y 4

: 74 ,-\
lnfarmaﬂcs,mathemnﬂcs = -
- - .

I‘
]
‘i
#
]

Nested, Well-founded & Mutual
Recursion in Equations

Matthieu Sozeau, Cyprien Mangin
Inria Paris & IRIF, Université Paris 7 Diderot

EUTypes WG 4

Nijmegen, NL
January 24th, 2018

OUTLINE

I. Equations Reloaded
2. “La Belle et la Bete”': Coq’s Guard Condition

3. Logic to the Rescue...

|
Gabrielle-Suzanne Barbot de Villeneuve (1685 — 1755)

I lrezia— Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

Equations Reloaded

* Dependent Pattern-Matching a la Epigram, Agda

* Compiled-down to CIC using telescope simplification
(a la Cockx circa 2016)

* Optional typeclass instances of K/decidable equality

* Smart case compilation for smaller proof terms

 Structural and well-founded recursion (i.e.
Function/Program like)

* Derive Signature NoConfusion SubtermEgDec for I

* Generates graph, unfolding lemma and

elimination principles

I lrezia— Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

Coq’s Guard Condition

* Goal: ensure termination statically

* Relatively concise syntactic check (compared to SCT)

* Handles naturally mutual and nested fixpoints, e.g:

Inductive t : Set :=
| leaf (a: A) : t
| node (I : list t) : t.

Fixpoint size (r : t) :=
match r with
| leafa = 1

| node | = S (list_size size |)
end.

* Handles fix-match decomposition of eliminators,
hard(er) with sized-types (A. Abel, B. Gregoire, ...)

I lrezia— Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau,

C. Mangin

http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.roserec.A
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#t
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#list
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#t
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#t
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.t
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#r
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.leaf
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.node
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#S
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#list_size
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#size

Trouble with the Guard Condition

* Guard Condition (should) ensure termination

* Slightly hard to understand syntactic criterion.
Initial formal justification: Gimenez’'94, gradually

“sophisticated” since.

* Guard check needs to reduce definitions (!??!)

(SN for call-by-name reduction only, WIP fix)

* Buggiest part of the system
Last bug & fix: #6649 - 24/1/18 - 13:20

* DPM-elimination involves equality manipulations, ...

A Recipe for Disaster

I lrezia— Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

https://github.com/coq/coq/pull/6649

Commuting conversions?

e Inconsistency with propext (fixed in 2013):

Hypothesis Heq : (False -> False) = True.
Fixpoint loop (u : True) : False :=
loop (match Heqg in (_ =T) return T with
| eq refl => fun f : False => match f with end
end).

e Typical DPM compilation:

Inductive Split {X : Type}{m n : nat} : vector X (m + n) — Type :=
append : vV (xs : vector X m)(ys : vector X n), Split (vapp Xs ys).

Equations split_struct {X} {m n} (xs : vector X (m + n)) : Split m n xs :=
split_struct {m:=0} xs := append nil xs ;
split_struct {m:=(S m)} (cons x _ xs) < split_struct xs = {

| append xs' ys' := append (cons x xs') ys' }.

¢y Not structural on vectors, due to uses of]

I lrezia— Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#False
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#False
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#True
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#True
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#False
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#eq_refl
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#False
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Init.Datatypes.html#nat
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Init.Peano.html#b3eea360671e1b32b18a26e15b3aace3
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Unicode.Utf8_core.html#669c7d28e8f98524b0cbba08d17d0eec
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Unicode.Utf8_core.html#669c7d28e8f98524b0cbba08d17d0eec
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Unicode.Utf8_core.html#669c7d28e8f98524b0cbba08d17d0eec
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Init.Peano.html#b3eea360671e1b32b18a26e15b3aace3
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Vectors.Vector.html#nil
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Init.Datatypes.html#S
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Vectors.Vector.html#cons
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Vectors.Vector.html#cons

Still, we can handle mutual & nested rec!

http://mattam82.github.io/Cog-Equations/examples/nested_mut_rec.html

Functional elimination is good for you!

I lrezia— Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

http://mattam82.github.io/Coq-Equations/examples/nested_mut_rec.html

OUTLINE

I. Equations Reloaded
2. Beauty & The Beast: Coq’s Guard Condition

3. Logic to the Rescue...

I lrezia— Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

Logic to the Rescue: Acc is not a Hack

structurally recursive
C
well-founded on subterm relation

1) Derive Subterm for I relation on

(computational/hType) inductive families
2) Prove well-foundedness by structural rec
3) Profit! “by rec I_subterm x”

e Define split on vectors by rec on the vector!

e Extract to general fixpoints

I lrezia— Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

The Beauty of Logic

Equations elements' (r : t) : list A :
elements' | by rec r (MR [t size) :=
elements’' (leaf a) := [a];
elements' (node |) := fn | hidebody
where fn (x : list t) (H : list size size x < size (node |)) : list A :
fn x H by rec x (MR It (list_size size)) :
fn nil _ := nil;
fn (cons x xs) _ := elements' x ++ fn xs hidebody.

e Use the weapon of your choice
e Equations generates unfolding lemma

e Eliminator abstracts away from the w.f.
relation: do the work only once.

