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Goals

• Describe an existing system: the Software Analysis
Workbench (SAW)

▶ Tool for constructing functional models of imperative
programs

▶ Shared intermediate language nominally based on type
theory

▶ Heavy use of automated reasoning
• Solicit input on future directions

▶ Type theory has much more promise
▶ How best to use it?
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What is SAW?

• SAW = Software Analysis Workbench
▶ Software: many languages
▶ Analysis: many types of analysis, focused on functionality
▶ Workbench: flexible interface, supporting many goals

• Intended as a flexible tool for software analysis
• What separates it from other systems?

▶ One view: compiler :: imperative code→ functional code
▶ Captures all functional behavior, simplifying later if
necessary

▶ Uses efficient internal representations tuned to
equivalence checking

▶ Strong bit vector reasoning support
▶ Focus on practicality over novelty

• Open source (BSD3) and available now
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What’s Behind This?
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The Cryptol Language

A single, high-level specification for (cryptographic) algorithms

• Cryptol goals
▶ Appropriate for cryptography
▶ Natural
▶ Concise
▶ Similar to existing notation
▶ Appropriate for execution and verification

• Language features
▶ Statically-typed functional language
▶ Sized bit vectors (type level naturals)
▶ Stream comprehensions (stream diagrams)
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A Taste of Cryptol

• Functions and sequences are key notions
• Both can be recursive
• To compute the sequence of all natural numbers
nats = [0] # [ n + 1 | n <- nats ]
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Relationship Between Cryptol and SAW

• Cryptol is essentially the expression language of SAWScript
• Built-in support for Cryptol syntax

▶ Translated automatically into Term objects with {{ ... }}
• Emerged as an evolution of Cryptol REPL commands

▶ Generalizes more constrained :prove and :sat
▶ More complete language
▶ Beyond automated proofs

• Supports proofs purely on Cryptol
• Allows proofs comparing Cryptol to real-world
implementations
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Simple Proofs

• Proofs work on Term objects that have result type Bit
• Includes any Cryptol function with result type Bit, as well
as terms coming from other sources

• The best-performing prover depends heavily on the
problem

sawscript> let {{ p (x:[4096]) = x+x+x+x == x*4 }}
sawscript> time (prove abc {{ p }})
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Simple Proofs

• Proofs work on Term objects that have result type Bit
• Includes any Cryptol function with result type Bit, as well
as terms coming from other sources

• The best-performing prover depends heavily on the
problem

sawscript> let {{ p (x:[4096]) = x+x+x+x == x*4 }}
sawscript> time (prove abc {{ p }})
Time: 3.433s
Valid
sawscript> time (prove z3 {{ p }})
Time: 0.006s
Valid
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More Complex Proof: 3DES
import "DES.cry";
let {{ enc = DES.encrypt }};
let {{ dec = DES.decrypt }};
dec_enc <- time (prove abc {{ \k m -> dec k (enc k m) == m }});
enc_dec <- time (prove abc {{ \k m -> enc k (dec k m) == m }});
let ss = simpset [dec_enc, enc_dec];
let {{

enc3 k1 k2 k3 msg = enc k3 (dec k2 (enc k1 msg))
dec3 k1 k2 k3 msg = dec k1 (enc k2 (dec k3 msg))
dec3_enc3 k1 k2 k3 msg = dec3 k1 k2 k3 (enc3 k1 k2 k3 msg) == msg

}};
time (prove do { simplify ss; abc; } {{ dec3_enc3 }});
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Java Reference vs. Implementation
static int ffs_ref(int word) {

if(word == 0) return 0;
for(int cnt = 0, i = 0; cnt < 32; cnt++)

if(((1 << i++) & word) != 0) return i;
return 0;

}
static int ffs_imp(int i) {

byte n = 1;
if ((i & 0xffff) == 0) { n += 16; i >>= 16; }
if ((i & 0x00ff) == 0) { n += 8; i >>= 8; }
if ((i & 0x000f) == 0) { n += 4; i >>= 4; }
if ((i & 0x0003) == 0) { n += 2; i >>= 2; }
if (i != 0) { return (n+((i+1) & 0x01)); } else { return 0; }

}

ffs_cls <- java_load_class "FFS";
ffs_ref <- java_extract ffs_cls "ffs_ref" java_pure;
ffs_imp <- java_extract ffs_cls "ffs_imp" java_pure;
prove abc {{ \x -> ffs_ref x == ffs_imp x }}; // Valid: 0.014s
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Case Study: AES

• Proved correctness of many implementations using SAW
• Proof is automated but slow: 5m – 2.5h
• Script to prove OpenSSL C implementation in place

▶ Likely to be merged into official OpenSSL source tree
▶ AES-128 and AES-256, encryption and decryption
▶ Slowest equivalence checking (at least 1h for each proof)

• ∼ 1300 C LOC
• ∼ 230 spec LOC
• ∼ 5 script lines per proof (all plumbing)
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Case Study: ECDSA
• Elliptic Curve Digital Signature Algorithm (ECDSA)
• In-house Java code, tuned for speed and verifiability

