A Case-Study in Programming Coinductive Proofs:

Mechanizing Proofs using Howe's Method

Brigitte Pientka

School of Computer Science
McGill University
Montreal, Canada

beluga

Currently at: Ludwig Maximilian University Munich, Germany

Joint work with D. Thibodeau (McGill) and A. Momigliano (Milan)

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Mechanizing formal systems and proofs: How?

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Mechanizing formal systems and proofs: How?

Formal systems (given via axioms and inference rules) play an important role
when designing languages and more generally ensure that software are
reliable, safe, and trustworthy.

Meta-Theory

Program Properties:
(in Assembler, C,

— Memory/Type Safety: Prog. doesn't crash
ML, Java, Rust, ...)

— Contextual Equivalence: Two programs are
indistinguishable in any valid program context

— Bisimulation: Two systems behave the same

See also: CompCert, DeepSpec, RustBelt, Sel4, Cogent, etc.

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Challenges in Establishing Formal Guarantees

Costly

o Large size of formal developments
(CompCert: 4,400 lines of compiler code vs 28,000 lines of verification)

Low-level representations
For example: variables are modelled via de Bruijn indices, substitution, etc.

- D. Hirschkoff [TPHOLs'97]: Bisimulation Proofs for the m-calculus in
Coq (600 out of 800 lemmas are infrastructural)

- Ambler and Crole [TPHOLs'99] Precongruence of bisimulation for
PCFL (= 160 infrastructural lemmas about de Brujn
representation;main lemmas ~ 34)

Complex deep properties beyond type safety

Scalability, reusability, maintainability, automation

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Can we develop very high-level proof languages that
make it easier to develop and maintain formal guaran-
tees by providing the right primitives and abstractions
to bring down the cost of verification?

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Back in the eighties . ..

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Back in the eighties . ..

How to reason (co)inductively?

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Dawn of the 21. Century: (HOA)Syntax in Context

Contextual LF TOoL

{irs}'— class conbext Tndex
+ subskiubion Longuage + least and 3reahs‘
{.iv.eJ Po’m‘s

Y 4 e(‘uuli ‘7
) /)’_\/\/\\//ﬁ\" -

— N
\ . \
Ynrax + Axioms TN

I
Indexed Functional Projrums
defined \:7 recursion and

(co) pattern ma‘-ch%ns

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

BELUGA: Programming (Co)inductive Proofs

e Functional programming with indexed (co)data types
[POPL'08,POPL'12,POPL'13,ICFP'16]

On paper proof In Beluga [IJCAR'10,CADE'15]

Case analysis of inputs Case analysis via pattern matching
Inversion Pattern matching using let-expression
Observations on output Case analysis via copattern matching

(Co)Induction hypothesis (Co)Recursive call

e Contextual LF

Well-formed derivations Dependent types

Renaming,Substitution a-renaming, S-reduction in LF
Well-scoped derivation Contextual types and objects [TOCL'08]
Context Context schemas

Properties of contexts Typing for schemas

(weakening, uniqueness)
Simultaneous Substitutions | Substitution type [LFMTP'13]
composition, identit

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

This Talk: Mechanizing Meta-Theory

A Case Study of Proving Contextual Equivalence using Howe's Method

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Contextual Equivalence = Bisimilarity

M and N are bisimilar iff M and N are contextual equivalent.

(a) Open bisimilarity is a pre-congruence.
=M and N are contextual equivalent.

(b) If M and N are contextual equivalent then M and N are bisimilar.

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Contextual Equivalence = Bisimilarity

M and N are bisimilar iff M and N are contextual equivalent.

(a) Open bisimilarity is a pre-congruence
for PCFL (Mini-ML with lazy lists and recursion)[Pitts’97]
=M and N are contextual equivalent.

(b) If M and N are contextual equivalent then M and N are bisimilar.

