DEFUNCTIONALISATION AS
MODULAR CLOSURE CONVERSION

Ulrich Schopp
LMU Munich

MOTIVATION

Systematic understanding of the low-level aspects of real-world
programming language implementations.

formal compiler verification
resource usage analysis and certification
modularity and scalability

Today: Implementation of higher-order functions by first-order ones

HEAP-ALLOCATED CLOSURES

Heap-allocated closures
Encode functions as pairs (addr, env).
Function values become pointers to such pairs.

Example

let f = fun x — a * x + b 1in
let g = 1if a < b then f else fun x — x + 3 1in
print ((f 4) + (g 5))

HEAP-ALLOCATED CLOSURES

Heap-allocated closures
Encode functions as pairs (addr, env).
Function values become pointers to such pairs.

Example

let f = fun x — a * x + b 1in
let g = 1if a < b then f else fun x — x + 3 1in
print ((f 4) + (g 5))

fun applyl1((a, b), x) * X +Db
X

fun apply2((), x) =

+ I
w

HEAP-ALLOCATED CLOSURES

Heap-allocated closures
Encode functions as pairs (addr, env).
Function values become pointers to such pairs.

Example

let f = (&applyl, (a, b)) in
let g = if a < b then f else (&apply2, ()) 1in
print (apply(f, 4) + apply(g, 5))

fun applyl1((a, b), x)
fun apply2((), x) = X

fun apply((addr, env), x) = (*addr)(env, x)

DEFUNCTIONALISATION

Defunctionalisation
Replace the address by a tag that identifies the function.

Use an algebraic data type to exclude invalid pairs (tag, env):
The pair becomes a constructor application Ctag(env).

Example
let f = fun x — a * x + b 1in

let g = if a < b then f else fun x — x + 3 1in
print ((f 4) + (g 5))

DEFUNCTIONALISATION

Defunctionalisation
Replace the address by a tag that identifies the function.
Use an algebraic data type to exclude invalid pairs (tag, env):
The pair becomes a constructor application Ctag(env).

Example

let £ = Cl1(a, b) 1in
let g = if a < b then f else C2() in
print (apply(f, 4) + apply(g, 5))

fun applyl1((a, b), x) = a *x x + b

fun apply2((), x) = x + 3

fun apply(g, x) = case g of
| C1(a, b) — applyl((a, b), x)
| C2() — apply2((), x)

DEFUNCTIONALISATION

Defunctionalisation (using flow information)

Use control-flow information to improve the choice of data
types.

Example

let f = fun x — a * x + b 1in
let g = 1if a < b then f else fun x — x + 3 1in
print ((f 4) + (g 5))

DEFUNCTIONALISATION

Defunctionalisation (using flow information)

Use control-flow information to improve the choice of data
types.

Example

let f = (a, b) 1in
let g = 1f a < b then Left(f) else Right() 1in
print (apply1(f, 4) + apply(g, 5))

fun applyl1((a, b), x) =a *x x + Db
X

fun apply2((), x) =

fun apply(g, x) = case g of
| Left(f) — applyl(f, x)
| Right() — apply2((), x)

+

COMPOSITIONALITY & MODULARITY

Modularity and compositionality are very important in practice, but
are often treated in an ad hoc way.

Example: Separate compilation

external
f: ((int — int) — int) — int
g: (int — int) — int

in f g end

Heap-allocated closures

Defunctionalisation
f needs access to the apply-code in g, and vice versa
closure repesentation in g may depend on f, and vice versa
may need some new code at link time

MODULAR CLOSURE CONVERSION

Use a module system to formulate closure conversion!
Interface specification
program composition
basis for reasoning
mathematical structure

FROM CALL-BY-VALUE PCF TO MODULES

CALL-BY-VALUE PCF

Use call-by-value PCF as a simple source language.
simply-typed A-calculus
natural numbers with addition, case distinction, ...
recursion

X, Y =

S, 1 1=

|
Z

X =Y

Ae:X.t | st

n | s+t | if s=0 thent; else t,
fix(t)

8

TRANSLATION TO MODULES

Translate PCF to modules that contain only first-order functions.

