
Type Theory in the Software Analysis
Workbench
Aaron Tomb
Galois, Inc.

Type Theory Based Tools
2017-01-15

© 2017 Galois, Inc. All Rights Reserved. 1/24

Goals

• Describe an existing system: the Software Analysis
Workbench (SAW)

▶ Tool for constructing functional models of imperative
programs

▶ Shared intermediate language nominally based on type
theory

▶ Heavy use of automated reasoning
• Solicit input on future directions

▶ Type theory has much more promise
▶ How best to use it?

© 2017 Galois, Inc. All Rights Reserved. 2/24

What is SAW?

• SAW = Software Analysis Workbench
▶ Software: many languages
▶ Analysis: many types of analysis, focused on functionality
▶ Workbench: flexible interface, supporting many goals

• Intended as a flexible tool for software analysis
• What separates it from other systems?

▶ One view: compiler :: imperative code→ functional code
▶ Captures all functional behavior, simplifying later if
necessary

▶ Uses efficient internal representations tuned to
equivalence checking

▶ Strong bit vector reasoning support
▶ Focus on practicality over novelty

• Open source (BSD3) and available now

© 2017 Galois, Inc. All Rights Reserved. 3/24

What’s Behind This?

C LLVM

Java JVM

Cryptol

Other language

SAWCore AIG

CNF

SMT-Lib

Other prover

clang

javac Sym. exec.

Sym. exec.

Com
pilat

ion

Sym.
exec.

Sym. exec.
Sym. exec.

Rewriting

© 2017 Galois, Inc. All Rights Reserved. 4/24

The Cryptol Language

A single, high-level specification for (cryptographic) algorithms

• Cryptol goals
▶ Appropriate for cryptography
▶ Natural
▶ Concise
▶ Similar to existing notation
▶ Appropriate for execution and verification

• Language features
▶ Statically-typed functional language
▶ Sized bit vectors (type level naturals)
▶ Stream comprehensions (stream diagrams)

© 2017 Galois, Inc. All Rights Reserved. 5/24

A Taste of Cryptol

• Functions and sequences are key notions
• Both can be recursive
• To compute the sequence of all natural numbers
nats = [0] # [n + 1 | n <- nats]

����
�

��

© 2017 Galois, Inc. All Rights Reserved. 6/24

Relationship Between Cryptol and SAW

• Cryptol is essentially the expression language of SAWScript
• Built-in support for Cryptol syntax

▶ Translated automatically into Term objects with {{ ... }}
• Emerged as an evolution of Cryptol REPL commands

▶ Generalizes more constrained :prove and :sat
▶ More complete language
▶ Beyond automated proofs

• Supports proofs purely on Cryptol
• Allows proofs comparing Cryptol to real-world
implementations

© 2017 Galois, Inc. All Rights Reserved. 7/24

Simple Proofs

• Proofs work on Term objects that have result type Bit
• Includes any Cryptol function with result type Bit, as well
as terms coming from other sources

• The best-performing prover depends heavily on the
problem

sawscript> let {{ p (x:[4096]) = x+x+x+x == x*4 }}
sawscript> time (prove abc {{ p }})

© 2017 Galois, Inc. All Rights Reserved. 8/24

Simple Proofs

• Proofs work on Term objects that have result type Bit
• Includes any Cryptol function with result type Bit, as well
as terms coming from other sources

• The best-performing prover depends heavily on the
problem

sawscript> let {{ p (x:[4096]) = x+x+x+x == x*4 }}
sawscript> time (prove abc {{ p }})
Time: 3.433s
Valid

© 2017 Galois, Inc. All Rights Reserved. 8/24

Simple Proofs

• Proofs work on Term objects that have result type Bit
• Includes any Cryptol function with result type Bit, as well
as terms coming from other sources

• The best-performing prover depends heavily on the
problem

sawscript> let {{ p (x:[4096]) = x+x+x+x == x*4 }}
sawscript> time (prove abc {{ p }})
Time: 3.433s
Valid
sawscript> time (prove z3 {{ p }})

© 2017 Galois, Inc. All Rights Reserved. 8/24

Simple Proofs

• Proofs work on Term objects that have result type Bit
• Includes any Cryptol function with result type Bit, as well
as terms coming from other sources