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Step 1: Represent Types and Lambda-terms in LF

Types A, B::= unit Terms M,N::= ()

| list A | nil | M :: N | case M of {nil = Ni | h:: t = N>}
|A= B | x | lam x.M | app M N | fix x.M
Value V. == () |lam x.M | nil | M == N

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method 10 / 18

Step 1: Represent Types and Lambda-terms in LF

Types A, B::= unit Terms M,N::= ()
| list A | nil | M :: N | case M of {nil = Ni | h:: t = N>}
|A=B | x | lam x.M | app M N | fix x.M

Value V. == () |lam x.M | nil | M == N

LF representation in Beluga (intrinsically typed terms)

LF tp:type = LF tm: tp — type =
| unit: tp g i
| arr : tp — tp — tp
| list: tp — tp;

| g
| lam : (tm A — tm B) — tm (arr A B)
| app : tm (arr AB) — tm A — tm B
| fix : (tm A — tm A) — tm A
| nil : tm (list A)
| cons : tm A — tm (list A) — tm (list A)
| lcase: tm (list A) — tm B —

(tm A — tm (list A) — tm B) — tm B;

e Higher-order abstract syntax (HOAS) to represent variabe binding
e Inheriting a-renaming and single substitutions (S-reduction) from LF
e Warning: Negative occurrences!

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Step 1: Representing Evaluations in LF

Evaluation Judgment: read as “M evaluates V"

Mnil NV My M My [My/h, My/t]No |} V
case M of {nil= Ny |h:t= N} |V case M of {nil= Ny |h=t= N} |V

My lam x.M" [N/x]M" § V [fix x.M/x]M | V
vVivVv app M N | V fix x.M || V

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Step 1: Representing Evaluations in LF

Evaluation Judgment: read as “M evaluates V"

Mnil NV My M My [My/h, My/t]No |} V
case M of {nil= Ny |h:t= N} |V case M of {nil= Ny |h=t= N} |V

My lam x.M" [N/x]M" § V [fix x.M/x]M | V
vVivVv app M N | V fix x.M || V

LF representation in Beluga (intrinsically typed evaluations)

ev-lcase-nil : eval M nil — eval N1 V — eval (lcase M N1 N2) V.
ev-lcase-cons: eval M (cons HT) — eval (N2 HT) V
— eval (lcase M N1 N2) V.

LF eval : tm A — tm A — type =

| ev-app : eval M (lam M’) — eval (M’ N) V — eval (app M N) V
| ev-v : value V — eval V V

| ev-fix : eval (M (fix M)) V — eval (fix M) V

|

|

Object-level substitution = LF application

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Step 2: Similarity M <4 N (greatest fixed point)

M <jist o4 N : M | nil entails N | nil

M<iissa N: M | H :: T entails that there is N || H' :: T’ and
H<aH and T <jise 4 T'.

M <ae N : M| lam x.M’ entails that there is N |} lam y.N and for
every R:A, we have M'[R/x] <g N'[R/y] ;

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Step 2: Similarity M <4 N (greatest fixed point)

M <jist o4 N : M | nil entails N | nil

M<iissa N: M | H :: T entails that there is N || H' :: T’ and
H<aH and T <jise 4 T'.

M <ae N : M| lam x.M’ entails that there is N |} lam y.N and for
every R:A, we have M'[R/x] <g N'[R/y] ;

Computation-level codata types in Beluga using records

coinductive Sim: [A:[tp].[tm A] — [tm A] — type =
{ (S8im_nil : Sim [list A] [M] [N])::
[eval M nil] — [eval N nil]
; (Sim_cons : Sim [list A] [M] [N])::
[eval M (cons H L)] — ExSimCons [H] [L] [N]
; (Sim_lam : Sim [arr A B] [M] [N])::
[eval M (lam Ax.M’)] — ExSimLam [x:tm A F M’] [N] }
and inductive ExSimLam: [x:tm A F tm B[]] — [tm (arr A B)] — type =

| ExSimlam: [eval N (lam Ay.N’)] — (Il R:[tm A]} Sim [B] [M’[R]] [N’[R] 1)
— ExSimLam [x:tm A - M’] [N]

[POPL'13,ICFP'16]