Use an SML-like module system:

Structures Signatures
struct sig

type t = int type t

fun f (x: int) = X f: int - t
end end
Functor Functor signature
functor (X: S) = functor (X: S) —

struct sig
fun g (x: int) = X.f x g: int — X.t

end end

MODULAR CLOSURE CONVERSION

Idea: Translate a closed PCF term ¢: X to a module of signature

M[X] := sig
include Z|X]
eval: unit — t
end

MODULAR CLOSURE CONVERSION

Idea: Translate a closed PCF term ¢: X to a module of signature

M[X] := sig
include Z|X]
eval: unit — t

end
Base Type
7Z|N] = sig
type t = int

end

MODULAR CLOSURE CONVERSION

Idea: Translate a closed PCF term ¢: X to a module of signature

M[X] := sig
include Z|X]
eval: unit — t

end
Base Type Function type (special case)
Z|N] = sig Z|[N — N] = sig
type t = int type t (* abstract =*)
end apply: t xint — int

end

MODULAR CLOSURE CONVERSION

Idea: Translate a closed PCF term ¢: X to a module of signature

M[X] := sig
include Z|X]
eval: unit — t

end
Base Type Function type (special case)
ZIN] = sig ZI[(N = N) = N] = sig
type t = int type t (* abstract *)
end T: functor (X: Z|[N — N]) — sig
apply: t xX.t — int
end

end

MODULAR CLOSURE CONVERSION

Idea: Translate a closed PCF term ¢: X to a module of signature

M[X] := sig
include Z|X]
eval: unit — t

end
Base Type Function type (special case)
I[N] = sig I[(N = N) —» (N = N)] = sig
type t = int type t (* abstract =*)

end T: functor (X: Z|[N — N]) — sig
T : Z|[N — N]J
apply: txX.t — T.t

end

end

MODULAR CLOSURE CONVERSION

Idea: Translate a closed PCF term ¢: X to a module of signature

M[X] := sig
include Z|X]
eval: unit — t

end
Base Type Function types (general case)
Z[N] = sig I[X = Y] = sig
type t = int type t (* abstract =*)

end T: functor (X: Z[X]) — sig
T : Z[Y]
apply: txX.t — T.t

end

end

MODULAR CLOSURE CONVERSION

A PCFterm x1:X4,...,25: X, F t: Y translates to a module of type:

functor My (X1: Z[X:1]) ... (Xn: Z[X,]) : sig
include Z[Y]
eval: X1.t » ... * Xn.t — t

end

EXAMPLE — DEFUNCTIONALISATION

F Ay.y+3: N— N
translates to

functor M; () = struct
type t = unit

fun eval() = ()

functor T(Y: Z|N]) = struct

structure T: Z|N] = struct type t = int end

fun apply ((f, y) : t xY.t) : T.t =
y +3
end
end

EXAMPLE — DEFUNCTIONALISATION

r:(N—=>NF \y.z(y+1) : N— N
translates to

functor My (X: Z[|N — N]) = struct
type t = X.t

fun eval(x: X.t) : t = x

functor T(Y: Z[N]) = struct

structure T: Z[N] = struct type t = int end

fun apply ((f, y) : t xY.t) : T.t =

X.T(Y) .apply(f, y+1)
end
end

EXAMPLE — DEFUNCTIONALISATION

r:(N—=>N)F if (z2)=0then A\y.y+1lelse dy.x (y+3): N> N
translates to

functor M3 (X: Z|N — N]) = struct
datatype t = Left of unit | Right of X.t

fun eval(x : X.t) : t =
if X.T(struct type t = int end).apply(x, 2) = @
then Left() else Right(x)

functor T(Y: Z[N]) = struct
structure T: Z|N] = struct type t = int end
fun apply ((f, y) : t xY.t) : T.t =
case f of Left() =>y + 1
| Right(x) => X.T(Y).apply(x, y+3)
end
end

MODULAR CLOSURE CONVERSION

It Is not hard to define a translation for all of call-by-value PCF by
Induction on typing derivations.

Abstraction of data types like in typed closure conversion
[Minamide, Harper, Morrisett]

Abstraction of application functions: in principle, each
A-abstraction could use a different closure repesentation

Linking of separately translated terms immediate.

What have we gained?