• The best-performing prover depends heavily on the
problem

sawscript> let {{ p (x:[4096]) = x+x+x+x == x*4 }}
sawscript> time (prove abc {{ p }})
Time: 3.433s
Valid
sawscript> time (prove z3 {{ p }})
Time: 0.006s
Valid

© 2017 Galois, Inc. All Rights Reserved. 8/24

More Complex Proof: 3DES
import "DES.cry";
let {{ enc = DES.encrypt }};
let {{ dec = DES.decrypt }};
dec_enc <- time (prove abc {{ \k m -> dec k (enc k m) == m }});
enc_dec <- time (prove abc {{ \k m -> enc k (dec k m) == m }});
let ss = simpset [dec_enc, enc_dec];
let {{

enc3 k1 k2 k3 msg = enc k3 (dec k2 (enc k1 msg))
dec3 k1 k2 k3 msg = dec k1 (enc k2 (dec k3 msg))
dec3_enc3 k1 k2 k3 msg = dec3 k1 k2 k3 (enc3 k1 k2 k3 msg) == msg

}};
time (prove do { simplify ss; abc; } {{ dec3_enc3 }});

© 2017 Galois, Inc. All Rights Reserved. 9/24

More Complex Proof: 3DES
import "DES.cry";
let {{ enc = DES.encrypt }};
let {{ dec = DES.decrypt }};
dec_enc <- time (prove abc {{ \k m -> dec k (enc k m) == m }});
enc_dec <- time (prove abc {{ \k m -> enc k (dec k m) == m }});
let ss = simpset [dec_enc, enc_dec];
let {{

enc3 k1 k2 k3 msg = enc k3 (dec k2 (enc k1 msg))
dec3 k1 k2 k3 msg = dec k1 (enc k2 (dec k3 msg))
dec3_enc3 k1 k2 k3 msg = dec3 k1 k2 k3 (enc3 k1 k2 k3 msg) == msg

}};
time (prove do { simplify ss; abc; } {{ dec3_enc3 }});

© 2017 Galois, Inc. All Rights Reserved. 9/24

More Complex Proof: 3DES
import "DES.cry";
let {{ enc = DES.encrypt }};
let {{ dec = DES.decrypt }};
dec_enc <- time (prove abc {{ \k m -> dec k (enc k m) == m }});
enc_dec <- time (prove abc {{ \k m -> enc k (dec k m) == m }});
let ss = simpset [dec_enc, enc_dec];
let {{

enc3 k1 k2 k3 msg = enc k3 (dec k2 (enc k1 msg))
dec3 k1 k2 k3 msg = dec k1 (enc k2 (dec k3 msg))
dec3_enc3 k1 k2 k3 msg = dec3 k1 k2 k3 (enc3 k1 k2 k3 msg) == msg

}};
time (prove do { simplify ss; abc; } {{ dec3_enc3 }});

Valid
Time: 4.694s
Valid
Time: 4.718s
Valid
Time: 0.003s

© 2017 Galois, Inc. All Rights Reserved. 9/24

More Complex Proof: 3DES
import "DES.cry";
let {{ enc = DES.encrypt }};
let {{ dec = DES.decrypt }};
dec_enc <- time (prove abc {{ \k m -> dec k (enc k m) == m }});
enc_dec <- time (prove abc {{ \k m -> enc k (dec k m) == m }});
let ss = simpset [dec_enc, enc_dec];
let {{

enc3 k1 k2 k3 msg = enc k3 (dec k2 (enc k1 msg))
dec3 k1 k2 k3 msg = dec k1 (enc k2 (dec k3 msg))
dec3_enc3 k1 k2 k3 msg = dec3 k1 k2 k3 (enc3 k1 k2 k3 msg) == msg

}};
time (prove do { simplify ss; abc; } {{ dec3_enc3 }});

Valid
Time: 4.694s
Valid
Time: 4.718s
Valid
Time: 0.003s

© 2017 Galois, Inc. All Rights Reserved. 9/24

Java Reference vs. Implementation
static int ffs_ref(int word) {

if(word == 0) return 0;
for(int cnt = 0, i = 0; cnt < 32; cnt++)

if(((1 << i++) & word) != 0) return i;
return 0;