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

A Simple Coinductive Proof: Similarity is reflexive

Proofs as Computation in Beluga

rec sim_refl : [1 A:[tp].[l M:[tm AlSim [A] [M] [M] =
fun [unit] [M] .Sim_unit d = d
| [list A] [M] .Sim_nil d = d
| [list A] [M] .Sim_cons [H] [T] d =
ExSimcons _ _ _ _ _ d (sim_refl [A] [H]) (sim_refl [list A] [T])
| [arr A B] [M] .Sim_lam [x:tm A F M’] d =
ExSimlam _ _ _ _ _ d (fun [R] = sim_refl [B] [M’[R]])

e Coinductive Proof = Recursive Program via copattern matching
[POPL'13,ICFP'16]

e |mplicit arguments that are reconstructed

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method 13 / 18

Step 3: Defining Open Simulation as Inductive Data Type

Open Bisimulation:] [+ M <3N iff M[o] <4 N[o], forany - - o : T. \

o First-class contexts are classified by context schemas.
schema ctx = tm A.

o First-class substitutions ¢ have type W = & and provide a mapping from the
context ® to the context V.

inductive 0Sim:M lM:ctx.M A:[tp]. [Ftm A[]] — [Ftm A[]] — type =
| 08imC : (M o:[FM1.Sim [A] [F Mlol]l [F N[oll)
— 0Sim [A] [TFM 1 TN]

e Open similarity is closed under substitutions (exploits built-in composition of
first-class substitutions).

rec osim_cus: [l [:ctx. [l W:ctx.M p:[W FI].0Sim [A] [T FM] [FN]
— 0S8im [A] [V FM[pl]l [V EN[p]] =
fun [V Fpl (0SimC £f) = 0SimC (fun [0] = £ [ploll)

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Howe-Relations, Substitutivity, etc.

e Indexed inductive types precisely characterize Howe-relations.

Howe-relation on open terms: '+ M <} N

Howe-relation on substitutions: [F o3 4? o2

Computation-level data types in Beluga

inductive Howe-Terms:[MlM:ctx.MA: [tp] .MM: [Ftm A[1]1.MN: [Ftm A[1] type
inductive Howe-Subst:[l:ctx.MW:ctx.Moy: [FV].Moy: [FV] type

Direct translation of the theorem as computation-level types
Substitutivity for Howe-related terms is straightforward.
Additional proofs (downward closed additional lemmas, etc.) are
straightforward.

No infrastructural lemmas needed

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

What did we learn from this case study?

e Higher-order abstract syntax (HOAS) encodings are convenient to
model binding structures in syntax trees
e Contextual LF extends the spirit of HOAS to also support bindings
with respect to a context of assumptions; this allows us to state and
prove properties about open terms.
e First-class contexts and substitutions and their equational theory are
a big win
Substitution lemma, composition, decomposition, associativity, identity, etc.
M[] = M
Mlo, N/x] MIN/x][o, x/x]
M[o1][o2] Mllo1]o2]

a dozen such properties are needed

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

More Lessons

e Bisimilarity is a pre-congruence takes 35 theorems in Beluga
No infrastructural theorems needed; all definitions and lemmas can be
directly encoded included the notoriously difficult substitutivity

e Prototype of working with coinductive definitions (still needs work)

e Mechanization for STLC (not PCFL!) in Abella using HOAS style
[Momigliano'12]:
~ 45 theorems total
10 lemmas to maintain typing invariants;
6 lemmas to reason about the scope of variables;
substitutivity was hard

~

~
~
~

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

Status Update on Beluga

¢ Prototype in OCaml (ongoing - last release March 2015)
providing an interactive programming mode, totality checker [CADE'15]

https://github.com/Beluga-lang/Beluga

e Mechanizing Types and Programming Languages - A companion:
https://github.com/Beluga-lang/Meta

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

https://github.com/Beluga-lang/Beluga
https://github.com/Beluga-lang/Meta

Status Update on Beluga

¢ Prototype in OCaml (ongoing - last release March 2015)
providing an interactive programming mode, totality checker [CADE'15]

https://github.com/Beluga-lang/Beluga

e Mechanizing Types and Programming Languages - A companion:
https://github.com/Beluga-lang/Meta

Thank youl!

“A language that doesn't affect the way you think about
programming, is not worth knowing. - Alan Perlis

B. Pientka A Case-Study in Programming Coinductive Proofs: Howe's Method

https://github.com/Beluga-lang/Beluga
https://github.com/Beluga-lang/Meta

