
NICOLAS TABAREAU

HOMOTOPY TYPES & RESIZING RULES  
 

A FRESH LOOK AT
THE IMPREDICATIVE SORT OF CIC  

THE LEGACY OF
VLADIMIR VOEVODSKY

A Fresh Look at the Impredicative Sort of CIC 2

Road Map

In this talk, I will recall two notions introduced by V.V.
in 2006 in “A very short note on homotopy λ-calculus”.

1. Homotopy types in type theory

2. Universe resizing rules

I will then explain how those two notions allow
for a fresh look at the impredicative universe of CIC.

A Fresh Look at the Impredicative Sort of CIC 3

A Hierarchy of Types

A Fresh Look at the Impredicative Sort of CIC 4

A Hierarchy of Types

One of the main contribution of V.V. in type theory
is the notion of levels of homotopy of types.

A Fresh Look at the Impredicative Sort of CIC 5

Types are classified by the complexity of their
equality/identity type.

116 CHAPTER 3. SETS AND LOGIC

contractible. Another equivalent definition of contractibility, which is also sometimes convenient,
is the following.

Definition 3.11.1. A type A is contractible, or a singleton, if there is a : A, called the center of
contraction, such that a = x for all x : A. We denote the specified path a = x by contrx.

In other words, the type isContr(A) is defined to be

isContr(A) :⌘ Â
(a:A)

’
(x:A)

(a = x).

Note that under the usual propositions-as-types reading, we can pronounce isContr(A) as “A
contains exactly one element”, or more precisely “A contains an element, and every element of
A is equal to that element”.

Remark 3.11.2. We can also pronounce isContr(A) more topologically as “there is a point a : A
such that for all x : A there exists a path from a to x”. Note that to a classical ear, this sounds like
a definition of connectedness rather than contractibility. The point is that the meaning of “there ex-
ists” in this sentence is a continuous/natural one. A more correct way to express connectedness
would be Â(a:A) ’(x:A)ka = xk; see Lemma 7.5.11.

Lemma 3.11.3. For a type A, the following are logically equivalent.

(i) A is contractible in the sense of Definition 3.11.1.
(ii) A is a mere proposition, and there is a point a : A.

(iii) A is equivalent to 1.

Proof. If A is contractible, then it certainly has a point a : A (the center of contraction), while for
any x, y : A we have x = a = y; thus A is a mere proposition. Conversely, if we have a : A
and A is a mere proposition, then for any x : A we have x = a; thus A is contractible. And we
showed (ii))(iii) in Lemma 3.3.2, while the converse follows since 1 easily has property (ii).

Lemma 3.11.4. For any type A, the type isContr(A) is a mere proposition.

Proof. Suppose given c, c0 : isContr(A). We may assume c ⌘ (a, p) and c0 ⌘ (a0, p0) for a, a0 : A
and p : ’(x:A)(a = x) and p0 : ’(x:A)(a0 = x). By the characterization of paths in S-types, to
show c = c0 it suffices to exhibit q : a = a0 such that q⇤(p) = p0.

We choose q :⌘ p(a0). For the other equality, by function extensionality we must show that
(q⇤(p))(x) = p0(x) for any x : A. For this, it will suffice to show that for any x, y : A and u : x = y
we have u = p(x)�1 ⇧ p(y), since then we would have (q⇤(p))(x) = p(a0)�1 ⇧ p(x) = p0(x). But
now we can invoke path induction to assume that x ⌘ y and u ⌘ reflx. In this case our goal is to
show that reflx = p(x)�1 ⇧ p(x), which is just the inversion law for paths.

Corollary 3.11.5. If A is contractible, then so is isContr(A).

Proof. By Lemma 3.11.4 and Lemma 3.11.3(ii).

Like mere propositions, contractible types are preserved by many type constructors. For
instance, we have:

Simplest (singleton) types are called contractible:

A Hierarchy of Types

A Fresh Look at the Impredicative Sort of CIC 6

Proposition have a contractible equality:

104 CHAPTER 3. SETS AND LOGIC

Note that since we are still doing mathematics in type theory, this is a definition in type
theory, which means it is a type — or, rather, a type family. Specifically, for any P : U , the type
isProp(P) is defined to be

isProp(P) :⌘ ’
x,y:P

(x = y).