}
static int ffs_imp(int i) {

byte n = 1;
if ((i & 0xffff) == 0) { n += 16; i >>= 16; }
if ((i & 0x00ff) == 0) { n += 8; i >>= 8; }
if ((i & 0x000f) == 0) { n += 4; i >>= 4; }
if ((i & 0x0003) == 0) { n += 2; i >>= 2; }
if (i != 0) { return (n+((i+1) & 0x01)); } else { return 0; }

}

ffs_cls <- java_load_class "FFS";
ffs_ref <- java_extract ffs_cls "ffs_ref" java_pure;
ffs_imp <- java_extract ffs_cls "ffs_imp" java_pure;
prove abc {{ \x -> ffs_ref x == ffs_imp x }}; // Valid: 0.014s

© 2017 Galois, Inc. All Rights Reserved. 10/24

Case Study: AES

• Proved correctness of many implementations using SAW
• Proof is automated but slow: 5m – 2.5h
• Script to prove OpenSSL C implementation in place

▶ Likely to be merged into official OpenSSL source tree
▶ AES-128 and AES-256, encryption and decryption
▶ Slowest equivalence checking (at least 1h for each proof)

• ∼ 1300 C LOC
• ∼ 230 spec LOC
• ∼ 5 script lines per proof (all plumbing)

© 2017 Galois, Inc. All Rights Reserved. 11/24

Case Study: ECDSA
• Elliptic Curve Digital Signature Algorithm (ECDSA)
• In-house Java code, tuned for speed and verifiability

▶ Available with SAW distribution
• ∼ 2400 Java LOC
• ∼ 1600 spec LOC
• ∼ 1500 proof script LOC (largely plumbing)
• Proof completes in < 5m

© 2017 Galois, Inc. All Rights Reserved. 12/24

Case Study: HMAC

• Amazon TLS implementation
• Code from official s2n repository
• ∼ 15 (top-level) spec LOC (monolithic
function)

• ∼ 300 C LOC (iterative code)
• ∼ 400 script LOC (all plumbing)
• Proofs for various fixed message sizes

▶ <1m per proof

hmac

key

msg

digest

hmac_init

hmac_update

hmac_update

hmac_digest

key

msg1

msg2

digest

state

state

state

© 2017 Galois, Inc. All Rights Reserved. 13/24

Constructing Models with Symbolic Execution

• Imperative→ functional via symbolic execution
• For straight-line code, symbolic value of any variable at
end is a pure function of symbolic inputs

• Model memory ephemerally
• For branches, merge symbolic states at post-dominators

▶ A nested application of the if-then-else function
• Unroll loops

▶ So they’re just a case of sequential branching
▶ Can terminate more frequently by SAT-checking branch
conditions

• Have also experimented with using fixpoint combinator

© 2017 Galois, Inc. All Rights Reserved. 14/24

The SAWCore Language

• Dependently typed core calculus
• Takes some inspiration from CiC, some from MLTT

▶ More on specifics, future later
• Represented efficiently with hash-consed DAGs
• Large number of primitives

▶ Covering, e.g., the SMT QF_AUFBV theory
▶ Even though these can be (and have been!) defined in
SAWCore, too

• Two type checkers
▶ One from surface syntax to explicitly type terms
▶ One on explicitly typed terms (incomplete)
▶ No guarantee that they agree!

© 2017 Galois, Inc. All Rights Reserved. 15/24

Proofs in SAWCore

• As a type theory, two notions of proof in SAWCore
▶ Showing inhabitant of equality type
▶ Showing a Boolean term equivalent to True

• Proofs can be performed by SAT and SMT solvers
▶ Several tactics for transformation in advance
▶ Solvers use classical logic!

• Hand-constructed proof objects are more powerful
▶ But no tactics at this level

• Terms of type Eq a b are theorems
• Terms of structure a == b can be theorems

▶ If shown valid by external prover

© 2017 Galois, Inc. All Rights Reserved. 16/24

Rewriting in SAWCore

• Rewriting the main proof tactic available
• Both Eq a b and a == b can be used as rules

▶ The latter normally proved before use, but optional
▶ Function definitions are collection of rewrite rules

• Symbolic execution can be thought of as an instance of
rewriting

• Some limitations:
▶ No conditional rewriting (so far)
▶ No auto-simplification for associativity, commutativity, etc.

