

Homotopy Types \& Resizing Rules

A Fresh LOOK at
 the Impredicative Sort of CIC

Nicolas Tabareau

Road Map

In this talk, I will recall two notions introduced by V.V. in 2006 in "A very short note on homotopy λ-calculus".
I. Homotopy types in type theory
2. Universe resizing rules

I will then explain how those two notions allow for a fresh look at the impredicative universe of CIC .

A Hierarchy of Types

A Hierarchy of Types

One of the main contribution of V.V. in type theory is the notion of levels of homotopy of types.

A Hierarchy of Types

Types are classified by the complexity of their equality/identity type.

Simplest (singleton) types are called contractible:

$$
\text { isContr}(A): \equiv \sum_{(a: A)} \prod_{(x: A)}(a=x)
$$

A Hierarchy of Types

Types are classified by the complexity of their equality/identity type.

Proposition have a contractible equality:

$$
\text { isProp }(P): \equiv \prod_{x, y: P}(x=y)
$$

A Hierarchy of Types

Types are classified by the complexity of their equality/identity type.

Then, n -Types are defined inductively:

Define the predicate is- n-type : $\mathcal{U} \rightarrow \mathcal{U}$ for $n \geq-2$ by recursion as follows:

$$
\text { is- } n \text {-type }(X): \equiv \begin{cases}\text { isContr }(X) & \text { if } n=-2 \\ \prod_{(x, y: X)} \text { is- } n^{\prime}-\operatorname{type}(x=x y) & \text { if } n=n^{\prime}+1\end{cases}
$$

A Hierarchy of Types

This defines the following hierarchy:

Level of Type	Homotopy Type Theory
(-2)-Type	unit / contactible type
(-1)-Type	h-propositions
0 -Type	h-sets
I-Type	h-groupoids
\ldots	\ldots
Type	∞-groupoids

A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Universes

A Hierarchy of Universes

To avoid paradox à la Russell, we need to introduce a hierarchy of universes in type theory.

$$
\vdash U_{i}: U_{i+1}
$$

A Hierarchy of Universes

This is a sufficient condition to ensure consistency, but it is often a bit overkilled and one would like to relax it.

A Hierarchy of Universes

Syntactically, the management of the hierarchy can be improved by universe polymorphism which allows to use the same definition at different levels.

A Hierarchy of Universes

V.V. has proposed a semantic way to relax the hierarchy, based on so-called resizing rules.

Resizing Rules

Resizing rule for equivalent types.

$$
(R R 5) \frac{U: U n i v \quad \Gamma \vdash X_{1}: U \quad \Gamma \vdash \text { is : weq } X_{1} X_{2}}{\Gamma \vdash X_{2}: U}
$$

(from V.V.'s talk at Bergen, 20I I)

Resizing Rules

In a classical setting, every mere proposition is equivalent to either True or False.

True and False can be typed in the lowest universe.

Resizing Rules

Resizing rule for mere propositions.

$$
\text { RR1 } \frac{\Gamma \vdash i s: i s a p r o p ~}{} \frac{\Gamma}{\Gamma \vdash X: U U}
$$

Resizing Rules

Resizing rule for mere propositions.

$$
\text { RR1 } \frac{\Gamma \vdash i s: \text { isaprop } X}{\Gamma \vdash X: U U}
$$

This is corresponds to the impredicativity of Prop

A Fresh Look at Prop

A Fresh Look at Prop

This suggests that Prop should be interpreted as a universe of mere propositions.

A Fresh Look at Prop

This suggests that Prop should be interpreted as a universe of mere propositions.

$$
\begin{aligned}
& \text { Problem: In Coq, } \\
& \qquad x=A y \\
& \text { is in Prop for all type A }
\end{aligned}
$$

A Fresh Look at Prop

Problem: In Coq,

$$
x=A y
$$

is in Prop for all type A

This means that the current Prop is implicitly assuming that every type is an h-set !

A Fresh Look at Prop

One possible way out
(as done in the HoTT Coq library):

Treat Prop as a taboo and not use it.

A Fresh Look at Prop

But maybe we can do better and fix it ?

A Fresh Look at Prop

But maybe we can do better and fix it ?

The rest of this talk is joint work with Gaetan Gilbert and Matthieu Sozeau.

Gaetan is implementing this feature, to be integrated hopefully in a future version Coq.

Prop under the Knife of HoTT

When an inductive type is defined in Prop, it can be eliminated only when building a Prop.

Prop under the Knife of HoTT

When an inductive type is defined in Prop, it can be eliminated only when building a Prop.

This corresponds to the fact that propositional truncation can be eliminated

$$
(A \rightarrow B) \rightarrow(\|A\| \rightarrow B)
$$

only when B is a mere proposition.

Prop under the Knife of HoTT

First motto:
"Defining an inductive type in Prop corresponds to using propositional truncation"

Prop under the Knife of HoTT

First motto:
"Defining an inductive type in Prop corresponds to using propositional truncation"

That is, morally, every type in Prop is squashed.

