
A Case-Study in Programming Coinductive Proofs:
Mechanizing Proofs using Howe’s Method

Brigitte Pientka

School of Computer Science
McGill University
Montreal, Canada

Currently at: Ludwig Maximilian University Munich, Germany

Joint work with D. Thibodeau (McGill) and A. Momigliano (Milan)

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 1 / 18

Mechanizing formal systems and proofs: How?

Formal systems (given via axioms and inference rules) play an important role
when designing languages and more generally ensure that software are
reliable, safe, and trustworthy.

Program
(in Assembler, C,

ML, Java, Rust, ...)

Properties:

– Memory/Type Safety: Prog. doesn’t crash

– Contextual Equivalence: Two programs are
indistinguishable in any valid program context

– Bisimulation: Two systems behave the same

Meta-Theory

See also: CompCert, DeepSpec, RustBelt, Sel4, Cogent, etc.

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 2 / 18

Mechanizing formal systems and proofs: How?

Formal systems (given via axioms and inference rules) play an important role
when designing languages and more generally ensure that software are
reliable, safe, and trustworthy.

Program
(in Assembler, C,

ML, Java, Rust, ...)

Properties:

– Memory/Type Safety: Prog. doesn’t crash

– Contextual Equivalence: Two programs are
indistinguishable in any valid program context

– Bisimulation: Two systems behave the same

Meta-Theory

See also: CompCert, DeepSpec, RustBelt, Sel4, Cogent, etc.
B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 2 / 18

Challenges in Establishing Formal Guarantees

• Costly

• Large size of formal developments
(CompCert: 4,400 lines of compiler code vs 28,000 lines of verification)

• Low-level representations
For example: variables are modelled via de Bruijn indices, substitution, etc.

- D. Hirschkoff [TPHOLs’97]: Bisimulation Proofs for the π-calculus in
Coq (600 out of 800 lemmas are infrastructural)

- Ambler and Crole [TPHOLs’99] Precongruence of bisimulation for
PCFL (≈ 160 infrastructural lemmas about de Brujn
representation;main lemmas ≈ 34)

• Complex deep properties beyond type safety

• Scalability, reusability, maintainability, automation

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 3 / 18

Main Question

Can we develop very high-level proof languages that
make it easier to develop and maintain formal guaran-
tees by providing the right primitives and abstractions
to bring down the cost of verification?

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 4 / 18

Back in the eighties . . .

How to reason (co)inductively?

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 5 / 18

Back in the eighties . . .

How to reason (co)inductively?

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 5 / 18

Dawn of the 21. Century: (HOA)Syntax in Context

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 6 / 18

Beluga: Programming (Co)inductive Proofs

• Functional programming with indexed (co)data types
[POPL’08,POPL’12,POPL’13,ICFP’16]

On paper proof In Beluga [IJCAR’10,CADE’15]

Case analysis of inputs Case analysis via pattern matching

Inversion Pattern matching using let-expression

Observations on output Case analysis via copattern matching

(Co)Induction hypothesis (Co)Recursive call

• Contextual LF

Well-formed derivations Dependent types
Renaming,Substitution α-renaming, β-reduction in LF

Well-scoped derivation Contextual types and objects [TOCL’08]

Context Context schemas

Properties of contexts Typing for schemas

(weakening, uniqueness)

Simultaneous Substitutions Substitution type [LFMTP’13]

(composition, identity)
B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 7 / 18

This Talk: Mechanizing Meta-Theory

A Case Study of Proving Contextual Equivalence using Howe’s Method

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 8 / 18

Contextual Equivalence = Bisimilarity

M and N are bisimilar iff M and N are contextual equivalent.

(a) Open bisimilarity is a pre-congruence.
=⇒M and N are contextual equivalent.

(b) If M and N are contextual equivalent then M and N are bisimilar.

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 9 / 18

Contextual Equivalence = Bisimilarity

M and N are bisimilar iff M and N are contextual equivalent.

(a) Open bisimilarity is a pre-congruence
for PCFL (Mini-ML with lazy lists and recursion)[Pitts’97]
=⇒M and N are contextual equivalent.

