THE LEGACY OF ‘

VLADIMIR VOEVODSKY — \CMl’
.
fes

HOMOTOPY TYPES & RESIZING RULES

A FRESH LOOK AT
THE IMPREDICATIVE SORT OF CIC

NICOLAS TABAREAU

Road Map

In this talk, | will recall two notions introduced by V.V.
in 2006 in “A very short note on homotopy A-calculus”.

|. Homotopy types in type theory

2. Universe resizing rules

| will then explain how those two notions allow
for a fresh look at the impredicative universe of CIC.

.&zu'a,— A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Types

A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Types

One of the main contribution of V.V.in type theory
is the notion of levels of homotopy of types.

I&z/z/a/- A Fresh Look at the Impredicative Sort of CIC 4

A Hierarchy of Types

Types are classified by the complexity of their
equality/identity type.

Simplest (singleton) types are called contractible:

sContr(A):=) |] (a=1x).
(a:A) (x:A)

A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Types

Types are classified by the complexity of their
equality/identity type.

Proposition have a contractible equality:

sProp(P) := | | (x =).

x,y:P

A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Types

Types are classified by the complexity of their
equality/identity type.

Then, n-Types are defined inductively:

Define the predicate is-n-type : Y — U for n > —2 by recursion as follows:

isContr(X) T)
H(x,y:X) iS-n’_type(x =y]/) if n = 1’1/ 4.

is-n-type(X) 1= {

.&Z’u'a/— A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Types

This defines the following hierarchy:

|-Type h-groupoids

A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Universes

A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Universes

To avoid paradox a la Russell, we need to
introduce a hierarchy of universes in type theory.

—U; 1 Ui

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Universes

This is a sufficient condition to ensure consistency,
but it is often a bit overkilled and one would like
to relax it.

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Universes

Syntactically, the management of the hierarchy can
be improved by universe polymorphism which
allows to use the same definition at different levels.

A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Universes

V.V. has proposed a semantic way to relax the
hierarchy, based on so-called resizing rules.

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

Resizing Rules

Resizing rule for equivalent types.

U:Univ ©T'HFXq:U T'Fis:weqgXi Xy
F"XQIU

(RR5)

(from V.V.’s talk at Bergen, 2011)

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

Resizing Rules

In a classical setting, every mere proposition is
equivalent to either True or False.

True and False can be typed in the lowest universe.

A Fresh Look at the Impredicative Sort of CIC

Resizing Rules

Resizing rule for mere propositions.

'+ s :2saprop X
I'-X:UU

RR1

.hu’a/- A Fresh Look at the Impredicative Sort of CIC

Resizing Rules

Resizing rule for mere propositions.

'+ s :2saprop X
I'-X:UU

RR1

This is corresponds to the impredicativity of Prop

.&zu’a,- A Fresh Look at the Impredicative Sort of CIC

A Fresh Look at Prop

A Fresh Look at the Impredicative Sort of CIC

A Fresh Look at Prop

This suggests that Prop should be interpreted
as a universe of mere propositions.

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

A Fresh Look at Prop

This suggests that Prop should be interpreted
as a universe of mere propositions.

Problem: In Cogq,
L =AY

is in Prop for all type A

A Fresh Look at the Impredicative Sort of CIC

A Fresh Look at Prop

Problem: In Cogq,

L =AY

is in Prop for all type A

This means that the current Prop is implicitly
assuming that every type is an h-set !

A Fresh Look at the Impredicative Sort of CIC

A Fresh Look at Prop

One possible way out
(as done in the HoTT Coq library):

Treat Prop as a taboo and not use it.

A Fresh Look at the Impredicative Sort of CIC

A Fresh Look at Prop

But maybe we can do better and fix it !

A Fresh Look at the Impredicative Sort of CIC

A Fresh Look at Prop

But maybe we can do better and fix it !

The rest of this talk is joint work with
Gaetan Gilbert and Matthieu Sozeau.