Thus, to assert that “P is a mere proposition” means to exhibit an inhabitant of isProp(P), which
is a dependent function connecting any two elements of P by a path. The continuity/naturality
of this function implies that not only are any two elements of P equal, but P contains no higher
homotopy either.

Lemma 3.3.2. If P is a mere proposition and x0 : P, then P ' 1.

Proof. Define f : P ! 1 by f (x) :⌘ ?, and g : 1 ! P by g(u) :⌘ x0. The claim follows from the
next lemma, and the observation that 1 is a mere proposition by Theorem 2.8.1.

Lemma 3.3.3. If P and Q are mere propositions such that P ! Q and Q ! P, then P ' Q.

Proof. Suppose given f : P ! Q and g : Q ! P. Then for any x : P, we have g(f (x)) = x since P
is a mere proposition. Similarly, for any y : Q we have f (g(y)) = y since Q is a mere proposition;
thus f and g are quasi-inverses.

That is, as promised in §1.11, if two mere propositions are logically equivalent, then they are
equivalent.

In homotopy theory, a space that is homotopy equivalent to 1 is said to be contractible. Thus,
any mere proposition which is inhabited is contractible (see also §3.11). On the other hand, the
uninhabited type 0 is also (vacuously) a mere proposition. In classical mathematics, at least,
these are the only two possibilities.

Mere propositions are also called subterminal objects (if thinking categorically), subsingletons
(if thinking set-theoretically), or h-propositions. The discussion in §3.1 suggests we should also
call them (�1)-types; we will return to this in Chapter 7. The adjective “mere” emphasizes that
although any type may be regarded as a proposition (which we prove by giving an inhabitant of
it), a type that is a mere proposition cannot usefully be regarded as any more than a proposition:
there is no additional information contained in a witness of its truth.

Note that a type A is a set if and only if for all x, y : A, the identity type x =A y is a mere
proposition. On the other hand, by copying and simplifying the proof of Lemma 3.1.8, we have:

Lemma 3.3.4. Every mere proposition is a set.

Proof. Suppose f : isProp(A); thus for all x, y : A we have f (x, y) : x = y. Fix x : A and define
g(y) :⌘ f (x, y). Then for any y, z : A and p : y = z we have apdg(p) : p⇤(g(y)) = g(z). Hence
by Lemma 2.11.2, we have g(y) ⇧ p = g(z), which is to say that p = g(y)�1 ⇧ g(z). Thus, for any
p, q : x = y, we have p = g(x)�1 ⇧ g(y) = q.

In particular, this implies:

Lemma 3.3.5. For any type A, the types isProp(A) and isSet(A) are mere propositions.

Types are classified by the complexity of their
equality/identity type.

A Hierarchy of Types

A Fresh Look at the Impredicative Sort of CIC 7

Chapter 7

Homotopy n-types

One of the basic notions of homotopy theory is that of a homotopy n-type: a space containing no
interesting homotopy above dimension n. For instance, a homotopy 0-type is essentially a set,
containing no nontrivial paths, while a homotopy 1-type may contain nontrivial paths, but no
nontrivial paths between paths. Homotopy n-types are also called n-truncated spaces. We have
mentioned this notion already in §3.1; our first goal in this chapter is to give it a precise definition
in homotopy type theory.

A dual notion to truncatedness is connectedness: a space is n-connected if it has no interest-
ing homotopy in dimensions n and below. For instance, a space is 0-connected (also called just
“connected”) if it has only one connected component, and 1-connected (also called “simply con-
nected”) if it also has no nontrivial loops (though it may have nontrivial higher loops between
loops).

The duality between truncatedness and connectedness is most easily seen by extending both
notions to maps. We call a map n-truncated or n-connected if all its fibers are so. Then n-connected
and n-truncated maps form the two classes of maps in an orthogonal factorization system, i.e. every
map factors uniquely as an n-connected map followed by an n-truncated one.

In the case n = �1, the n-truncated maps are the embeddings and the n-connected maps
are the surjections, as defined in §4.6. Thus, the n-connected factorization system is a massive
generalization of the standard image factorization of a function between sets into a surjection
followed by an injection. At the end of this chapter, we sketch briefly an even more general
theory: any type-theoretic modality gives rise to an analogous factorization system.

