
defunctionalisation as
modular closure conversion

Ulrich Schöpp
LMU Munich



motivation

Systematic understanding of the low-level aspects of real-world
programming language implementations.

• formal compiler verification
• resource usage analysis and certification
• modularity and scalability
• . . .

Today: Implementation of higher-order functions by first-order ones

Translate higher-order programs to first-order ones.

• heap-allocated closures
• defunctionalisation
• defunctionalisation with control flow information

This talk: Implementation of higher-order functions by first-order
ones



heap-allocated closures

Heap-allocated closures
• Encode functions as pairs (addr, env).
• Function values become pointers to such pairs.

Example
...
let f = fun x → a * x + b in
let g = if a < b then f else fun x → x + 3 in
print ((f 4) + (g 5))



heap-allocated closures

fun apply1((a, b), x) = a * x + b
fun apply2((), x) = x + 3

Heap-allocated closures
• Encode functions as pairs (addr, env).
• Function values become pointers to such pairs.

Example
...
let f = fun x → a * x + b in
let g = if a < b then f else fun x → x + 3 in
print ((f 4) + (g 5))



heap-allocated closures

Example
...
let f = (&apply1, (a, b)) in
let g = if a < b then f else (&apply2, ()) in
print (apply(f, 4) + apply(g, 5))

fun apply1((a, b), x) = a * x + b
fun apply2((), x) = x + 3

fun apply((addr, env), x) = (*addr)(env, x)

Heap-allocated closures
• Encode functions as pairs (addr, env).
• Function values become pointers to such pairs.



defunctionalisation

Example:
- not just a single apply function (ideally only one case: static jump,
inlining)

Defunctionalisation
• Replace the address by a tag that identifies the function.
• Use an algebraic data type to exclude invalid pairs (tag, env):
The pair becomes a constructor application Ctag(env).

Example
...
let f = fun x → a * x + b in
let g = if a < b then f else fun x → x + 3 in
print ((f 4) + (g 5))



defunctionalisation

Example:
- not just a single apply function (ideally only one case: static jump,
inlining)

Example
...
let f = C1(a, b) in
let g = if a < b then f else C2() in
print (apply(f, 4) + apply(g, 5))

fun apply1((a, b), x) = a * x + b
fun apply2((), x) = x + 3

fun apply(g, x) = case g of
| C1(a, b) → apply1((a, b), x)
| C2() → apply2((), x)

Defunctionalisation
• Replace the address by a tag that identifies the function.
• Use an algebraic data type to exclude invalid pairs (tag, env):
The pair becomes a constructor application Ctag(env).



defunctionalisation

Defunctionalisation (using flow information)
• Use control-flow information to improve the choice of data
types.

Example
...
let f = fun x → a * x + b in
let g = if a < b then f else fun x → x + 3 in
print ((f 4) + (g 5))



defunctionalisation

Example
...
let f = (a, b) in
let g = if a < b then Left(f) else Right() in
print (apply1(f, 4) + apply(g, 5))

fun apply1((a, b), x) = a * x + b
fun apply2((), x) = x + 3

fun apply(g, x) = case g of
| Left(f) → apply1(f, x)
| Right() → apply2((), x)

Defunctionalisation (using flow information)
• Use control-flow information to improve the choice of data
types.



compositionality & modularity

Modularity and compositionality are very important in practice, but
are often treated in an ad hoc way.

Example: Separate compilation

external
f: ((int → int) → int) → int
g: (int → int) → int

in f g end

Heap-allocated closures

Defunctionalisation
• f needs access to the apply-code in g, and vice versa
• closure repesentation in g may depend on f, and vice versa
• may need some new code at link time



modular closure conversion

Use a module system to formulate closure conversion!
• interface specification
• program composition
• basis for reasoning
• mathematical structure

Point of this talk: Use a proper module system to manage such
issues of low-level code assembly!

TODO: "manage defunctionalisation"!



from call-by-value pcf to modules



call-by-value pcf

Use call-by-value PCF as a simple source language.
• simply-typed λ-calculus
• natural numbers with addition, case distinction, . . .
• recursion

X,Y ::= N | X → Y

s, t ::= x | λx:X. t | s t
| n | s+ t | if s=0 then t1 else t2

| fix(t)



translation to modules

Translate PCF to modules that contain only first-order functions.