Gaetan is implementing this feature, to be
integrated hopefully in a future version Cogq.

I&I/z&'a,- A Fresh Look at the Impredicative Sort of CIC

Prop under the Knife of HoTT

When an inductive type is defined in Prop, it
can be eliminated only when building a Prop.

A Fresh Look at the Impredicative Sort of CIC

Prop under the Knife of HoTT

When an inductive type is defined in Prop, it
can be eliminated only when building a Prop.

This corresponds to the fact that propositional
truncation can be eliminated

(A= B) = (l|A]| = B)
only when B is a mere proposition.

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

Prop under the Knife of HoTT

First motto:

“Defining an inductive type in Prop corresponds

to using propositional truncation”

A Fresh Look at the Impredicative Sort of CIC

Prop under the Knife of HoTT

First motto:

“Defining an inductive type in Prop corresponds
to using propositional truncation”

That is, morally, every type in Prop is squashed.

I&Z’z/a/— A Fresh Look at the Impredicative Sort of CIC

VWhen Props produce lypes

In CIC, there is the so-called singleton elimination:

“A singleton definition has only one constructor
and all the arguments of this constructor have
type Prop.”

A Fresh Look at the Impredicative Sort of CIC

VWhen Props produce lypes

In CIC, there is the so-called singleton elimination:

“A singleton definition has only one constructor
and all the arguments of this constructor have
type Prop.”

This covers for instance conjunction or the
accessibility predicate but also equality !

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

VWhen Props produce lypes

With this new insight, singleton elimination can be
seen as a syntactic condition on P:Prop which
ensures that

Pll= P

A Fresh Look at the Impredicative Sort of CIC

Problem

Allowing squashed equality to be unsquashed
is implicitly assuming that every type is an h-set

UIP hard-coded

A Fresh Look at the Impredicative Sort of CIC

Problem

The problem is that it doesn’t take into account
the number of occurrences of

parameters/arguments in the return type.

A Fresh Look at the Impredicative Sort of CIC

When Props produce Types (ll)

Inductive eq (A:Type) (x:A): A —-> Prop
:= eq refl : eqg A xX X.

a variable that occurs twice must be in h-sets.

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

When Props produce Types (ll)

Inductive eq (A:Type) (x:A): A —-> Prop

eq refl : eqg A
X OCCUrs twice

a variable that occurs twice must be in h-sets.

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC

When Props produce Types (ll)

What about functions occurring in the return type ?

Vect (A : Prop) : nat —-> Prop :=
nil : Vect A 0
| cons : A -> forall n : nat,
Vect A n —-> Vect A (S n)

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC

When Props produce Types (ll)

What about functions occurring in the return type ?

Vect (A : Prop) : nat —-> Prop :=
nil : Vect A O
| cons : A -> forall n : nat,

Vect A n —-> Vect A (S:nﬂ

S must be injective

A Fresh Look at the Impredicative Sort of CIC

What about multiple
constructors !

Inductive le : nat -> nat -> Prop :=
le_O:foralln:nat, O<=n
| le_S:forallnm:nat,m<=n->Sm<=8Sn

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC

VVhat about multiple
constructors !

Inductive le : nat -> nat -> Prop :=
le_O: foralln: na,t,(O <= n]
| le_S:forallnm:nat, m<=n ->(S m <=5 n]

the return types of different
constructors must be orthogonal

A Fresh Look at the Impredicative Sort of CIC

VVhat about multiple
constructors !