7.1 Definition of n-types

As mentioned in §§3.1 and 3.11, it turns out to be convenient to define n-types starting two levels
below zero, with the (�1)-types being the mere propositions and the (�2)-types the contractible
ones.

Definition 7.1.1. Define the predicate is-n-type : U ! U for n � �2 by recursion as follows:

is-n-type(X) :⌘

(
isContr(X) if n = �2,

’(x,y:X) is-n0-type(x =X y) if n = n0 + 1.

Then, n-Types are defined inductively:

Types are classified by the complexity of their
equality/identity type.

A Hierarchy of Types

A Fresh Look at the Impredicative Sort of CIC 8

This defines the following hierarchy:

Level of Type Homotopy Type Theory

(-2)-Type unit / contactible type

(-1)-Type h-propositions

0-Type h-sets

1-Type h-groupoids

… …

Type ∞-groupoids

A Hierarchy of Types

A Fresh Look at the Impredicative Sort of CIC 9

A Hierarchy of Universes

A Fresh Look at the Impredicative Sort of CIC 10

A Hierarchy of Universes

To avoid paradox à la Russell, we need to
introduce a hierarchy of universes in type theory.

A very short note on homotopy λ-calculus

Vladimir Voevodsky

September 27, 2006

The homotopy λ-calculus is a hypothetical (at the moment) type system. To some extent one may
say that Hλ is an attempt to bridge the gap between the ”classical” type systems such as the ones
of PVS or HOL Light and polymorphic type systems such as the one of Coq. The main problem
with the polymorphic type systems lies in the properties of the equality types. As soon as we have
a universe U of which Prop is a member we are in trouble. In the Boolean case, Prop has an
automorphism of order 2 (the negation) and it is clear that this automorphism should correspond
to a member of Eq(U ; Prop, Prop). However, as far as I understand there is no way to produce
such a member in, say, Coq. A related problem looks as follows. Suppose T, T ′ : U are two type
expressions and there exists an isomorphism T → T ′ (the later notion of course requires the notion
of equality for members of T and T ′). Clearly, any proposition which is true for T should be true for
T ′ i.e. for all functions P : U → Prop one should have P (T) = P (T ′). Again as far as I understand
this can not be proved in Coq no matter what notion of equality for members of T and T ′ we use.

Here is the general picture as I understand it at the moment. Let us consider the type system TS
which is generated by the sequents

⊢ Ui : Ui+1

(for i = − 1, 0, 1, . . .) and the rules:

1.
Γ ⊢ T : Ui

Γ ⊢ T : Ui+1

Γ ⊢ T : Ui

Γ ⊢ T : Type

2. The usual dependent
∏

-rules (inside each Un)

3. The usual dependent
∑

-rules with strong elimination (inside each Un)1

The system Hλ is supposed to be an extension of TS. In Hλ, U− 1 becomes the empty type ∅ and
U0 becomes Prop. The natural numbers are defined (see (1) below) in terms of U1.

Let CC be the contexts category of TS. By a model of TS with values in a category D, I mean a
functor CC → D which ”preserves the relevant structures”. The main observation is that there is a
canonical model M of TS with values in the usual homotopy category H provided that we consider
homotopy types based on a sufficiently large universe of sets. To define this model one starts with
a not-so-canonical model N of TS with values in the category of spaces (actually simplicial sets,
but I will speak of spaces since they provide a more familiar model for homotopy types) and then
sets M to be the composition of N with the projection Spc → H. The main properties of N are
are follows.

1We may also consider systems TSX where X is any ”recursive” partially ordered set such that Ux is defined for
any x ∈ X and the rules are modified accordingly. If X is just a finite set with the trivial ordering then it seems that
TSX will be just the usual typed λ-calculus with products generated by n primitive types. The first system with real
dependencies is TSX where X = {0, 1} with the usual ordering.

1

A Fresh Look at the Impredicative Sort of CIC 11

This is a sufficient condition to ensure consistency,
but it is often a bit overkilled and one would like
to relax it.

