
A Case Study in Programming Coinductive
Proofs in Beluga: Howe’s Method

David Thibodeau ∗

McGill University
Montreal, Canada

david.thibodeau@mail.mcgill.ca

Alberto Momigliano
University of Milan

Milan, Italy
momigliano@di.unimi.it

Brigitte Pientka
McGill University
Montreal, Canada

bpientka@cs.mcgill.ca

Abstract
Bisimulation proofs play a central role in programming languages
in establishing rich properties such as contextual equivalence. They
are also challenging to mechanize, since they require a combination
of inductive and coinductive reasoning on open terms. Recently, we
have described the mechanization of the property that similarity in
call-by-name PCF is a pre-congruence using Howe’s method in the
Beluga proof environment (Thibodeau et al. 2016b). The end re-
sult is succinct and elegant, thanks to the high-level abstractions
and primitives Beluga provides to model variable binding, substi-
tutions, and contexts, especially compared to similar proofs in the
literature, carried out in Abella, Isabelle/HOL and Coq. We hence
believe that this mechanization is a text book example that illus-
trates Belugas strength at mechanizing challenging (co)inductive
proofs using higher-order abstract syntax encodings and may also
be a good benchmark for comparing proof environments.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.1 [Program-
ming Languages]: Formal Definitions and Theory; F.3.1 [Theory
of Computation]: Specifying and Verifying and Reasoning about
Programs
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Logical frameworks, such as the logical framework LF (Harper
et al. 1993), provide a meta-language for representing formal sys-
tems given via axioms and inference rules together with proofs
about them. In particular, they factor out common and recurring
issues such as modelling variable bindings together with renaming
and substitution operations. As users do not need to build up the
basic mathematical infrastructure, they make it easier to prototype
proof environments and mechanize formal systems together with
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their meta-theory. This also can have substantial benefits for proof
checking and proof search.

Over the past decades we have made substantial progress to
understand how to reason inductively about LF specifications: the
proof environment Beluga, (Pientka and Dunfield 2010; Pientka
and Cave 2015) based contextual LF (Nanevski et al. 2008; Pientka
2008), can be seen as the the legitimate successor of Twelf. Many
case-studies (for example how to encode normalization proofs us-
ing logical relations (Cave and Pientka 2015)) have demonstrated
the value of HOAS encodings and pushed the limits of what was
thought to be possible when reasoning over HOAS representations.
However, how to establish strong program properties such as con-
textual equivalence remained an open challenge. Contextual equiv-
alence requires that equivalent programs may be used interchange-
ably in any larger program context with no observable difference.
This property is typically difficult to prove directly, even on paper,
since one has to consider every possible program context. A more
tractable, equivalent notion to contextual equivalence is bisimu-
lation. As contextual equivalence is generally intended to reason
about programs, it is usually a congruence. Hence a sound and com-
plete bisimilarity also has to be a congruence. Proving congruence
is thus a crucial step when working with contextual equivalence of
programs.

In this talk, we discuss a text book example, the property
that similarity in the call-by-name PCF is a pre-congruence us-
ing Howe’s method (Howe 1996). Howes method is a powerful
approach to show that a (bi)similarity is a congruence. In a nut-
shell, it reverses the problem: first define a relation, called Howes
closure, that includes the (bi)similarity of interest and is almost a
congruence. Second, show it is a (bi)simulation. As (bi)similarity
contains every (bi)simulations, Howes closure is thus included in
(bi)similarity. Third, conclude that the (bi)similarity and its Howes
closure coincide, thus the former is a congruence. For simplicity,
we concentrate on the notion of similarity from which we can ob-
tain bisimilarity.

Proving congruence properties of (bi)similarity using Howe’s
method is a challenging benchmark for proof environments: the no-
tion of (bi)similarity is typically defined coinductively and must be
stated for closed and open terms and Howe’s relation is an induc-
tive definition on open terms. Modelling the scope of variables and
reasoning correctly but succinctly about closed and open terms is
therefore crucial. We mechanize this proof in Beluga. Our formal
development relies on three key ingredients:

1. we give a HOAS encoding of lambda-terms together with
their operational semantics as intrinsically typed terms, thereby
avoiding not only the need to deal with binders, renaming and
substitutions, but keeping all typing invariants implicit;



2. we take advantage of Beluga’s support for representing open
terms using first-class contexts and simultaneous substitutions
(Cave and Pientka 2012, 2013): this allows us to directly state
a notion such as open simulation without resorting to the usual
inductive closure operation and to encode very elegantly no-
toriously painful proofs such as the substitutivity of the Howe
relation;

3. we exploit the possibility of reasoning by coinduction in Bel-
uga’s reasoning logic (Thibodeau et al. 2016a).

The end result is succinct and elegant, thanks to the high-level ab-
stractions and primitives Beluga provides, as it can be seen by com-
paring this proof with a similar one, carried out in Abella (Momigliano
2012), and less related developments in Isabelle/HOL (Ambler and
Crole 1999) and Coq (Honsell et al. 2001). We hence believe that
this mechanization is a text book example that illustrates Beluga’s
strength at mechanizing challenging (co)inductive proofs using
higher-order abstract syntax encodings. More generally, it demon-
strates that the right abstractions and primitives are key in bringing
down the cost of verification.
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