First-order answer set programming
as constructive proof search

Pawet Urzyczyn
(joint work with Aleksy Schubert)

Logic Programming

A logic program:

X =Y, Z
u.—-2,V;
Y — Z;

Z — .

Logic Programming

A logic program:

X =Y, Z
u.—-2,V;
Y — Z;
Z:— .

The meaning of this program is the set of derived atoms.

Logic Programming

A logic program:

X =Y, Z
u.—-2,V;
Y — Z;
Z:— .

The meaning of this program is the set of derived atoms.

They are: Z,

Logic Programming

A logic program:

X =Y, Z
u.—-2,V;
Y — Z;
Z:— .

The meaning of this program is the set of derived atoms.

They are: Z, Y,

Logic Programming

A logic program:

X =Y, Z
u.—-2,V;
Y — Z;
Z:— .

The meaning of this program is the set of derived atoms.

They are: Z, Y, X,

Logic Programming

A logic program:

X =Y, Z
u.—-2,V;
Y — Z;
Z:— .

The meaning of this program is the set of derived atoms.
They are: Z, Y, X,
but neither U nor V.

A logic program with negations

X =Y, Z U,
Y (— —Z;
Y . — Z;
Z:—=X,~U;
U:—Y,~Z,

Which atoms are “derivable” (forced true)?

A logic program with negations

X =Y, Z U,
Y (— —Z;
Y . — Z;
Z:—=X,~U;
U:—Y,~Z,

Which atoms are “derivable” (forced true)?

There are many possible answers. One is...

Answer Set Programming

Kolaitis, Papadimitriou,
Why not Negation by Fixpoint?, PODS'88:

1. Guess which atoms should be forced.
2. Verify that exactly these atoms are forced.

Bad guess

X =Y, Z U,
Y — —=Z;
Y . — Z;
Z:— = X,~U;
U:—-Y,~Z

Guess 1: Atoms X and Z are forced, atoms Y and U are not.

Bad guess

X: =Y., Z U

Y :— =Z; Red clauses are invalid.
Y . — Z;

Z — X, U,

U:—Y,~Z.

Guess 1: Atoms X and Z are forced, atoms Y and U are not.

Bad guess

X: =Y., Z U

Y :— =Z; Red clauses are invalid.

Y :— Z; Nothing can be derived: this guess is wrong.
Z — X, U,

Uu.—Y,~Z

Guess 1: Atoms X and Z are forced, atoms Y and U are not.

Good guess

X =Y, Z U,
Y — —=Z;
Y . — Z;
Z:— = X,~U;
U:—-Y,~Z

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Good guess

X:—-Y,Z U, Green assumptions are satisfied.
Y — —Z;

Y . — Z;

Z :— = X,=U; This clause is invalid.

U:—Y,~Z.

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Good guess

X:—-Y,Z U, Green assumptions are satisfied.
Y (- ~Z, Y can be derived

Y . — Z;

Z :— = X,=U; This clause is invalid.

U:—Y,~Z.

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Good guess

X:—-Y,Z U, Green assumptions are satisfied.
Y . — 7, Y can be derived
Y . — Z;

Z :— = X,=U; This clause is invalid.
U:—Y,~Z. U can be derived

Guess 2: Atoms Y and U are forced, atoms X and Z are not.

Another good guess

X =Y, Z U,
Y — —=Z;
Y . — Z;
Z:— = X,~U;
U:—-Y,~Z

Guess 3: Atoms Z, Y are forced, others are not.

Another good guess

X:—-Y,Z U, Green assumptions are satisfied.
Y (- ~Z, Red clauses are invalid.

Y . — Z;

Z:— = X,~U;

U:—-Y,~Z

Guess 3: Atom Z, Y are forced, others are not.

Another good guess

X:—-Y,Z U, Green assumptions are satisfied.
Y (- ~Z, Red clauses are invalid.

