A Case-Study in Programming Coinductive Proofs: Mechanizing Proofs using Howe's Method

Brigitte Pientka

School of Computer Science McGill University Montreal, Canada

Currently at: Ludwig Maximilian University Munich, Germany Joint work with D. Thibodeau (McGill) and A. Momigliano (Milan)

Mechanizing formal systems and proofs: How?

Mechanizing formal systems and proofs: How?

Formal systems (given via axioms and inference rules) play an important role when designing languages and more generally ensure that software are reliable, safe, and trustworthy.

See also: CompCert, DeepSpec, RustBelt, Sel4, Cogent, etc.

Challenges in Establishing Formal Guarantees

- Costly
- Large size of formal developments (CompCert: 4,400 lines of compiler code vs 28,000 lines of verification)
- Low-level representations For example: variables are modelled via de Bruijn indices, substitution, etc.
 - D. Hirschkoff [TPHOLs'97]: Bisimulation Proofs for the π -calculus in Coq (600 out of 800 lemmas are infrastructural)
 - Ambler and Crole [TPHOLs'99] Precongruence of bisimulation for PCFL (\approx 160 infrastructural lemmas about de Brujn representation;main lemmas \approx 34)
- Complex deep properties beyond type safety
- Scalability, reusability, maintainability, automation

Can we develop very high-level proof languages that make it easier to develop and maintain formal guarantees by providing the right primitives and abstractions to bring down the cost of verification?

Back in the eighties ...

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Back in the eighties ...

How to reason (co)inductively?

Dawn of the 21. Century: (HOA)Syntax in Context

Indexed Functional Programs defined by recursion and (co) pattern matching

BELUGA: Programming (Co)inductive Proofs

• Functional programming with indexed (co)data types [POPL'08,POPL'12,POPL'13,ICFP'16]

On paper proof	In Beluga [IJCAR'10,CADE'15]
Case analysis of inputs Inversion Observations on output (Co)Induction hypothesis	Case analysis via pattern matching Pattern matching using let-expression Case analysis via copattern matching (Co)Recursive call
Contextual LF	
Well-formed derivations Renaming,Substitution Well-scoped derivation Context Properties of contexts (weakening uniqueness)	Dependent types α -renaming, β -reduction in LF Contextual types and objects [TOCL'08] Context schemas Typing for schemas
Simultaneous Substitutions (composition, identity)	Substitution type [LFMTP'13]

A Case Study of Proving Contextual Equivalence using Howe's Method

Contextual Equivalence = Bisimilarity

M and N are bisimilar iff M and N are contextual equivalent.

(a) **Open bisimilarity is a pre-congruence.** $\implies M$ and N are contextual equivalent.

(b) If M and N are contextual equivalent then M and N are bisimilar.

Contextual Equivalence = Bisimilarity

M and N are bisimilar iff M and N are contextual equivalent.

- (a) Open bisimilarity is a pre-congruence for PCFL (Mini-ML with lazy lists and recursion)[Pitts'97]
 ⇒M and N are contextual equivalent.
- (b) If M and N are contextual equivalent then M and N are bisimilar.

Step 1: Represent Types and Lambda-terms in LF

Types A, B::= unit

$$|$$
 list A
 $|$ A \Rightarrow B
Value V
Terms M,N::= ()
 $|$ nil $|$ M :: N $|$ case M of $\{$ nil \Rightarrow N₁ $|$ h :: t \Rightarrow N₂ $\}$
 $|$ x $|$ lam x.M $|$ app M N $|$ fix x.M
Value V
 $|$:= () $|$ lam x.M $|$ nil $|$ M :: N

Step 1: Represent Types and Lambda-terms in LF

LF representation in Beluga (intrinsically typed terms)

- Higher-order abstract syntax (HOAS) to represent variabe binding
- Inheriting α -renaming and single substitutions (β -reduction) from LF
- Warning: Negative occurrences!

Step 1: Representing Evaluations in LF

Step 1: Representing Evaluations in LF

LF representation in Beluga (intrinsically typed evaluations)

Object-level substitution = LF application

Step 2: Similarity $M \preccurlyeq_A N$ (greatest fixed point)

 $\begin{array}{l} M \preccurlyeq_{\mathsf{list} A} & N : M \Downarrow \mathsf{nil} \mathsf{ entails } N \Downarrow \mathsf{nil} \\ M \preccurlyeq_{\mathsf{list} A} & N : M \Downarrow H :: T \mathsf{ entails that there is } N \Downarrow H' :: T' \mathsf{ and} \\ & H \preccurlyeq_A H' \mathsf{ and } T \preccurlyeq_{\mathsf{list} A} T'. \\ M \preccurlyeq_{A \to B} N : M \Downarrow \mathsf{lam } x.M' \mathsf{ entails that there is } N \Downarrow \mathsf{lam } y.N' \mathsf{ and for} \end{array}$

every R:A, we have $M'[R/x] \preccurlyeq_B N'[R/y]$;