(b) If M and N are contextual equivalent then M and N are bisimilar.

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 9 / 18

Step 1: Represent Types and Lambda-terms in LF

Types A,B::= unit Terms M,N::= ()
| list A | nil | M :: N | case M of {nil ⇒ N1 | h :: t ⇒ N2}
| A ⇒ B | x | lam x .M | app M N | fix x .M

Value V ::= () | lam x .M | nil | M :: N

LF representation in Beluga (intrinsically typed terms)

LF tp:type =
| unit: tp
| arr : tp → tp → tp
| list: tp → tp;

LF tm: tp → type =
| top : tm unit
| lam : (tm A → tm B) → tm (arr A B)
| app : tm (arr A B) → tm A → tm B
| fix : (tm A → tm A) → tm A
| nil : tm (list A)
| cons : tm A → tm (list A) → tm (list A)
| lcase: tm (list A) → tm B →

(tm A → tm (list A) → tm B) → tm B;

• Higher-order abstract syntax (HOAS) to represent variabe binding
• Inheriting α-renaming and single substitutions (β-reduction) from LF
• Warning: Negative occurrences!

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 10 / 18

Step 1: Represent Types and Lambda-terms in LF

Types A,B::= unit Terms M,N::= ()
| list A | nil | M :: N | case M of {nil ⇒ N1 | h :: t ⇒ N2}
| A ⇒ B | x | lam x .M | app M N | fix x .M

Value V ::= () | lam x .M | nil | M :: N

LF representation in Beluga (intrinsically typed terms)

LF tp:type =
| unit: tp
| arr : tp → tp → tp
| list: tp → tp;

LF tm: tp → type =
| top : tm unit
| lam : (tm A → tm B) → tm (arr A B)
| app : tm (arr A B) → tm A → tm B
| fix : (tm A → tm A) → tm A
| nil : tm (list A)
| cons : tm A → tm (list A) → tm (list A)
| lcase: tm (list A) → tm B →

(tm A → tm (list A) → tm B) → tm B;

• Higher-order abstract syntax (HOAS) to represent variabe binding
• Inheriting α-renaming and single substitutions (β-reduction) from LF
• Warning: Negative occurrences!

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 10 / 18

Step 1: Representing Evaluations in LF

Evaluation Judgment: M ⇓ V read as “M evaluates V ”

M ⇓ nil N1 ⇓ V

case M of {nil ⇒ N1 | h :: t ⇒ N2} ⇓ V

M ⇓ M1 :: M2 [M1/h,M2/t]N2 ⇓ V

case M of {nil ⇒ N1 | h :: t ⇒ N2} ⇓ V

V ⇓ V

M ⇓ lam x .M ′ [N/x]M ′ ⇓ V

app M N ⇓ V

[fix x .M/x]M ⇓ V

fix x .M ⇓ V

LF representation in Beluga (intrinsically typed evaluations)

LF eval : tm A → tm A → type =
| ev-app : eval M (lam M’) → eval (M’ N) V → eval (app M N) V
| ev-v : value V → eval V V
| ev-fix : eval (M (fix M)) V → eval (fix M) V
| ev-lcase-nil : eval M nil → eval N1 V → eval (lcase M N1 N2) V.
| ev-lcase-cons: eval M (cons H T) → eval (N2 H T) V

→ eval (lcase M N1 N2) V.

Object-level substitution = LF application

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 11 / 18

Step 1: Representing Evaluations in LF

Evaluation Judgment: M ⇓ V read as “M evaluates V ”

M ⇓ nil N1 ⇓ V

case M of {nil ⇒ N1 | h :: t ⇒ N2} ⇓ V

M ⇓ M1 :: M2 [M1/h,M2/t]N2 ⇓ V

case M of {nil ⇒ N1 | h :: t ⇒ N2} ⇓ V

V ⇓ V

M ⇓ lam x .M ′ [N/x]M ′ ⇓ V

app M N ⇓ V

[fix x .M/x]M ⇓ V

fix x .M ⇓ V

LF representation in Beluga (intrinsically typed evaluations)

LF eval : tm A → tm A → type =
| ev-app : eval M (lam M’) → eval (M’ N) V → eval (app M N) V
| ev-v : value V → eval V V
| ev-fix : eval (M (fix M)) V → eval (fix M) V
| ev-lcase-nil : eval M nil → eval N1 V → eval (lcase M N1 N2) V.
| ev-lcase-cons: eval M (cons H T) → eval (N2 H T) V

→ eval (lcase M N1 N2) V.

