positions of \forall are classified as "positive" (covariant) and "negative" (contravariant). The class Σ_{1} has \forall only at negative positions.

Provability of Σ_{1} formulas is Expspace-complete in general.

The class Σ_{1}

We only consider formulas written with \forall and \rightarrow.
Positions of \forall are classified as "positive" (covariant) and "negative" (contravariant). The class Σ_{1} has \forall only at negative positions.

Provability of Σ_{1} formulas is Expspace-complete in general.
Provability of Σ_{1} formulas with nullary targets is co-Nexptime-complete.

The class Σ_{1}

We only consider formulas written with \forall and \rightarrow.
Positions of \forall are classified as "positive" (covariant) and "negative" (contravariant). The class Σ_{1} has \forall only at negative positions.

Provability of Σ_{1} formulas is Expspace-complete in general.
Provability of Σ_{1} formulas with nullary targets is co-Nexptime-complete.

Same for Σ_{1} formulas with bounded-arity predicates.

The class Σ_{1}

We only consider formulas written with \forall and \rightarrow.
Positions of \forall are classified as "positive" (covariant) and "negative" (contravariant). The class Σ_{1} has \forall only at negative positions.

Provability of Σ_{1} formulas is Expspace-complete in general.
Provability of Σ_{1} formulas with nullary targets is co-Nexptime-complete.
Same for Σ_{1} formulas with bounded-arity predicates.
In fact all we need is this pattern:

$$
\vec{\forall}(\ldots) \rightarrow \vec{\forall}(\ldots) \rightarrow \cdots \rightarrow \vec{\forall}(\ldots) \rightarrow \mathrm{a}
$$

Forward translation: first-order case

Given program P and atom Ω, write a formula
$\varphi=\psi_{1} \rightarrow \psi_{2} \rightarrow \cdots \rightarrow \psi_{m} \rightarrow$ loop
such that $P \models_{\text {sms }} \Omega$.

Forward translation: first-order case

Given program P and atom Ω, write a formula
$\varphi=\psi_{1} \rightarrow \psi_{2} \rightarrow \cdots \rightarrow \psi_{m} \rightarrow$ loop
such that $P \models$ sms Ω.

Model construction in every branch of the proof:
$\forall \vec{z}((\mathrm{R}(\vec{z}) \rightarrow$ loop $) \rightarrow(\overline{\mathrm{R}}(\vec{z}) \rightarrow$ loop $) \rightarrow$ loop $)$

Forward translation: first-order case

Given program P and atom Ω, write a formula
$\varphi=\psi_{1} \rightarrow \psi_{2} \rightarrow \cdots \rightarrow \psi_{m} \rightarrow$ loop
such that $P \models_{\text {sms }} \Omega$.

Model construction in every branch of the proof:
$\forall \vec{z}((\mathrm{R}(\vec{z}) \rightarrow$ loop $) \rightarrow(\overline{\mathrm{R}}(\vec{z}) \rightarrow$ loop $) \rightarrow$ loop $)$
Case dispatch as before:
$\Omega \rightarrow$ loop, $\mathrm{A} \rightarrow$ loop, and $\mathrm{B} \rightarrow$ loop

Proving unsoundness with nullary targets

Instead of $\bar{X}_{i} \rightarrow X_{i}!\rightarrow A$ we use axioms

$$
\forall \vec{x} \cdot \overline{\mathrm{R}}(\vec{x}) \rightarrow(\mathrm{R}!(\vec{x}) \rightarrow \bullet) \rightarrow \mathrm{A}
$$

That is, we prove •, accumulating knowledge of derivation goals $R!(\vec{c})$ visited so far. For a clause like
$\mathrm{R}(\vec{x}):-\mathrm{P}(\vec{x}), \mathrm{Q}(\vec{x}), \neg \mathrm{S}(\vec{x})$
we have an axiom of the form:
$\forall \vec{x} \cdot \mathrm{R}!(\vec{x}) \rightarrow(\mathrm{P}!(\vec{x}) \rightarrow \bullet) \rightarrow(\mathrm{Q}!(\vec{x}) \rightarrow \bullet) \rightarrow \overline{\mathrm{S}}(\vec{x}) \rightarrow \bullet$,
Proof succeeds when we arrive at a fact (no more subgoals).

Proving incompletenenss with nullary targets

The basic axiom scheme is
$\forall \vec{x} . \mathrm{R}(\vec{x}) \rightarrow(\mathrm{R} ?(\vec{x}) \rightarrow 0) \rightarrow \mathrm{B}$.
(Oversimplified) axiom scheme for $\mathrm{R} ?(\vec{x})$ is
$\forall \vec{x} . \mathrm{R} ?(\vec{x}) \rightarrow\left(K_{1}(\vec{x}) \rightarrow \bar{K}_{1}\right) \rightarrow \cdots \rightarrow\left(K_{n}(\vec{x}) \rightarrow \bar{K}_{n}\right) \rightarrow 0$, where K_{i} are clauses of target R ? (\vec{x}).
This time we accumulate a history of a refuting play.

Proving incompletenenss, cont'd

If clause K_{i} is e.g. $\mathrm{R}(\vec{x}):-\mathrm{P}(\vec{x}), \mathrm{Q}(\vec{x}), \neg \mathrm{S}(\vec{x})$
then we have this axiom, where RP "remembers"
a single refutation step.
$\forall \vec{x} . K_{i}(\vec{x}) \rightarrow(\mathrm{P} ?(\vec{x}) \rightarrow \mathrm{RP}(\vec{x}) \rightarrow 0) \rightarrow \bar{K}_{i}$
This "memory" is made transitive with axioms:
$\forall \vec{x} \vec{y} \vec{z}(\mathrm{RP}(\vec{x}, \vec{y}) \rightarrow \mathrm{PQ}(\vec{y}, \vec{z}) \rightarrow(\mathrm{RQ}(\vec{x}, \vec{z}) \rightarrow 0) \rightarrow 0)$
The refuter can win by discovering a loop:
$\forall \vec{x}(\mathrm{PP}(\vec{x}, \vec{x}) \rightarrow 0)$.

Backward translation

Given a monadic formula φ define a program P so that stable models of P represent refutations of φ.

Backward translation

Given a monadic formula φ define a program P so that stable models of P represent refutations of φ.

Refutations must be made concise (exponential size).