▶ Available with SAW distribution
• ∼ 2400 Java LOC
• ∼ 1600 spec LOC
• ∼ 1500 proof script LOC (largely plumbing)
• Proof completes in < 5m
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Case Study: HMAC

• Amazon TLS implementation
• Code from official s2n repository
• ∼ 15 (top-level) spec LOC (monolithic
function)

• ∼ 300 C LOC (iterative code)
• ∼ 400 script LOC (all plumbing)
• Proofs for various fixed message sizes

▶ <1m per proof

hmac

key

msg

digest

hmac_init

hmac_update

hmac_update

hmac_digest

key

msg1

msg2

digest

state

state

state
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Constructing Models with Symbolic Execution

• Imperative→ functional via symbolic execution
• For straight-line code, symbolic value of any variable at
end is a pure function of symbolic inputs

• Model memory ephemerally
• For branches, merge symbolic states at post-dominators

▶ A nested application of the if-then-else function
• Unroll loops

▶ So they’re just a case of sequential branching
▶ Can terminate more frequently by SAT-checking branch
conditions

• Have also experimented with using fixpoint combinator
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The SAWCore Language

• Dependently typed core calculus
• Takes some inspiration from CiC, some from MLTT

▶ More on specifics, future later
• Represented efficiently with hash-consed DAGs
• Large number of primitives

▶ Covering, e.g., the SMT QF_AUFBV theory
▶ Even though these can be (and have been!) defined in
SAWCore, too

• Two type checkers
▶ One from surface syntax to explicitly type terms
▶ One on explicitly typed terms (incomplete)
▶ No guarantee that they agree!
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Proofs in SAWCore

• As a type theory, two notions of proof in SAWCore
▶ Showing inhabitant of equality type
▶ Showing a Boolean term equivalent to True

• Proofs can be performed by SAT and SMT solvers
▶ Several tactics for transformation in advance
▶ Solvers use classical logic!

• Hand-constructed proof objects are more powerful
▶ But no tactics at this level

• Terms of type Eq a b are theorems
• Terms of structure a == b can be theorems

▶ If shown valid by external prover
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Rewriting in SAWCore

• Rewriting the main proof tactic available
• Both Eq a b and a == b can be used as rules

▶ The latter normally proved before use, but optional
▶ Function definitions are collection of rewrite rules

• Symbolic execution can be thought of as an instance of
rewriting

• Some limitations:
▶ No conditional rewriting (so far)
▶ No auto-simplification for associativity, commutativity, etc.

• Other interactive provers are more flexible
▶ Though in some cases less efficient (we routinely process
multi-GB terms)

▶ And not as integrated with automated provers or model
extractors
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Open Question: Semantics of SAWCore

• Currently: a somewhat unsound, ad-hoc bag of features
• Ideally: choose an existing, well-studied core calculus and
implement it faithfully

• Maybe adapt to semantics of Lean?
▶ Lean could be directly linked in
▶ Haskell bindings to core API already exist
▶ Core language is simple
▶ Any interactive proof could use Lean tactics

• Coq export for definitions would also be valuable
▶ Proofs would probably be prover-specific, though
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Open Question: Representing Non-Termination

• SAW’s main goal: representing program semantics
• Many real programs don’t terminate

▶ Or at least are hard to prove to be terminating
• What’s the most effective way to represent them?
• Various possibilities, none ideal

▶ Distinguish between type and non-type terms at a sort
level, a la Zombie (complex)

▶ Use co-inductive reasoning (but induction is more
straightforward when possible)

▶ Use deep embeddings with a flexible interpreter (slow!)
▶ Require variants (simple, but more user burden)
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Open Question: Interactive Proof in SAW

• Some interactive proofs already possible
• Mostly: unconditional rewriting followed by automated
tools

• Limited to a single proof goal
▶ So case splitting is out
▶ Induction even farther away

• Considering the possibility for multiple goals
• Also considering integration with existing interactive
provers

▶ Lean is a prime candidate
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Open Question: Proofs About Complex Memory
Models

• Currently, memory “erased” from denotations
• Very efficient and powerful when it works
• Limits the class of programs we can handle
• Explicit memory objects in denotations would help
• How to best represent them?

▶ SMT array theory probably too impoverished
▶ Maybe a different “primitive” type?
▶ Something encoded directly in the logic?
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Summary

SAW: efficient proofs about imperative programs via
translation to functional programs + SAT/SMT

• Practical system, used to verify real-world code, such as:
▶ AES from OpenSSL
▶ HMAC, DRBG from s2n
▶ ECDSA from Galois
▶ Portions of several Curve25519 implementations

• Use of types gives structuring principles, helps detect
mistakes

• Type theory provides power and flexibility
▶ and an explicit form okay, since terms are automatically
constructed

• But what possibilities have we yet to take advantage of?
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Resources

• Cryptol
▶ Web: http://cryptol.net
▶ GitHub: https://github.com/GaloisInc/cryptol

• Software Analysis Workbench
▶ Web: https://saw.galois.com
▶ GitHub: https://github.com/GaloisInc/saw-script

• HMAC verification blog post:
▶ https://galois.com/blog/2016/09/

verifying-s2n-hmac-with-saw/
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