I lrezia— Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.t
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#list
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.roserec.A
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#elements'
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Program.Wf.html#MR
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Peano.html#lt
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.size
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#elements'
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.leaf
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Lists.List.html#64ee52ab9627fca8d637e2f1207a2990
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Lists.List.html#64ee52ab9627fca8d637e2f1207a2990
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#elements'
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.node
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#fn
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#list
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.t
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#list_size
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.size
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#x
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Peano.html#989c98e7ddd65d5bf37c334ff2076de8
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.size
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.node
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#list
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.roserec.A
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#fn
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Program.Wf.html#MR
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Peano.html#lt
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#list_size
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.size
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#fn
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#nil
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#nil
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#fn
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#cons
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.elements'_comp_proj
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#5d35a99a6abff1d64bf70538feb70e36
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#fn

Computational content

e Closed calls still reduce to the same normal
forms: I subterm is closed

e Make it fast by adding 2*n Acc intro’s to
the well-foundedness proof.
e For calls on open terms:
- Proofs: unfolding lemma or derived
equalities (more control)
- Programs: still reduces, unfolding might be
unwiedly though.
e Functional extensionality is used to prove
the unfolding lemma (easier to automate)

. lrezia— Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

Playtime: Regexp matching

e Implement regexp matching using
continuations instead of derivatives or
automata (Harper'99 - “Proof-directed
debugging”)

e Needs dependent types, well-founded
recursion, and eliminator for recursive calls
“under binders”...

Demo

I lrezia— Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

type 'alpha regexp =
Empty
Epsilon
Atom of 'alpha
Disj of bool * bool * 'alpha regexp * 'alpha regexp
Conj of bool * bool * 'alpha regexp * 'alpha regexp
Seq of bool * bool * 'alpha regexp * 'alpha regexp
Star of 'alpha regexp

'alpha substring = 'alpha list

type 'alpha cont_type = 'alpha substring -> bool

'al

let matches alpha null r s k =
let hypspack = { prl = null; pr2 = { prl = r; pr2 = { prl = s; pr2 =
{prl=k; pr2=Tt } 111}

in

= h@.pr2 in
hl.prl in
matches® = fun nulld rl sl k1 ->
= { prl = null@; pr2 = { prl = rl; prZz = { prl = s1; pr2 =
=kl; pr2 =Tt } } 1 }
in
(fun _ -> fix_F y)
in
{match r@ with
| Empty -> False
| Epsilon -> k@ s@
| Atom 1 ->
{match s@® with
| Nil -> False
| Cons (a, 10) ->
(match equiv_dec (alphabet_dec alpha) 1 a with
| Left -> k@ 10
| Right -> False))
Disj (1, r1, r2, r3) ->
(match matches® 1 r2 s@ k@ __ with
| True -> True
| False -> matches® rl r3 s@ k@ __)
Conj (1, r1, rZ, r3) -»
matches® 1 r2 s@ (fun s' ->
matches® rl r3 s@ (fun s'' ->
match equiv_dec (list_eqdec (alphabet_dec alpha)) s' s
| Left -> k@ s'
| Right -> False) _.) __
Seq (1, rl1, r2, r3) ->
let k1 = fun s' -> matches® rl r3 s' k@ __ in matches® 1 r2 s@ ki1 __
Star r1 ->
let match_star = fun s' -> matches@® True (Star rl) s' k@ __ in
{match k@ s@ with
| True -> True
| False -> matches@ False rl s@ match_star __))
fix_F hypspack

"' with

. lrezia— Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

More examples

e Hereditary substitution for Predicative
System F (Mangin & Sozeau, LFMTP’15)
Nested recursion, well-founded multiset
ordering on types.

e Ordinal measures (Castéran)

e Reflexive ring-like tactic on polynomials. WF
subterm order on indexed polynomials

e Prototyping without verifying termination
using functional eliminator

mattam82.github.io/Cog-Equations/examples

. lrezia— Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

http://mattam82.github.io/Coq-Equations/examples/

mattam82.github.io/Coqg-Equations

opam install cog-equations

V 4

: informatics , mathematics

http://mattam82.github.io/Coq-Equations/