A Hierarchy of Universes

A Fresh Look at the Impredicative Sort of CIC 12

Syntactically, the management of the hierarchy can
be improved by universe polymorphism which

allows to use the same definition at different levels.

A Hierarchy of Universes

A Fresh Look at the Impredicative Sort of CIC 13

V.V. has proposed a semantic way to relax the
hierarchy, based on so-called resizing rules.

A Hierarchy of Universes

A Fresh Look at the Impredicative Sort of CIC 14

Resizing Rules

Resizing rule for equivalent types.

Here are few more examples of resizing rules which are validated by the
well-ordered sets model and are expected to be validated by the modified
univalent model:

(RR0)
U : Univ � ` X1 : U � ` is : idX1X2

� ` X2 : U

(RR4)
U : Univ � ` X : U

� ` (⌃X 0:U ishinh (idX X 0)) : U

(RR5)
U : Univ � ` X1 : U � ` is : weq X1X2

� ` X2 : U

25

(from V.V. ’s talk at Bergen, 2011)

A Fresh Look at the Impredicative Sort of CIC 15

Resizing Rules

In a classical setting, every mere proposition is
equivalent to either True or False.

True and False can be typed in the lowest universe.

A Fresh Look at the Impredicative Sort of CIC 16

Resizing Rules

Resizing rule for mere propositions.

This can be achieved through the following resizing rules:

RR1
� ` is : isapropX

� ` X : UU

RR2
U : Univ

` (hProp U) : UU

While these rules do not make the types of propositions in di↵erent
universes to be definitionally equal they allow one to consider only the
type [hProp UU] in all constructions.

10

A Fresh Look at the Impredicative Sort of CIC 16

Resizing Rules

Resizing rule for mere propositions.

This can be achieved through the following resizing rules:

RR1
� ` is : isapropX

� ` X : UU

RR2
U : Univ

` (hProp U) : UU

While these rules do not make the types of propositions in di↵erent
universes to be definitionally equal they allow one to consider only the
type [hProp UU] in all constructions.

10

This is corresponds to the impredicativity of Prop

A Fresh Look at the Impredicative Sort of CIC 17

A Fresh Look at Prop

A Fresh Look at the Impredicative Sort of CIC 18

A Fresh Look at Prop

This suggests that Prop should be interpreted
as a universe of mere propositions.

A Fresh Look at the Impredicative Sort of CIC 18

A Fresh Look at Prop

This suggests that Prop should be interpreted
as a universe of mere propositions.

Problem: In Coq,

is in Prop for all type A

x =A y

A Fresh Look at the Impredicative Sort of CIC 18

A Fresh Look at Prop

Problem: In Coq,

is in Prop for all type A

x =A y

This means that the current Prop is implicitly
assuming that every type is an h-set !

A Fresh Look at the Impredicative Sort of CIC 19

A Fresh Look at Prop

One possible way out
(as done in the HoTT Coq library):

 Treat Prop as a taboo and not use it.

A Fresh Look at the Impredicative Sort of CIC 20

A Fresh Look at Prop

But maybe we can do better and fix it ?

A Fresh Look at the Impredicative Sort of CIC 20

A Fresh Look at Prop

But maybe we can do better and fix it ?

The rest of this talk is joint work with
Gaetan Gilbert and Matthieu Sozeau.

Gaetan is implementing this feature, to be
integrated hopefully in a future version Coq.

A Fresh Look at the Impredicative Sort of CIC 21

Prop under the Knife of HoTT

When an inductive type is defined in Prop, it
can be eliminated only when building a Prop.

A Fresh Look at the Impredicative Sort of CIC 21

Prop under the Knife of HoTT

When an inductive type is defined in Prop, it
can be eliminated only when building a Prop.

(A ! B) ! (||A|| ! B)

This corresponds to the fact that propositional
truncation can be eliminated

only when B is a mere proposition.

A Fresh Look at the Impredicative Sort of CIC 22

Prop under the Knife of HoTT

First motto:

“Defining an inductive type in Prop corresponds
 to using propositional truncation”

A Fresh Look at the Impredicative Sort of CIC 22

Prop under the Knife of HoTT

First motto:

“Defining an inductive type in Prop corresponds
 to using propositional truncation”

That is, morally, every type in Prop is squashed.