When Props produce Types

In CIC , there is the so-called singleton elimination:
"A singleton definition has only one constructor and all the arguments of this constructor have type Prop."

When Props produce Types

In CIC, there is the so-called singleton elimination:
"A singleton definition has only one constructor and all the arguments of this constructor have type Prop."

This covers for instance conjunction or the accessibility predicate but also equality!

When Props produce Types

With this new insight, singleton elimination can be seen as a syntactic condition on P:Prop which ensures that

$$
\|P\| \cong P
$$

Problem

Allowing squashed equality to be unsquashed is implicitly assuming that every type is an h-set

UIP hard-coded

Problem

The problem is that it doesn't take into account the number of occurrences of parameters/arguments in the return type.

When Props produce Types (II)

$$
\begin{aligned}
& \text { Inductive eq (A:Type) (x:A) : A -> Prop } \\
& :=\text { eq_refl : eq A x x. }
\end{aligned}
$$

a variable that occurs twice must be in h-sets.

When Props produce Types (II)

$$
\begin{aligned}
& \text { Inductive eq (A:Type) }(x: A): A->\text { Prop } \\
& :=\text { eq_refl : eq A } \underbrace{\text { x x. }} \text { occurs twice }
\end{aligned}
$$

a variable that occurs twice must be in h-sets.

When Props produce Types (II)

What about functions occurring in the return type ?

$$
\begin{aligned}
& \text { Vect (A : Prop) : nat }->\text { Prop : }= \\
& \text { nil : Vect A } 0 \\
& \text { | cons : A -> forall n : nat, } \\
& \quad \text { Vect A } n->\operatorname{Vect~A~(S~n)~}
\end{aligned}
$$

When Props produce Types (II)

What about functions occurring in the return type ?

$$
\begin{aligned}
& \text { Vect (A : Prop) : nat }->\text { Prop : }= \\
& \text { nil : Vect A } 0 \\
& \text { | cons : A -> forall n : nat, } \\
& \quad \text { Vect A n }->\text { Vect A (S n) }
\end{aligned}
$$

S must be injective

What about multiple constructors?

Inductive le : nat -> nat -> Prop :=
le_0 : forall n : nat, $0<=\mathrm{n}$
| le_S : forall n m : nat, $\mathrm{m}<=\mathrm{n}->\mathrm{S} \mathrm{m}<=\mathrm{S} \mathrm{n}$

What about multiple constructors?

$$
\begin{aligned}
& \text { Inductive le : nat }->\text { nat }->\text { Prop := } \\
& \text { le_O : forall } \mathrm{n}: \text { nat, } \mathrm{O}<=\mathrm{n} \\
& \text { | le_S : forall } \mathrm{n} \mathrm{~m}: \text { nat, } \mathrm{m}<=\mathrm{n}->\mathrm{S} \mathrm{~m}<=\mathrm{S} \mathrm{n}
\end{aligned} \text { the return types of different } \quad \text { constructors must be orthogonal }
$$

What about multiple constructors ?

$$
\begin{aligned}
& \text { Inductive le : nat -> nat -> Prop := } \\
& \text { le_O : forall } \mathrm{n}: \text { nat, } 0<=\mathrm{n} \\
& \text { | le_S : forall } \mathrm{n} \mathrm{~m}: \text { nat, } \mathrm{m}<=\mathrm{n}->\mathrm{Sm}<=\mathrm{S} \mathrm{n}
\end{aligned}
$$

Sums don't preserve mere propositions in general, but they do for disjoint sums.
the return types of different constructors must be orthogonal

Remark Definitions Matter

Inductive le' (n : nat) : nat -> Prop := le_n : n <= n
| le_S : forall m : nat, $\mathrm{n}<=\mathrm{m}->\mathrm{n}<=\mathrm{S} \mathrm{m}$

Remark

Definitions Matter

$$
\begin{aligned}
& \text { Inductive le' (n : nat) : nat -> Prop := } \\
& \text { le_n }: \mathrm{n}<=\mathrm{n} \\
& \text { le_S: forall } \mathrm{m}: \text { nat, } \mathrm{n}<=\mathrm{m}->\mathrm{n}<=\mathrm{S} \mathrm{~m} \\
& \text { the criterion does not work for } \\
& \text { this (equivalent) definition }
\end{aligned}
$$

When a Prop is h-Prop

I. every argument that does not appear in the return type must be in Prop
2. every argument/parameters that appears more than once in the return type must be h-Set
3. every argument that appears exactly once is OK
4. the return types of different constructors must be orthogonal

When a Prop is -I-Type

I. every argument that does not appear in the return type must be in -I-Type
2. every argument/parameters that appears more than once in the return type must be 0-Type
3. every argument that appears exactly once is OK
4. the return types of different constructors must be orthogonal

Going to Higher Level

This characterisation generalises to n-types
I. every argument that does not appear in the return type must be in n -Type
2. every argument/parameters that appears more than once in the return type must be $(\mathrm{n}+\mathrm{I})$-Type
3. every argument that appears exactly once is OK
4. the return types of different constructors must be orthogonal

Going to Higher Level

This characterisation generalises to n-types
I. every argument that does not appear in the return type must be in n-Type
2. every argument/parameters that appears more than once in the return type must be $(\mathrm{n}+\mathrm{I})$-Type
3. every argument that appears exactly once is OK

only for mere proposition

Remark

This characterisation is very similar to what Jesper Cockx et al. use to do pattern-matching without K in Agda.