Use an SML-like module system:

Structures

struct
type t = int
fun f (x: int) = x

end

Signatures

sig
type t
f: int → t

end

Functor

functor (X: S) =
struct

fun g (x: int) = X.f x
end

Functor signature

functor (X: S) →
sig

g: int → X.t
end

Functor

functor (X: sig type t
f: int → t

end) =
struct

fun g (x: int) = X.f x
end

Functor signature

functor (X: sig type t
f: int → t

end) →
sig

g: int → X.t
end



modular closure conversion

Idea: Translate a closed PCF term t:X to a module of signature

MJXK := sig
include IJXK
eval: unit→ t

end



modular closure conversion

Idea: Translate a closed PCF term t:X to a module of signature

MJXK := sig
include IJXK
eval: unit→ t

end

Base Type

IJNK = sig
type t = int

end



modular closure conversion

Idea: Translate a closed PCF term t:X to a module of signature

MJXK := sig
include IJXK
eval: unit→ t

end

Base Type

IJNK = sig
type t = int

end

Function type (special case)

IJN→ NK = sig
type t (* abstract *)
apply: t× int → int

end



modular closure conversion

Idea: Translate a closed PCF term t:X to a module of signature

MJXK := sig
include IJXK
eval: unit→ t

end

Base Type

IJNK = sig
type t = int

end

Function type (special case)

IJ(N→ N)→ NK = sig
type t (* abstract *)
T: functor (X: IJN→ NK) → sig

apply: t× X.t → int
end

end



modular closure conversion

Idea: Translate a closed PCF term t:X to a module of signature

MJXK := sig
include IJXK
eval: unit→ t

end

Base Type

IJNK = sig
type t = int

end

Function type (special case)

IJ(N→ N)→ (N→ N)K = sig
type t (* abstract *)
T: functor (X: IJN→ NK) → sig

T : IJN→ NK
apply: t× X.t → T.t

end
end



modular closure conversion

Idea: Translate a closed PCF term t:X to a module of signature

MJXK := sig
include IJXK
eval: unit→ t

end

Base Type

IJNK = sig
type t = int

end

Function types (general case)

IJX → Y K = sig
type t (* abstract *)
T: functor (X: IJXK) → sig

T : IJY K
apply: t× X.t → T.t

end
end



modular closure conversion

A PCF term x1:X1, . . . , xk:Xk ` t : Y translates to a module of type:

functor Mt (X1: IJX1K) ... (Xn: IJXnK) : sig
include IJY K
eval: X1.t * ... * Xn.t → t

end



example — defunctionalisation

` λy. y + 3 : N→ N

translates to

functor M1 () = struct
type t = unit

fun eval() = ()

functor T(Y: IJNK) = struct

structure T: IJNK = struct type t = int end

fun apply ((f, y) : t * Y.t) : T.t =
y + 3

end
end



example — defunctionalisation

x: (N→ N) ` λy. x (y + 1) : N→ N

translates to

functor M2 (X: IJN→ NK) = struct
type t = X.t

fun eval(x: X.t) : t = x

functor T(Y: IJNK) = struct

structure T: IJNK = struct type t = int end

fun apply ((f, y) : t * Y.t) : T.t =
X.T(Y).apply(f, y+1)

end
end



example — defunctionalisation

x:(N→ N) ` if (x 2) = 0 then λy. y + 1 else λy. x (y + 3) : N→ N

translates to

functor M3 (X: IJN→ NK) = struct
datatype t = Left of unit | Right of X.t

fun eval(x : X.t) : t =
if X.T(struct type t = int end).apply(x, 2) = 0
then Left() else Right(x)

functor T(Y: IJNK) = struct
structure T: IJNK = struct type t = int end
fun apply ((f, y) : t * Y.t) : T.t =
case f of Left() => y + 1

| Right(x) => X.T(Y).apply(x, y+3)
end

end



modular closure conversion

It is not hard to define a translation for all of call-by-value PCF by
induction on typing derivations.

• Abstraction of data types like in typed closure conversion
[Minamide, Harper, Morrisett]

• Abstraction of application functions: in principle, each
λ-abstraction could use a different closure repesentation

• Linking of separately translated terms immediate.

What have we gained?



fragments of low-level code as modules



low-level programs

Low-level programs
• set of function definitions (blocks)
• first-order data
• tail calls only

TODO: Replace by sml programs

fun fac(n) =
let f = 1 in
loop(n, f)

fun loop(n, f) =
if n = 0 then ret(f)

else body(n, f)

fun body(n, f) =
let f' = n * f in
let n' = n - 1 in
loop(n', f')

Example:



control flow graphs

- each function is a box
- control flow edges (show types)
- fragment = part of cfg
- fragment = little module

fun loop(n, f) =
if n = 0 then exit(f)

else body(n, f)

fun fac(n) =
let f = 1 in
loop(n, f)

fun body(n, f) =
let f' = n * f in
let n' = n - 1 in
loop(n', f')

int

int× int

int× int int

int× int



program fragment

int× int

fun loop(n, f) =
if n = 0 then exit(f)

else body(n, f)

fun fac(n) =
let f = 1 in
loop(n, f)

fun body(n, f) =
let f' = n * f in
let n' = n - 1 in
loop(n', f')

int

int× int

int× int

int



program fragment

int× int

int

int× int

int

fun loop(n, f) =
if n = 0 then exit(f)

else body(n, f)

fun fac(n) =
let f = 1 in
loop(n, f)

int× int



program fragment

int× int

int

int× int

int



fragments as little modules

Consider low-level program fragments as modules that compose
into the final program.