A Fresh Look at the Impredicative Sort of CIC 23

When Props produce Types

In CIC, there is the so-called singleton elimination:

“A singleton definition has only one constructor
and all the arguments of this constructor have
type Prop.”

A Fresh Look at the Impredicative Sort of CIC 23

When Props produce Types

In CIC, there is the so-called singleton elimination:

“A singleton definition has only one constructor
and all the arguments of this constructor have
type Prop.”

This covers for instance conjunction or the
accessibility predicate but also equality !

A Fresh Look at the Impredicative Sort of CIC 24

With this new insight, singleton elimination can be
seen as a syntactic condition on P:Prop which
ensures that

||P || ⇠= P

When Props produce Types

A Fresh Look at the Impredicative Sort of CIC 25

Problem

Allowing squashed equality to be unsquashed
is implicitly assuming that every type is an h-set

UIP hard-coded

A Fresh Look at the Impredicative Sort of CIC 26

The problem is that it doesn’t take into account
the number of occurrences of

parameters/arguments in the return type.

Problem

A Fresh Look at the Impredicative Sort of CIC 27

When Props produce Types (II)

Inductive eq (A:Type)(x:A): A -> Prop
:= eq_refl : eq A x x.

a variable that occurs twice must be in h-sets.

A Fresh Look at the Impredicative Sort of CIC 27

When Props produce Types (II)

Inductive eq (A:Type)(x:A): A -> Prop
:= eq_refl : eq A x x.

x occurs twice

a variable that occurs twice must be in h-sets.

A Fresh Look at the Impredicative Sort of CIC 28

Vect (A : Prop) : nat -> Prop :=
 nil : Vect A 0
| cons : A -> forall n : nat,

Vect A n -> Vect A (S n)

What about functions occurring in the return type ?

When Props produce Types (II)

A Fresh Look at the Impredicative Sort of CIC 28

Vect (A : Prop) : nat -> Prop :=
 nil : Vect A 0
| cons : A -> forall n : nat,

Vect A n -> Vect A (S n)

S must be injective

What about functions occurring in the return type ?

When Props produce Types (II)

A Fresh Look at the Impredicative Sort of CIC 29

What about multiple
constructors ?

Inductive le : nat -> nat -> Prop :=
 le_O : forall n : nat, 0 <= n
| le_S : forall n m : nat, m <= n -> S m <= S n

A Fresh Look at the Impredicative Sort of CIC 29

What about multiple
constructors ?

Inductive le : nat -> nat -> Prop :=
 le_O : forall n : nat, 0 <= n
| le_S : forall n m : nat, m <= n -> S m <= S n

the return types of different
constructors must be orthogonal

A Fresh Look at the Impredicative Sort of CIC 29

What about multiple
constructors ?

Inductive le : nat -> nat -> Prop :=
 le_O : forall n : nat, 0 <= n
| le_S : forall n m : nat, m <= n -> S m <= S n

the return types of different
constructors must be orthogonal

Sums don't preserve mere propositions in general, but they do for disjoint sums.

A Fresh Look at the Impredicative Sort of CIC 30

Remark
Definitions Matter

Inductive le’ (n : nat) : nat -> Prop :=
 le_n : n <= n
| le_S : forall m : nat, n <= m -> n <= S m

A Fresh Look at the Impredicative Sort of CIC 30

Remark
Definitions Matter

Inductive le’ (n : nat) : nat -> Prop :=
 le_n : n <= n
| le_S : forall m : nat, n <= m -> n <= S m

the criterion does not work for
this (equivalent) definition

A Fresh Look at the Impredicative Sort of CIC 31

When a Prop is h-Prop

1. every argument that does not appear  
 in the return type must be in Prop

2. every argument/parameters that appears  
 more than once in the return type must be h-Set

3. every argument that appears exactly once is OK

4. the return types of different constructors  
 must be orthogonal

A Fresh Look at the Impredicative Sort of CIC 32

When a Prop is -1-Type

1. every argument that does not appear  
 in the return type must be in -1-Type

2. every argument/parameters that appears  
 more than once in the return type must be 0-Type