Inductive le : nat -> nat -> Prop :=
le_O: foralln: na,t,(O <= n]
| le_S: forall n m : nat, T <=1 ->(S m <=5 n]

/

Sums don't preserve mere propositions in general, but they do for disjoint sums.

v/

the return types of different

constructors must be orthogonal

l&z'u'a/— A Fresh Look at the Impredicative Sort of CIC

Remark
Definitions Matter

Inductive le’ (n: nat) : nat -> Prop :=
len:n<=n
| le_S:forallm:nat,n<=m->n<=Sm

I&I/z/a/- A Fresh Look at the Impredicative Sort of CIC

Remark
Definitions Matter

Inductive le’ (n : nat) : nat -> Prop :=
le_n :[n <= n}
| 1le_S: forall

. nat, n<=m->[n <=3 m)

/

the criterion does not work for

this (equivalent) definition

A Fresh Look at the Impredicative Sort of CIC

When a Prop is h-Prop

|. every argument that does not appear
in the return type must be in Prop

2. every argument/parameters that appears
more than once in the return type must be h-Set

3. every argument that appears exactly once is OK

4. the return types of different constructors
must be orthogonal

l&z'u'a/— A Fresh Look at the Impredicative Sort of CIC

When a Prop is -1-Type

|. every argument that does not appear
in the return type must be in -1-Type

2. every argument/parameters that appears
more than once in the return type must be 0-Type

3. every argument that appears exactly once is OK

4. the return types of different constructors
must be orthogonal

l&z'u'a/— A Fresh Look at the Impredicative Sort of CIC

Going to Higher Level

This characterisation generalises to n-types

|. every argument that does not appear
in the return type must be in n-Type

2. every argument/parameters that appears
more than once in the return type must be (n+1)-Type

3. every argument that appears exactly once is OK

4. the return types of different constructors
must be orthogonal

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

Going to Higher Level

This characterisation generalises to n-types

|. every argument that does not appear
in the return type must be in n-Type

2. every argument/parameters that appears
more than once in the return type must be (n+1)-Type

3. every argument that appears exactly once is OK

Remark

This characterisation is very similar to what
Jesper Cockx et al. use to do pattern-matching
without K in Agda.

For the moment, our criterion is missing a bit
of dependency.

A Fresh Look at the Impredicative Sort of CIC

Remark

This characterisation is very similar to what
Jesper Cockx et al. use to do pattern-matching

without K in Agda.

For the moment, our criterion is missing a bit
of dependency.

We will be working in February with Jesper
(thanks to EUTypes STSMs (©9) to extend it .

l&z’z/a/- A Fresh Look at the Impredicative Sort of CIC

WWhat is this
Impredicative Universe !

The least we get is a new version of Cogq:
- compatible with UIP
- compatible with univalence

- admitting the axiom :
forall (P:Prop) (Xy:P),x=y

.&zu’a,- A Fresh Look at the Impredicative Sort of CIC

We Want More !

.&z’z‘,a/‘ A Fresh Look at the Impredicative Sort of CIC

We Want More !

Replace the admissible axiom with a

definitional equality:

forall (P:Prop) Xy :P),x=y

I&I/z/a/- A Fresh Look at the Impredicative Sort of CIC

Problem

Congruence with pattern-matching and
fixpoints requires to apply inversion lemma
even to neutral terms ... and this potentially
infinitely many times.

A Fresh Look at the Impredicative Sort of CIC

Problem

Congruence with pattern-matching and
fixpoints requires to apply inversion lemma
even to neutral terms ... and this potentially
infinitely many times.

A naive implementation gives rise
to an undecidable type checker !

A Fresh Look at the Impredicative Sort of CIC

Acc is a Hack

Perfectly valid mere proposition,
but with infinite unfolding ...

Inductive Acc (A : Type) (R: A ->A ->Prop) (x:A):Prop :=
Acc_intro: (forally: A,Ryx->AccRy) >AccRx

A Fresh Look at the Impredicative Sort of CIC

Acc is a Hack

Perfectly valid mere proposition,
but with infinite unfolding ...

Inductive Acc (A : Type) (R: A ->A ->Prop) (x:A):Prop :=
Acc_intro: (forally: A,Ryx->AccRy) >AccRx

Definition Acc_inv: Acc Rx->forall y:A, Ry x->Acc Ry.

A Fresh Look at the Impredicative Sort of CIC

Acc is a Hack

Perfectly valid mere proposition,
but with infinite unfolding ...

