
Nested, Well-founded & Mutual
Recursion in Equations

Matthieu Sozeau, Cyprien Mangin
Inria Paris & IRIF, Université Paris 7 Diderot

EUTypes WG 4
Nijmegen, NL
January 24th, 2018

OUTLINE

1. Equations Reloaded

2. “La Belle et la Bête”¹: Coq’s Guard Condition

3. Logic to the Rescue…

¹Gabrielle-Suzanne Barbot de Villeneuve (1685 – 1755)

2Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

• Dependent Pattern-Matching à la Epigram, Agda
• Compiled-down to CIC using telescope simplification

(à la Cockx circa 2016)
• Optional typeclass instances of K/decidable equality
• Smart case compilation for smaller proof terms
• Structural and well-founded recursion (i.e.

Function/Program like)
• Derive Signature NoConfusion Subterm EqDec for I

• Generates graph, unfolding lemma and
elimination principles

Equations Reloaded

3Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

• Goal: ensure termination statically
• Relatively concise syntactic check (compared to SCT)
• Handles naturally mutual and nested fixpoints, e.g:

Inductive t : Set :=
| leaf (a : A) : t
| node (l : list t) : t.

Fixpoint size (r : t) :=
 match r with
 | leaf a ⇒ 1

 | node l ⇒ S (list_size size l)
 end.

• Handles fix-match decomposition of eliminators,
hard(er) with sized-types (A. Abel, B. Grégoire, …)

Coq’s Guard Condition

4Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.roserec.A
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#t
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#list
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#t
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#t
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.t
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#r
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.leaf
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.node
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#S
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#list_size
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#size

• Guard Condition (should) ensure termination

• Slightly hard to understand syntactic criterion.
Initial formal justification: Gimenez’94, gradually
“sophisticated” since.

• Guard check needs to reduce definitions (!??!)
(SN for call-by-name reduction only, WIP fix)

• Buggiest part of the system
Last bug & fix: #6649 - 24/1/18 - 13:20

• DPM-elimination involves equality manipulations, ...

A Recipe for Disaster

Trouble with the Guard Condition

5Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

https://github.com/coq/coq/pull/6649

• Inconsistency with propext (fixed in 2013):
Hypothesis Heq : (False -> False) = True.
Fixpoint loop (u : True) : False :=
 loop (match Heq in (_ = T) return T with

 | eq_refl => fun f : False => match f with end
 end).

• Typical DPM compilation:
Inductive Split {X : Type}{m n : nat} : vector X (m + n) → Type :=
 append : ∀ (xs : vector X m)(ys : vector X n), Split (vapp xs ys).

 Equations split_struct {X} {m n} (xs : vector X (m + n)) : Split m n xs :=
split_struct {m:=0} xs := append nil xs ;
split_struct {m:=(S m)} (cons x _ xs) ⇐ split_struct xs ⇒ {
 | append xs' ys' := append (cons x xs') ys' }.

 Not structural on vectors, due to uses of J

Commuting conversions?

6Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#False
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#False
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#True
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#True
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#False
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#eq_refl
http://coq.inria.fr/distrib/8.4pl6/stdlib/Coq.Init.Logic.html#False
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Init.Datatypes.html#nat
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Init.Peano.html#b3eea360671e1b32b18a26e15b3aace3
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Unicode.Utf8_core.html#669c7d28e8f98524b0cbba08d17d0eec
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Unicode.Utf8_core.html#669c7d28e8f98524b0cbba08d17d0eec
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Unicode.Utf8_core.html#669c7d28e8f98524b0cbba08d17d0eec
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Init.Peano.html#b3eea360671e1b32b18a26e15b3aace3
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Vectors.Vector.html#nil
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Init.Datatypes.html#S
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Vectors.Vector.html#cons
http://coq.inria.fr/distrib/8.7.1/stdlib//Coq.Vectors.Vector.html#cons

http://mattam82.github.io/Coq-Equations/examples/nested_mut_rec.html

Functional elimination is good for you!

Still, we can handle mutual & nested rec!

7Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

http://mattam82.github.io/Coq-Equations/examples/nested_mut_rec.html

OUTLINE

1. Equations Reloaded

2. Beauty & The Beast: Coq’s Guard Condition

3. Logic to the Rescue...

8Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

structurally recursive

⊂
 well-founded on subterm relation

1) Derive Subterm for I relation on
(computational/hType) inductive families

2) Prove well-foundedness by structural rec
3) Profit! “by rec I_subterm x”

• Define split on vectors by rec on the vector!

• Extract to general fixpoints

Logic to the Rescue: Acc is not a Hack

9Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

 Equations elements' (r : t) : list A :=
elements' l by rec r (MR lt size) :=
elements' (leaf a) := [a];
elements' (node l) := fn l hidebody
 where fn (x : list t) (H : list_size size x < size (node l)) : list A :=
 fn x H by rec x (MR lt (list_size size)) :=
 fn nil _ := nil;
 fn (cons x xs) _ := elements' x ++ fn xs hidebody.

• Use the weapon of your choice

• Equations generates unfolding lemma

• Eliminator abstracts away from the w.f.
relation: do the work only once.

The Beauty of Logic

10Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.t
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#list
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.roserec.A
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#elements'
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Program.Wf.html#MR
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Peano.html#lt
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.size
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#elements'
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.leaf
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Lists.List.html#64ee52ab9627fca8d637e2f1207a2990
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Lists.List.html#64ee52ab9627fca8d637e2f1207a2990
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#elements'
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.node
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#fn
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#list
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.t
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#list_size
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.size
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#x
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Peano.html#989c98e7ddd65d5bf37c334ff2076de8
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.size
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.node
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#list
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.roserec.A
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#fn
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Program.Wf.html#MR
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Peano.html#lt
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#list_size
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.size
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#fn
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#nil
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#nil
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#fn
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#cons
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#RoseTree.elements'_comp_proj
http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes.html#5d35a99a6abff1d64bf70538feb70e36
http://mattam82.github.io/Coq-Equations/examples/RoseTree.html#fn

• Closed calls still reduce to the same normal
forms: I_subterm is closed

• Make it fast by adding 2^n Acc_intro’s to
the well-foundedness proof.

• For calls on open terms:
– Proofs: unfolding lemma or derived

equalities (more control)
– Programs: still reduces, unfolding might be

unwiedly though.
• Functional extensionality is used to prove

the unfolding lemma (easier to automate)

Computational content

11Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

• Implement regexp matching using
continuations instead of derivatives or
automata (Harper’99 - “Proof-directed
debugging”)

• Needs dependent types, well-founded
recursion, and eliminator for recursive calls
“under binders”...

Demo

Playtime: Regexp matching

12Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

13Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

• Hereditary substitution for Predicative
System F (Mangin & Sozeau, LFMTP’15)
Nested recursion, well-founded multiset
ordering on types.

• Ordinal measures (Castéran)

• Reflexive ring-like tactic on polynomials. WF
subterm order on indexed polynomials

• Prototyping without verifying termination
using functional eliminator

 mattam82.github.io/Coq-Equations/examples

More examples

14Nested, Well-Founded and Mutual Recursion in Equations - M. Sozeau, C. Mangin

http://mattam82.github.io/Coq-Equations/examples/

mattam82.github.io/Coq-Equations

opam install coq-equations

http://mattam82.github.io/Coq-Equations/