Object-level substitution = LF application

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 11 / 18

Step 2: Similarity M 4A N (greatest fixed point)

M 4list A N : M ⇓ nil entails N ⇓ nil
M 4list A N : M ⇓ H :: T entails that there is N ⇓ H ′ :: T ′ and

H 4A H ′ and T 4list A T ′.
M 4A→B N : M ⇓ lam x .M ′ entails that there is N ⇓ lam y .N ′ and for

every R:A, we have M ′[R/x] 4B N ′[R/y] ;

Computation-level codata types in Beluga using records

coinductive Sim: Π A:[tp].[tm A] → [tm A] → type =
{ (Sim_nil : Sim [list A] [M] [N])::

[eval M nil] → [eval N nil]

; (Sim_cons : Sim [list A] [M] [N])::
[eval M (cons H L)] → ExSimCons [H] [L] [N]

; (Sim_lam : Sim [arr A B] [M] [N])::
[eval M (lam λx.M’)] → ExSimLam [x:tm A ` M’] [N] }

and inductive ExSimLam: [x:tm A ` tm B[]] → [tm (arr A B)] → type =
| ExSimlam: [eval N (lam λy.N’)] → (Π R:[tm A]} Sim [B] [M’[R]] [N’[R]])

→ ExSimLam [x:tm A ` M’] [N]

[POPL’13,ICFP’16]

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 12 / 18

Step 2: Similarity M 4A N (greatest fixed point)

M 4list A N : M ⇓ nil entails N ⇓ nil
M 4list A N : M ⇓ H :: T entails that there is N ⇓ H ′ :: T ′ and

H 4A H ′ and T 4list A T ′.
M 4A→B N : M ⇓ lam x .M ′ entails that there is N ⇓ lam y .N ′ and for

every R:A, we have M ′[R/x] 4B N ′[R/y] ;

Computation-level codata types in Beluga using records

coinductive Sim: Π A:[tp].[tm A] → [tm A] → type =
{ (Sim_nil : Sim [list A] [M] [N])::

[eval M nil] → [eval N nil]

; (Sim_cons : Sim [list A] [M] [N])::
[eval M (cons H L)] → ExSimCons [H] [L] [N]

; (Sim_lam : Sim [arr A B] [M] [N])::
[eval M (lam λx.M’)] → ExSimLam [x:tm A ` M’] [N] }

and inductive ExSimLam: [x:tm A ` tm B[]] → [tm (arr A B)] → type =
| ExSimlam: [eval N (lam λy.N’)] → (Π R:[tm A]} Sim [B] [M’[R]] [N’[R]])

→ ExSimLam [x:tm A ` M’] [N]

[POPL’13,ICFP’16]
B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 12 / 18

A Simple Coinductive Proof: Similarity is reflexive

Proofs as Computation in Beluga

rec sim_refl : Π A:[tp].Π M:[tm A]Sim [A] [M] [M] =
fun [unit] [M] .Sim_unit d ⇒ d

| [list A] [M] .Sim_nil d ⇒ d
| [list A] [M] .Sim_cons [H] [T] d ⇒

ExSimcons _ _ _ _ _ d (sim_refl [A] [H]) (sim_refl [list A] [T])
| [arr A B] [M] .Sim_lam [x:tm A ` M’] d ⇒

ExSimlam _ _ _ _ _ d (fun [R] ⇒ sim_refl [B] [M’[R]])

• Coinductive Proof = Recursive Program via copattern matching
[POPL’13,ICFP’16]

• Implicit arguments that are reconstructed

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 13 / 18

Step 3: Defining Open Simulation as Inductive Data Type

Open Bisimulation: Γ ` M 4◦AN iff M[σ] 4A N[σ], for any · ` σ : Γ.