Y . — Z;

Z :— =X, =U; Z can be derived

U:—-Y,~Z

Guess 3: Atom Z, Y are forced, others are not.

Another good guess

X:—-Y,Z U, Green assumptions are satisfied.
Y (- ~Z, Red clauses are invalid.

Y — Z; Y can be derived

Z :— =X, ~U; Z can be derived

U.—Y,~Z

Guess 3: Atom Z, Y are forced, others are not.

Stable models

X -Y, Z U,
Y . — —Z;
Y . — Z;
Z:——=X,~U;
U:.—Y,~Z

This program has two stable models {U, Y} and {Z, Y}.
It entails Y under stable model semantics.

Write P ’:sms Y.

Main definition

Given a program P and model 91, define program Py without
negations, as follows:

» For X & 91, delete =X from the rhs of all clauses of P;
» For X € 9, delete all clauses of P with =X at the rhs.

The model 91 is stable (is an answer set) for P, when exactly
the atoms in 91 are derivable from Poy.

ASP and intuitionistic logic

Characterizing ASP in terms of two-element Kripke models:

» David Pearce. Stable inference as intuitionistic validity.
The Journal of Logic Programming, 38(1):79-91, 1999.

ASP and intuitionistic logic

Characterizing ASP in terms of two-element Kripke models:

» David Pearce. Stable inference as intuitionistic validity.
The Journal of Logic Programming, 38(1):79-91, 1999.

Can this be done in terms of intuitionistic logic per se?

The plan

» Given program P and atom €2, write a formula
such that P |=sms Q if and only if ¢ is provable.

The plan

» Given program P and atom €2, write a formula
such that P |=sms Q if and only if ¢ is provable.

» Define a translation backward (for a class of formulas
within co-NP).

The plan

» Given program P and atom €2, write a formula
such that P |=sms Q if and only if ¢ is provable.

» Define a translation backward (for a class of formulas
within co-NP).

» Do the same for datalog using a co-Nexptime complete
class of first-order formulas.

Forward translation

» Define formula ¢ so that P [=sms Q iff ¢ is provable.

Forward translation

» Define formula ¢ so that P [=sms Q iff ¢ is provable.

We construct ¢ = 1)1 — 1y — -+ — 1, — 0.

Forward translation

» Define formula ¢ so that P [=sms Q iff ¢ is provable.

We construct p =1y — 1y — -+ — 1, — 0.
The entailment should hold in every model. For example:

Assume P has only 4 atoms X, Y, Z, and 2. Then among
the axioms 1); there will be formulas:

X—=1)—=X—=1)—=0 (Y=2)=(Y—=2)—=1
(Z—=3)—=(Z—3)—=2 Q—4)—=(Q—4)—3
No other axiom has 0,1,2,3 as target.

Forward translation

» Define formula ¢ so that P =sms Q iff ¢ is provable.

We construct ¢ = 1 — 1, — -+ — ¢, — 0.
The entailment should hold in every model. For example:

Assume P has only 4 atoms X, Y, Z, and 2. Then among
the axioms 1); there will be formulas:

X—=1)—=X—=1)—=0 (Y=2)=(Y—=2)—=1
(Z—=3)—=(Z—3)—=2 Q—4)—=(Q—4)—3
No other axiom has 0,1,2,3 as target.

To prove 0 from the initial assumptions one must derive 4
under an arbitrary choice of overlined and non-overlined atoms.

o

How to ensure entailment

The entailment P |=sms {2 means that one of the three cases
holds in every model 91:

Q) either Q € 9, or

A) the model is unstable because too much is derivable
(Pon is unsound for 9t), or

B) the model is unstable because too little is derivable
(Pon is incomplete for 90).

Three more axioms: Q —4, A—4 B — 4.

Proving unsoundness

We include in our formula the following axioms:

» X; — X;! — A, for every atom X; of P;

» all clauses of P where X; is renamed as X;!
and —X; is renamed as X;.
Let 2t be the model corresponding to the present context.
One can prove X;! if and only if the program Py derives X;.