A→ B is abbreviation for a single binding

Example:

BA

DC

Bildchen aus dem Paper!

sig add : int× int→ int,

square : int→ int

end

Specify their interfaces using ML-style signatures.

sig
f: A → B
g: C → D

end

is implemented by

TODO: input A -> output D?



fragments and their signatures

Signatures
S ::= A→ B

| sig X:S, . . . ,X:S end

| functor(X:S)→ S

| A · S
| ∀αCA.S

| ∃αCA.S

A→ B is abbreviation for a single binding

S+S−

A signature specifies interface and (some) behaviour of program
fragments.



fragments and their signatures

• Signature A→ B is implemented by fragments of interface:

sig
fac: int → int

end

Example:

fun loop(n, f) =
if n = 0 then exit(f)

else body(n, f)

fun fac(n) =
let f = 1 in
loop(n, f)

fun body(n, f) =
let f' = n * f in
let n' = n - 1 in
loop(n', f')

int

int

BA



fragments and their signatures

TODO: actual blocks

• sig X1:S1, . . . , Xn:Sn end

sig
add: int× int → int
square: int → int

end

Example:

int× int

int int

int

S−1

S−n S+
n

S+
1
...

...



fragments and their signatures

• functor(X:S)→ T

F
X

T− T+

S−

Intention:

S+

T−

S+ S−

T+

F



fragments and their signatures

F
S+

T− T+

S−

S+ S−

• A · S (subexponential)

The first argument is returned unchanged and uninspected.

Example: Contraction

A× S+A× S−



fragments and their signatures

F
S+

T− T+

S−

S+ S−

(unit + unit)× S−(unit + unit)× S+

• A · S (subexponential)

The first argument is returned unchanged and uninspected.

Example: Contraction

A× S+A× S−



fragments and their signatures

F
S+

T− T+

S−

S+ S−

(unit + unit)× S−(unit + unit)× S+

• A · S (subexponential)

The first argument is returned unchanged and uninspected.

Example: Contraction

A× S+A× S−



fragments as modules

The SML module system can be translated to System Fω
[F-ing Modules: Rosberg, Russo, Dreyer].

Our low-level interpretation of modules can be understood as a
variant of this translation to int, a linear variant of System F.



from annotated pcf to low-level code



translation to low-level programs

Translate a closed PCF term t : X to a module of signature

MJXK := sig
include IJXK,
eval: unit→ T.t

end

Base Type

IJNK = sig
type t = int

end

Function types

IJX → Y K = sig
type t (* abstract *)
T: functor (X: IJXK) → sig

T : IJY K
apply: t× X.t → T.t

end
end



translation to low-level programs

Translate a closed PCF term `A t : X to a module of signature

MJXK := sig
include IJXK,
eval: A · (unit→ T.t)

end

Base Type

IJNK = A · (sig
typeCint t = int

end)

Function types

IJX → Y K = A · (sig
typeCC t
T: functor (X: IJXK) → sig

T : IJY K
apply: B · (t× X.t → T.t)

end
end)



translation to low-level programs

Translate a closed PCF term `A t : X to a module of signature

MJXK := sig
include IJXK
eval: A · (unit→ t)

end

Base Type

IJA · NK = A · (sig
type t = int

end)

Function types (general case)

IJA · (X C−→B Y )K = A · (sig
typeCC t
T: functor (X: IJXK) → sig

T : IJY K
apply: B · (t× X.t → T.t)

end
end)



type system tracks annotations

`U s : N C−→U N `U×C t : N
app

`U s t : N

s t: sig
type t = int
eval: U · (unit→ int)

end

s: sig
typeCC t
apply: U ·(t× int → int)
eval: U ·(unit → t)

end

t: sig
type t = int
eval: (U × C)·(unit→ int)

end

amounts to



type system tracks annotations

Γ `U×CJ∆K s : X C−→U Y ∆ `U×C t : X
app

Γ, ∆ `U s t : Y

s t

eval

apply

T

X

eval

IJX K

Γ

∆

eval

IJYK
Γ
∆



what have we gained?

Modular formulation of defunctionalisation
• specification of low-level interfaces
• flexible choice of low-level details
(represented by type annotations)

• whole-program analysis becomes type inference

The proof of correctness factors in two manageable parts.
1. Correctness of translation to modules
2. Correctness of low-level implementation of modules



thank you for your attention!