• First-class contexts are classified by context schemas.

schema ctx = tm A.

• First-class substitutions σ have type Ψ ` Φ and provide a mapping from the
context Φ to the context Ψ.

inductive OSim:Π Γ:ctx.Π A:[tp]. [Γ `tm A[]] → [Γ `tm A[]] → type =
| OSimC : (Π σ:[`Γ].Sim [A] [` M[σ]] [` N[σ]])

→ OSim [A] [Γ ` M] [Γ ` N]

• Open similarity is closed under substitutions (exploits built-in composition of
first-class substitutions).

rec osim_cus: Π Γ:ctx.Π Ψ:ctx.Π ρ:[Ψ `Γ].OSim [A] [Γ `M] [Γ `N]
→ OSim [A] [Ψ `M[ρ]] [Ψ `N[ρ]] =

fun [Ψ `ρ] (OSimC f) = OSimC (fun [σ] ⇒ f [ρ[σ]])

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 14 / 18

Howe-Relations, Substitutivity, etc.

• Indexed inductive types precisely characterize Howe-relations.

Howe-relation on open terms: Γ ` M 4HA N

Howe-relation on substitutions: Γ ` σ1 4HΨ σ2

Computation-level data types in Beluga

inductive Howe-Terms:ΠΓ:ctx.ΠA:[tp].ΠM:[Γ `tm A[]].ΠN:[Γ `tm A[]] type

inductive Howe-Subst:ΠΓ:ctx.ΠΨ:ctx.Πσ1:[Γ `Ψ].Πσ2:[Γ `Ψ] type

• Direct translation of the theorem as computation-level types

• Substitutivity for Howe-related terms is straightforward.

• Additional proofs (downward closed additional lemmas, etc.) are
straightforward.

• No infrastructural lemmas needed

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 15 / 18

What did we learn from this case study?

• Higher-order abstract syntax (HOAS) encodings are convenient to
model binding structures in syntax trees

• Contextual LF extends the spirit of HOAS to also support bindings
with respect to a context of assumptions; this allows us to state and
prove properties about open terms.

• First-class contexts and substitutions and their equational theory are
a big win
Substitution lemma, composition, decomposition, associativity, identity, etc.

M[·] = M

M[σ,N/x] = M[N/x][σ, x/x]

M[σ1][σ2] = M[[σ1]σ2]

a dozen such properties are needed

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 16 / 18

More Lessons

• Bisimilarity is a pre-congruence takes 35 theorems in Beluga
No infrastructural theorems needed; all definitions and lemmas can be
directly encoded included the notoriously difficult substitutivity

• Prototype of working with coinductive definitions (still needs work)

• Mechanization for STLC (not PCFL!) in Abella using HOAS style
[Momigliano’12]:
≈ 45 theorems total
≈ 10 lemmas to maintain typing invariants;
≈ 6 lemmas to reason about the scope of variables;
substitutivity was hard

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 17 / 18

Status Update on Beluga

• Prototype in OCaml (ongoing - last release March 2015)
providing an interactive programming mode, totality checker [CADE’15]

https://github.com/Beluga-lang/Beluga

• Mechanizing Types and Programming Languages - A companion:

https://github.com/Beluga-lang/Meta

Thank you!

“A language that doesn’t affect the way you think about
programming, is not worth knowing.“ - Alan Perlis

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 18 / 18

https://github.com/Beluga-lang/Beluga
https://github.com/Beluga-lang/Meta

Status Update on Beluga

• Prototype in OCaml (ongoing - last release March 2015)
providing an interactive programming mode, totality checker [CADE’15]

https://github.com/Beluga-lang/Beluga

• Mechanizing Types and Programming Languages - A companion:

https://github.com/Beluga-lang/Meta

Thank you!

“A language that doesn’t affect the way you think about
programming, is not worth knowing.“ - Alan Perlis

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe’s Method 18 / 18

https://github.com/Beluga-lang/Beluga
https://github.com/Beluga-lang/Meta