Thus A is provable if and only if Py, derives some X; & 9.

Proving incompleteness

One proves B iff some X; € 91 cannot be derived by Poy.

We include in our formula the axiom:
> X,‘ — X,? — B,

for every atom X; of P.

Every proof of X;? represents a refutation of X;. How?

Proving non-provability

Suppose we have only two clauses with target X:
KL: X (=Y, Z ~U,; K2: X :— V,U,—Z.
Then we have the axiom:

(X? = K1) = (X7 = Ky) = X7

Proving non-provability

Suppose we have only two clauses with target X:
KL: X (=Y, Z ~U,; K2: X :— V,U,—Z.
Then we have the axiom:

(X? = K1) = (X7 = Ky) = X7

In particular we need to derive K; (using X7).

Proving non-provability

Suppose we have only two clauses with target X:
KL: X (=Y, Z ~U,; K2: X :— V,U,—Z.
Then we have the axiom:

(X? = K1) = (X7 = Ky) = X7

In particular we need to derive K; (using X7).
For that purpose we have axioms:

Y?—>K1, Z?—>K1, U— K,

Proving non-provability

Suppose we have only two clauses with target X:
KL: X (=Y, Z ~U,; K2: X :— V,U,—Z.
Then we have the axiom:

(X? = K1) = (X7 = Ky) — X7

In particular we need to derive K; (using X7).

For that purpose we have axioms:

Y?—Ki, Z27—K;, U—=K;,

If U e 91 then K is provable: clause K1 cannot derive X.

Proving non-provability

Suppose we have only two clauses with target X:
KL: X (=Y, Z ~U,; K2: X :— V,U,—Z.
Then we have the axiom:

(X? = K1) = (X7 = Ky) — X7

In particular we need to derive K; (using X7).

For that purpose we have axioms:

Y?—Ki, Z27—K;, U—=K;,

If U e 91 then K is provable: clause K1 cannot derive X.

Otherwise we can try to prove e.g. Y7
(Clause K1 can't be used if Y is not derivable.)

Termination

Can this process go forever?

Termination

Can this process go forever?

To prove X7 we attempt to prove Y7,
this makes us try to prove Z7 etc.

Termination

Can this process go forever?

To prove X7 we attempt to prove Y7,
this makes us try to prove Z7 etc.

Recall the axiom: (X7 — Ki) — (X7 — Ky) — X?

Each time we address a proof goal X?
we add the assumption X?

Termination

Can this process go forever?

To prove X7 we attempt to prove Y7,
this makes us try to prove Z7 etc.

Recall the axiom: (X7 — Ki) — (X7 — Ky) — X?

Each time we address a proof goal X?
we add the assumption X?

Should X7 appear as a proof goal again, we win instantly.

Termination

Can this process go forever?

To prove X7 we attempt to prove Y7,
this makes us try to prove Z7 etc.

Recall the axiom: (X7 — Ki) — (X7 — Ky) — X?

Each time we address a proof goal X?
we add the assumption X?

Should X7 appear as a proof goal again, we win instantly.
Note that such judgments are only classically valid:

oy (X7 K) > (X7 = Ky) = X7, F X7

Backward translation

ASP entailment is NP-complete. Intutionistic propositional
logic is Pspace-complete. Backward translation is only possible
for formulas of a simple shape (pseudo-DNF formulas).

Backward translation

ASP entailment is NP-complete. Intutionistic propositional
logic is Pspace-complete. Backward translation is only possible
for formulas of a simple shape (pseudo-DNF formulas).

The principle of backward translation: for a given formula ¢
write a program P so that

© is not provable if and only if P has a stable model.

Slogan: stable model = refutation.

The first-order case

The plan

First-order datalog ASP is Nexptime-complete.
The appropriate first-order fragment should be
co-Nexptime-complete.

» We translate the entailment P =sms 2 into a first-order
Y ; formula ¢ with nullary targets.