3. every argument that appears exactly once is OK

4. the return types of different constructors  
 must be orthogonal

A Fresh Look at the Impredicative Sort of CIC 33

Going to Higher Level

This characterisation generalises to n-types

1. every argument that does not appear  
 in the return type must be in n-Type

2. every argument/parameters that appears  
 more than once in the return type must be (n+1)-Type

3. every argument that appears exactly once is OK

4. the return types of different constructors  
 must be orthogonal

A Fresh Look at the Impredicative Sort of CIC 34

This characterisation generalises to n-types

only for mere proposition

Going to Higher Level

1. every argument that does not appear  
 in the return type must be in n-Type

2. every argument/parameters that appears  
 more than once in the return type must be (n+1)-Type

3. every argument that appears exactly once is OK

4. the return types of different constructors  
 must be orthogonal

A Fresh Look at the Impredicative Sort of CIC 35

Remark

This characterisation is very similar to what
Jesper Cockx et al. use to do pattern-matching
without K in Agda.

For the moment, our criterion is missing a bit
of dependency.

A Fresh Look at the Impredicative Sort of CIC 35

Remark

This characterisation is very similar to what
Jesper Cockx et al. use to do pattern-matching
without K in Agda.

For the moment, our criterion is missing a bit
of dependency.

We will be working in February with Jesper
(thanks to EUTypes STSMs) to extend it .

A Fresh Look at the Impredicative Sort of CIC 36

What is this
Impredicative Universe ?

The least we get is a new version of Coq:

- compatible with UIP

- compatible with univalence

- admitting the axiom :

forall (P:Prop) (x y : P), x = y

A Fresh Look at the Impredicative Sort of CIC 37

We Want More !

A Fresh Look at the Impredicative Sort of CIC 37

We Want More !

Replace the admissible axiom with a

definitional equality:

forall (P:Prop) (x y : P), x ≡ y

A Fresh Look at the Impredicative Sort of CIC 38

Problem

Congruence with pattern-matching and
fixpoints requires to apply inversion lemma
even to neutral terms … and this potentially
infinitely many times.

A Fresh Look at the Impredicative Sort of CIC 38

Problem

A naive implementation gives rise
to an undecidable type checker !

Congruence with pattern-matching and
fixpoints requires to apply inversion lemma
even to neutral terms … and this potentially
infinitely many times.

A Fresh Look at the Impredicative Sort of CIC 39

Acc is a Hack

Perfectly valid mere proposition,
but with infinite unfolding …

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop :=
 Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x

A Fresh Look at the Impredicative Sort of CIC 39

Acc is a Hack

Perfectly valid mere proposition,
but with infinite unfolding …

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop :=
 Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x

Definition Acc_inv : Acc R x -> forall y:A, R y x -> Acc R y.

A Fresh Look at the Impredicative Sort of CIC 39

Acc is a Hack

Perfectly valid mere proposition,
but with infinite unfolding …

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop :=
 Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x

Definition Acc_inv : Acc R x -> forall y:A, R y x -> Acc R y.

 a ≡ Acc_intro x (Acc_inv a) ≡ Acc_intro x (Acc_inv …)

A Fresh Look at the Impredicative Sort of CIC 40

It is not possible to guess how many times an
inhabitant of Acc R x has to be unfolded.

Acc is a Hack

A Fresh Look at the Impredicative Sort of CIC 41

Termination-unfolding criterion

We need to enforce termination of
inversion through a syntactic check
similar to the guard condition for fixpoints.

That is, recursive arguments of a constructor
must have as indices strict sub terms of the
indices of the return type.