For the moment, our criterion is missing a bit of dependency.

Remark

This characterisation is very similar to what Jesper Cockx et al. use to do pattern-matching without K in Agda.

For the moment, our criterion is missing a bit of dependency.

We will be working in February with Jesper (thanks to EUTypes STSMs ©๑) to extend it .

What is this Impredicative Universe?

The least we get is a new version of Coq:

- compatible with UIP
- compatible with univalence
- admitting the axiom :
forall (P:Prop) (x y : P), x = y

We Want More!

We Want More!

Replace the admissible axiom with a

definitional equality:

$$
\text { forall (P:Prop) (x y : P), x } \equiv \mathrm{y}
$$

Problem

Congruence with pattern-matching and fixpoints requires to apply inversion lemma even to neutral terms ... and this potentially infinitely many times.

Problem

Congruence with pattern-matching and fixpoints requires to apply inversion lemma even to neutral terms ... and this potentially infinitely many times.

A naive implementation gives rise to an undecidable type checker !

Acc is a Hack

Perfectly valid mere proposition, but with infinite unfolding ...

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop := Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x

Acc is a Hack

Perfectly valid mere proposition, but with infinite unfolding ...

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop := Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x

Definition Acc_inv : Acc R x -> forall y:A, R y x -> Acc R y.

Acc is a Hack

Perfectly valid mere proposition, but with infinite unfolding...

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop := Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x

Definition Acc_inv : Acc R x -> forall y:A, R y x -> Acc R y.

$$
\text { a } \equiv \text { Acc_intro x (Acc_inv a) } \equiv \text { Acc_intro x (Acc_inv ...) }
$$

Acc is a Hack

It is not possible to guess how many times an inhabitant of Acc $R \times$ has to be unfolded.

Termination-unfolding criterion

We need to enforce termination of inversion through a syntactic check similar to the guard condition for fixpoints.

That is, recursive arguments of a constructor must have as indices strict sub terms of the indices of the return type.

A Fresh Look at the Impredicative Sort of CIC

Examples

Inductive le : nat -> nat -> Prop :=
 le_0 : forall n : nat, $0<=\mathrm{n}$
 | le_S : forall $\mathrm{n} m$: nat, $\mathrm{m}<=\mathrm{n}$-> $\mathrm{S} \mathrm{m}<=\mathrm{S} \mathrm{n}$

Examples

Inductive le : nat -> nat -> Prop :=
 $$
\text { le_0 : forall n : nat, } 0 \text { <= n }
$$
 $$
\text { | le_s : forall } \mathrm{nm}: \text { nat, } \mathrm{m}<=\mathrm{n}->\mathrm{Sm}_{\mathrm{m}}<=\mathrm{Sn}
$$

m is a strict subterm of S m

Examples

Inductive le : nat -> nat -> Prop :=

le_0 : forall n : nat, $0<=\mathrm{n}$
| le_S : forall $\mathrm{n} m$: nat, $\mathrm{m}<=\mathrm{n}->\mathrm{Sm}<=\mathrm{S} n$
m is a strict subterm of S m

Examples

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A)
: Prop :=
Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x

Examples

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A)
: Prop :=

y is not related to x

Examples

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A)
: Prop :=
Acc_intro: (forall y : A, R y x -> Acc Ry) -> Acc RX
y is not related to x

Remark

This syntactic characterisation of mere propositions is incomplete as for instance singleton types are not accepted.

This is somehow a good point because allowing singleton types in a definitional proof-irrelevant universe implies UIP (Peter L.L.).

The Big Picture

The Big Picture

SProp
 Impredicative
 forall (P:Prop) ($\mathrm{x} \mathrm{y}: \mathrm{P}$), $\mathrm{x} \equiv \mathrm{y}$

Prop
Impredicative
forall (P:Prop) ($\mathrm{x} \mathrm{y}: \mathrm{P}$), $\mathrm{x}=\mathrm{y}$

Type

Predicative

Getting High(er) ?

SProp

SSet

l-SType

n-SType
∞-SType

A Fresh Look at the Impredicative Sort of CIC

V.V. has already sketched this in 2006!

A very short note on homotopy λ-calculus Vladimir Voevodsky, 2006

Demo

Doggy bag

I. Prop can be turned into a syntactic approximation of mere propositions
2. To get definitional proof-irrelevance, we also need to restrict recursive types with a guard condition
3. This should be (hopefully) available soon in Coq
4. It may be extended to deal with a // hierarchy of universes that encodes for homotopy levels.