» Such formulas can be replaced by monadic X; formulas
(with only unary predicates).

» Refutability of bounded-arity ¥; formulas reduces to ASP.
(Refutation soup = stable model.)

The class X4

We only consider formulas written with V and —.

Positions of V are classified as “positive” (covariant)
and “negative” (contravariant). The class ¥; has V
only at negative positions.

The class X4

We only consider formulas written with V and —.

Positions of V are classified as “positive” (covariant)
and “negative” (contravariant). The class ¥; has V
only at negative positions.

Provability of ¥; formulas is Expspace-complete in general.

The class X4

We only consider formulas written with V and —.

Positions of V are classified as “positive” (covariant)
and “negative” (contravariant). The class ¥; has V
only at negative positions.

Provability of ¥; formulas is Expspace-complete in general.

Provability of ¥; formulas with nullary targets
is co-Nexptime-complete.

The class X4

We only consider formulas written with V and —.

Positions of V are classified as “positive” (covariant)

and “negative” (contravariant). The class ¥; has V

only at negative positions.

Provability of ¥; formulas is Expspace-complete in general.

Provability of ¥; formulas with nullary targets
is co-Nexptime-complete.

Same for ¥; formulas with bounded-arity predicates.

The class X4

We only consider formulas written with V and —.

Positions of V are classified as “positive” (covariant)

and “negative” (contravariant). The class ¥; has V

only at negative positions.

Provability of ¥; formulas is Expspace-complete in general.

Provability of ¥; formulas with nullary targets
is co-Nexptime-complete.

Same for ¥; formulas with bounded-arity predicates.

In fact all we need is this pattern:

V(..)=VY(..)=-- =Y.)>a

Forward translation: first-order case

Given program P and atom (2, write a formula

=11 =ty — =Py — loop
such that P |=gms €.

Forward translation: first-order case

Given program P and atom (2, write a formula
O =11 = Py — - — Yy, — loop
such that P |=gms €.

Model construction in every branch of the proof:

VZ((R(Z) — loop) — (R(Z) — loop) — loop)

Forward translation: first-order case

Given program P and atom (2, write a formula
O =11 = Py — - — Yy, — loop
such that P |=gms €.

Model construction in every branch of the proof:
VZ((R(Z) — loop) — (R(Z) — loop) — loop)
Case dispatch as before:

Q — loop, A — loop, and B — loop

Proving unsoundness with nullary targets

Instead of X; — X;! — A we use axioms
VX.R(X) = (RI(X) — o) — A,

That is, we prove e, accumulating knowledge of derivation
goals R!(¢) visited so far. For a clause like

R(x) :— P(X), Q(X), =S(X)
we have an axiom of the form:
VX. RI(X) = (P!(X) — o) = (Q!(X) — @) — S(X) — e,

Proof succeeds when we arrive at a fact (no more subgoals).

Proving incompletenenss with nullary targets

The basic axiom scheme is
Vx. R(X) = (R?(X) — o) — B.

(Oversimplified) axiom scheme for R?(x) is

VXR?(X) = (Ki(X) = K1) = -+ = (Kao(X) = K,) — o,
where K; are clauses of target R7(X).
This time we accumulate a history of a refuting play.

Proving incompletenenss, cont'd

If clause K; is e.g. R(X) :— P(x), Q(X), ~S(x)

then we have this axiom, where RP “remembers”
a single refutation step.

VX. Ki(X) = (P?(X) = RP(X) — o) — K;

This “memory” is made transitive with axioms:
VxyZ(RP(x,y) — PQ(y, 2) — (RQ(X, Z) — o) — o)
The refuter can win by discovering a loop:

VX(PP(X, X) — o).

Backward translation

Given a monadic formula ¢ define a program P so that stable
models of P represent refutations of ¢.

Backward translation

Given a monadic formula ¢ define a program P so that stable
models of P represent refutations of ¢.

Refutations must be made concise (exponential size).