A Fresh Look at the Impredicative Sort of CIC 42

Examples

Inductive le : nat -> nat -> Prop :=
 le_O : forall n : nat, 0 <= n
| le_S : forall n m : nat, m <= n -> S m <= S n

A Fresh Look at the Impredicative Sort of CIC 42

Examples

Inductive le : nat -> nat -> Prop :=
 le_O : forall n : nat, 0 <= n
| le_S : forall n m : nat, m <= n -> S m <= S n

m is a strict subterm of S m

A Fresh Look at the Impredicative Sort of CIC 42

Examples

Inductive le : nat -> nat -> Prop :=
 le_O : forall n : nat, 0 <= n
| le_S : forall n m : nat, m <= n -> S m <= S n

m is a strict subterm of S m

A Fresh Look at the Impredicative Sort of CIC 43

Examples

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A)
 : Prop :=
 Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x

A Fresh Look at the Impredicative Sort of CIC 43

Examples

y is not related to x

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A)
 : Prop :=
 Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x

A Fresh Look at the Impredicative Sort of CIC 43

Examples

y is not related to x

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A)
 : Prop :=
 Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x

A Fresh Look at the Impredicative Sort of CIC 44

Remark

This syntactic characterisation of mere propositions  
is incomplete as for instance singleton types are not
accepted.

This is somehow a good point because allowing
singleton types in a definitional proof-irrelevant
universe implies UIP (Peter L.L.).

A Fresh Look at the Impredicative Sort of CIC 45

The Big Picture

A Fresh Look at the Impredicative Sort of CIC 46

SProp

forall (P:Prop) (x y : P), x ≡ y

forall (P:Prop) (x y : P), x = y
Prop

Type

Impredicative

Predicative

Impredicative

The Big Picture

A Fresh Look at the Impredicative Sort of CIC 47

Getting High(er) ?

SProp

SSet

1-SType

n-SType
…

n-SType1

…

A Fresh Look at the Impredicative Sort of CIC 48

V.V. has already sketched this in 2006!

these functors there are representable ones i.e. we have the homotopy type Rep(T) which
maps to T → Un. For F : T → Un set

rep(F) = Contr(
∑

t : T.F (T)).

One verifies that on the level of models rep(F) ̸= ∅ iff F is representable. Set

Rep(T) =
∑

F : T → Un.rep(F).

then the model of Rep(T) is the space of representable functors on T . By abuse of notation
I will write F (t) : Un instead of the formal (πF)(t) for F : Rep(T) and t : T .

Define the equality types. For T : Un and T1, t2 : T one sets:

Eq(T ; t1, t2) =
∏

F : Rep(T).F (t1) → F (t2)

where I write F (t) for F : Rep(T) instead of the correct but long (πF)(t).

Theorem 1 There is a homotopy equivalence

M(Eq(T ; t1, t2)) = P (M(T);M(t1),M(t2)).

Once the equality types (path spaces) are defined many other constructions familiar on the model
level can be formulated on the level of the type system. The first thing to define is the level
”filtration” on type expressions or, equivalently on the types Un. The model of Un has a natural
filtration by subspaces Un,k, k = 0, . . . , n where Un,k is (the nerve of) the k-groupoid of (k − 1)-
groupoids in the universe Un. In particular Un,1 is the (nerve of) the usual groupoid of sets in Un

and their isomorphisms. We define a (−1)-groupoid as a set where any two elements are equal
i.e. one of the two sets ∅ and pt. Hence for any n ≥ 0 the model of Un,0 is the two point set
{0, 1} = {true, false}.

U0,0 U1,0 U2,0 U3,0 . . .
⏐⏐$

⏐⏐$
⏐⏐$

U1,1 −−−→ U2,1 −−−→ U3,1 −−−→ . . .
⏐⏐$

⏐⏐$

U2,2 −−−→ U3,2 −−−→ . . .
⏐⏐$

U3,3 −−−→ . . .

All the arrows are inclusions with the image being a disjoint union of some of the connected
components of the target and the usual arguments a-la Russell’s paradox imply that except for the
ones marked as equalities the arrows are proper inclusions e.g. U2,1 (which is responsible for sets
in U2) is strictly larger than U1,1 (which is responsible for sets in U1) etc.

4

A very short note on homotopy λ-calculus
Vladimir Voevodsky, 2006  

A Fresh Look at the Impredicative Sort of CIC 49

Demo

A Fresh Look at the Impredicative Sort of CIC 50

Doggy bag

1. Prop can be turned into a syntactic approximation  
 of mere propositions

2. To get definitional proof-irrelevance, we also need  
 to restrict recursive types with a guard condition

3. This should be (hopefully) available soon in Coq

4. It may be extended to deal with a // hierarchy of  
 universes that encodes for homotopy levels.