Inductive Acc (A : Type) (R: A ->A ->Prop) (x:A):Prop :=
Acc_intro: (forally: A,Ryx->AccRy) >AccRx

Definition Acc_inv: Acc Rx->forall y:A, Ry x->Acc Ry.

a = Acc_intro x (Acc_inv a) = Acc_intro x (Acc_inv ...)

I&I/z&'a,- A Fresh Look at the Impredicative Sort of CIC

Acc is a Hack

It is not possible to guess how many times an
inhabitant of Acc R x has to be unfolded.

.bt'z/a,-

A Fresh Look at the Impredicative Sort of CIC

Termination-unfolding criterion

We need to enforce termination of
inversion through a syntactic check
similar to the guard condition for fixpoints.

That is, recursive arguments of a constructor
must have as indices strict sub terms of the
indices of the return type.

A Fresh Look at the Impredicative Sort of CIC

Examples

Inductive le : nat -> nat -> Prop :=
le_O:foralln:nat, O<=n
| le_S:forallnm:nat, m<=n->Sm<=Sn

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC

Examples

Inductive le : nat -> nat -> Prop :=
le_O:forall n:nat, O <=n

| le_S:forallnm: na,t,<= n -> <= SN

m is a strict subterm of Sm

A Fresh Look at the Impredicative Sort of CIC

Examples

Inductive le : nat -> nat -> Prop :=
le_O:forall n:nat, O <=n

| le_S:forallnm: na,t,<= n -> <= S1n

m is a strict subterm of Sm

A Fresh Look at the Impredicative Sort of CIC

Examples

Inductive Acc (A :Type) (R: A->A->Prop) (Xx:A)
. Prop :=
Acc_intro: (forally: A, Ryx->AccRy) ->AccR X

I&I/z/a/- A Fresh Look at the Impredicative Sort of CIC

Examples

Inductive Acc (A :Type) (R: A->A->Prop) (Xx:A)
. Prop :=
Acc_intro : (forally : A, Ry x -> Acc F » > Acc

Yy is not related to X

A Fresh Look at the Impredicative Sort of CIC

Examples

Inductive Acc (A :Type) (R: A->A->Prop) (Xx:A)
. Prop :=
Acc_intro : (forally : A, Ry x -> Acc F » > Acc

Yy is not related to X

A Fresh Look at the Impredicative Sort of CIC

Remark

This syntactic characterisation of mere propositions
is incomplete as for instance singleton types are not

accepted.

This is somehow a good point because allowing
singleton types in a definitional proof-irrelevant
universe implies UIP (Peter L.L.).

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

The Big Picture

.&z’z‘,a/‘ A Fresh Look at the Impredicative Sort of CIC

The Big Picture

~

SProp

forall (P:Prop) (Xy:P),xXx=y
_

N
Impredicative

J

Prop

Impredicative

forall (P:Prop) (Xy:P),x=y

J

_

Type

Predicative

IIIZszzZL——

A Fresh Look at the Impredicative Sort of CIC

Getting High(er) ?

fff r N N
(")
SProp
_ W,
oSet
. _J
1-SType
N\ y
n-SType
U y
oco-SType
_ J

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC

V.V. has already sketched this in 2006!

Uo.o Uio Us.o Us.o
l l l

Ui > Ua g > Us g

l l

Us 2 » Us o

l

Us 3

A very short note on homotopy A-calculus
Vladimir Voevodsky, 2006

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

Demo

.&LW A Fresh Look at the Impredicative Sort of CIC

Doggy bag

|. Prop can be turned into a syntactic approximation
of mere propositions

2. To get definitional proof-irrelevance, we also need
to restrict recursive types with a guard condition

3. This should be (hopefully) available soon in Cog

4. It may be extended to deal with a // hierarchy of
universes that encodes for homotopy levels.

I&L’u'a,- A Fresh Look at the Impredicative Sort of CIC