Step 2: Similarity $M \preccurlyeq_A N$ (greatest fixed point)

 $\begin{array}{l} M \preccurlyeq_{\mathsf{list}\ A} & N : M \Downarrow \mathsf{nil} \mathsf{ entails}\ N \Downarrow \mathsf{nil} \\ M \preccurlyeq_{\mathsf{list}\ A} & N : M \Downarrow H :: \ T \mathsf{ entails} \mathsf{ that} \mathsf{ there} \mathsf{ is} \ N \Downarrow H' :: \ T' \mathsf{ and} \\ & H \preccurlyeq_A H' \mathsf{ and} \ T \preccurlyeq_{\mathsf{list}\ A} T'. \\ M \preccurlyeq_{A \to B} N : M \Downarrow \mathsf{lam}\ x.M' \mathsf{ entails} \mathsf{ that} \mathsf{ there} \mathsf{ is} \ N \Downarrow \mathsf{lam}\ y.N' \mathsf{ and} \mathsf{ for} \end{array}$

every R:A, we have $M'[R/x] \preccurlyeq_B N'[R/y]$;

Computation-level codata types in Beluga using records

[POPL'13,ICFP'16]

A Simple Coinductive Proof: Similarity is reflexive

Proofs as Computation in Beluga

- Coinductive Proof = Recursive Program via copattern matching [POPL'13,ICFP'16]
- Implicit arguments that are reconstructed

Step 3: Defining Open Simulation as Inductive Data Type

Open Bisimulation: $[\Gamma \vdash M \preccurlyeq^{\circ}_{A} N \text{ iff } M[\sigma] \preccurlyeq_{A} N[\sigma], \text{ for any } \vdash \sigma : \Gamma.$

• First-class contexts are classified by context schemas.

```
schema ctx = tm A.
```

First-class substitutions σ have type Ψ ⊢ Φ and provide a mapping from the context Φ to the context Ψ.

• Open similarity is closed under substitutions (exploits built-in composition of first-class substitutions).

Howe-Relations, Substitutivity, etc.

• Indexed inductive types precisely characterize Howe-relations.

Howe-relation on open terms: $\Gamma \vdash M \preccurlyeq^{\mathcal{H}}_{A} N$

Howe-relation on substitutions: $\Gamma \vdash \sigma_1 \preccurlyeq^{\mathcal{H}}_{\Psi} \sigma_2$

Computation-level data types in Beluga

- Direct translation of the theorem as computation-level types
- Substitutivity for Howe-related terms is straightforward.
- Additional proofs (downward closed additional lemmas, etc.) are straightforward.
- No infrastructural lemmas needed

What did we learn from this case study?

- Higher-order abstract syntax (HOAS) encodings are convenient to model binding structures in syntax trees
- Contextual LF extends the spirit of HOAS to also support bindings with respect to a context of assumptions; this allows us to state and prove properties about open terms.
- First-class contexts and substitutions and their equational theory are a big win

Substitution lemma, composition, decomposition, associativity, identity, etc.

$$M[\cdot] = M$$

$$M[\sigma, N/x] = M[N/x][\sigma, x/x]$$

$$M[\sigma_1][\sigma_2] = M[[\sigma_1]\sigma_2]$$

a dozen such properties are needed

More Lessons

- Bisimilarity is a pre-congruence takes 35 theorems in Beluga No infrastructural theorems needed; all definitions and lemmas can be directly encoded included the notoriously difficult substitutivity
- Prototype of working with coinductive definitions (still needs work)
- Mechanization for STLC (not PCFL!) in Abella using HOAS style [Momigliano'12]:
 - pprox 45 theorems total
 - \approx 10 lemmas to maintain typing invariants;

 \approx 6 lemmas to reason about the scope of variables; substitutivity was hard

Status Update on Beluga

 Prototype in OCaml (ongoing - last release March 2015) providing an interactive programming mode, totality checker [CADE'15]

https://github.com/Beluga-lang/Beluga

 Mechanizing Types and Programming Languages - A companion: https://github.com/Beluga-lang/Meta

Status Update on Beluga

 Prototype in OCaml (ongoing - last release March 2015) providing an interactive programming mode, totality checker [CADE'15]

https://github.com/Beluga-lang/Beluga

 Mechanizing Types and Programming Languages - A companion: https://github.com/Beluga-lang/Meta

Thank you!

"A language that doesn't affect the way you think about programming, is not worth knowing." - Alan Perlis