• Other interactive provers are more flexible
▶ Though in some cases less efficient (we routinely process
multi-GB terms)

▶ And not as integrated with automated provers or model
extractors

© 2017 Galois, Inc. All Rights Reserved. 17/24

Open Question: Semantics of SAWCore

• Currently: a somewhat unsound, ad-hoc bag of features
• Ideally: choose an existing, well-studied core calculus and
implement it faithfully

• Maybe adapt to semantics of Lean?
▶ Lean could be directly linked in
▶ Haskell bindings to core API already exist
▶ Core language is simple
▶ Any interactive proof could use Lean tactics

• Coq export for definitions would also be valuable
▶ Proofs would probably be prover-specific, though

© 2017 Galois, Inc. All Rights Reserved. 18/24

Open Question: Representing Non-Termination

• SAW’s main goal: representing program semantics
• Many real programs don’t terminate

▶ Or at least are hard to prove to be terminating
• What’s the most effective way to represent them?
• Various possibilities, none ideal

▶ Distinguish between type and non-type terms at a sort
level, a la Zombie (complex)

▶ Use co-inductive reasoning (but induction is more
straightforward when possible)

▶ Use deep embeddings with a flexible interpreter (slow!)
▶ Require variants (simple, but more user burden)

© 2017 Galois, Inc. All Rights Reserved. 19/24

Open Question: Interactive Proof in SAW

• Some interactive proofs already possible
• Mostly: unconditional rewriting followed by automated
tools

• Limited to a single proof goal
▶ So case splitting is out
▶ Induction even farther away

• Considering the possibility for multiple goals
• Also considering integration with existing interactive
provers

▶ Lean is a prime candidate

© 2017 Galois, Inc. All Rights Reserved. 20/24

Open Question: Proofs About Complex Memory
Models

• Currently, memory “erased” from denotations
• Very efficient and powerful when it works
• Limits the class of programs we can handle
• Explicit memory objects in denotations would help
• How to best represent them?

▶ SMT array theory probably too impoverished
▶ Maybe a different “primitive” type?
▶ Something encoded directly in the logic?

© 2017 Galois, Inc. All Rights Reserved. 21/24

Summary

SAW: efficient proofs about imperative programs via
translation to functional programs + SAT/SMT

• Practical system, used to verify real-world code, such as:
▶ AES from OpenSSL
▶ HMAC, DRBG from s2n
▶ ECDSA from Galois
▶ Portions of several Curve25519 implementations

• Use of types gives structuring principles, helps detect
mistakes

• Type theory provides power and flexibility
▶ and an explicit form okay, since terms are automatically
constructed

• But what possibilities have we yet to take advantage of?

© 2017 Galois, Inc. All Rights Reserved. 22/24

Contributors

Aaron Tomb, Adam Foltzer, Adam Wick, Andrey Chudnov, Andy
Gill, Benjamin Barenblat, Ben Jones, Brian Huffman, Brian
Ledger, David Lazar, Dylan McNamee, Edward Yang, Fergus
Henderson, Iavor Diatchki, Jeff Lewis, Jim Teisher, Joe Hendrix,
Joe Hurd, Joe Kiniry, Joel Stanley, John Launchbury, John
Matthews, Jonathan Daugherty, Kenneth Foner, Kyle Carter,
Ledah Casburn, Lee Pike, Levent Erkök, Magnus Carlsson, Mark
Shields, Mark Tullsen, Matt Sottile, Nathan Collins, Philip
Weaver, Robert Dockins, Sally Browning, Sam Anklesaria,
Sigbjørn Finne, Thomas Nordin, Trevor Elliott, Tristan Ravitch

© 2017 Galois, Inc. All Rights Reserved. 23/24

Resources

• Cryptol
▶ Web: http://cryptol.net
▶ GitHub: https://github.com/GaloisInc/cryptol

• Software Analysis Workbench
▶ Web: https://saw.galois.com
▶ GitHub: https://github.com/GaloisInc/saw-script

• HMAC verification blog post:
▶ https://galois.com/blog/2016/09/

verifying-s2n-hmac-with-saw/

© 2017 Galois, Inc. All Rights Reserved. 24/24

http://cryptol.net
https://github.com/GaloisInc/cryptol
https://saw.galois.com
https://github.com/GaloisInc/saw-script
https://galois.com/blog/2016/09/verifying-s2n-hmac-with-saw/
https://galois.com/blog/2016/09/verifying-s2n-hmac-with-saw/

	Capabilities
	Internals
	Open Questions