FRAGMENTS OF LOW-LEVEL CODE AS MODULES

LOW-LEVEL PROGRAMS

Low-level programs
set of function definitions (blocks)
first-order data
tail calls only

Example:

fun fac(n) =
let f =1 1in
loop(n, f)

fun loop(n, f) =
if n = 0 then ret(f)
else body(n, f)

fun body(n, f) =
let f'" = n x f 1in
let n" =n -1 1n
loop(n', f')

CONTROL FLOW GRAPHS

fun fac(n) =
> let f =1 1n
loop(n, f)

int

l int X int
fun loop(n, f) =

if n = 0 then exit(f)
///” else body(n, f)

lint X int

int

fun body(n, f) =
let f' = n x f 1in
let n" = n -1 1n
loop(n', f')

int X int

PROGRAM FRAGMENT

fun fac(n) =
> let f = 1 1in
loop(n, f)

int i

l int X int
fun loop(n, f) =

| if n = 0 then exit(f) E
//?” else body(n, f) | !

int

fun body(n, f) =
let f' = n x f 1in
let n" = n -1 1n
loop(n', f')

int X int

PROGRAM FRAGMENT

: fun fac(n) =
. »» let f =1 1in
int © | loop(n, f)

l int X int
fun loop(n, f) =

, » 1f n = @ then exit(f) —h >
int x int else body(n, f)| :

int X int

PROGRAM FRAGMENT

int X int

FRAGMENTS AS LITTLE MODULES

Consider low-level program fragments as modules that compose
into the final program.

Specify their interfaces using ML-style signatures.

Example:
sig A . B
f: A — B o | :
' Is Implemented b | :
g: ¢ — D P Y —> E—»

end Cc D

FRAGMENTS AND THEIR SIGNATURES

Signatures
S :=A— B

sig X:5,...,X:Send
functor(X:S) — S
A-S

Va 1 A. S

Ja <t A. S

A signature specifies interface and (some) behaviour of program
fragments.

FRAGMENTS AND THEIR SIGNATURES

Signature A — B is implemented by fragments of interface:

Example:

sig
fac: int — int
end

FRAGMENTS AND THEIR SIGNATURES

sig X1:51,...,X,:5, end

Sy e S
—_— :.—P
St ST
Example:
sig int X int 7777777770 1nt
. . ° —— l_>
add: int x int — int ' E
. . —> — >
square: 1nt — 1nt int oo .. v int

end

FRAGMENTS AND THEIR SIGNATURES

functor(X:S) — T

T— oo T
— .
. F
—>i —_—
St S~
Intention:
T— e T+
P
F

FRAGMENTS AND THEIR SIGNATURES

A - S (subexponential)

The first argument is returned unchanged and uninspected.

Example: Contraction

T— g -
— ——
ot 5

FRAGMENTS AND THEIR SIGNATURES

A - S (subexponential)

The first argument is returned unchanged and uninspected.

Example: Contraction

FRAGMENTS AND THEIR SIGNATURES

A - S (subexponential)

The first argument is returned unchanged and uninspected.

Example: Contraction

(unit +unit) x ST

F E}»(th—f—unlt) X ST

FRAGMENTS AS MODULES

The SML module system can be translated to System F,
[F-ing Modules: Rosberg, Russo, Dreyer].

Our low-level interpretation of modules can be understood as a
variant of this translation to INT, a linear variant of System F.

FROM ANNOTATED PCF TO LOW-LEVEL CODE

TRANSLATION TO LOW-LEVEL PROGRAMS

Translate a closed PCF term ¢: X to a module of signature

M[X] := sig
include Z|X],
eval: unit = T.t

end
Base Type Function types
Z|N] = sig I[X = Y] = sig
type t = int type t (* abstract *)

end T: functor (X: Z[X]) — sig
T : Z[Y]
apply: txX.t — T.t

end

end

TRANSLATION TO LOW-LEVEL PROGRAMS

Translate a closed PCF term 4 t: X to a module of signature

M[X] := sig
include Z|X],
eval: A-(unit — T.t)

end
Base Type Function types
Z[N] = A-(sig I[X - Y] = A (sig
typegint t = 1nt typeqo t

end) T: functor (X: Z[X]) — sig
T : Z[Y]
apply: B-(txX.t = T.1t)

end

end)

TRANSLATION TO LOW-LEVEL PROGRAMS

Translate a closed PCF term 4 t: X to a module of signature

M[X] := sig
include Z|X]
eval: A-(unit — t)

end
Base Type Function types (general case)
I[A-N] = A-(sig T[A- (X S5Y)] = A- (sig
type t = 1nt type<1C' t

end) T: functor (X: Z[X]) — sig
T : Z[Y]
apply: B-(txX.t = T.1t)

end

end)

TYPE SYSTEM TRACKS ANNOTATIONS

Frs: NSO N Fpeet: N

APP
I_U st: N
amounts to
S: sig
typeqc t t: sig
apply: U-(t X int — int) type t = int
eval: U-(unit — t) eval: (U x C)-(unit — int)
end end
s t: sig
type t = int

eval: U-(unit — int)
end

TYPE SYSTEM TRACKS ANNOTATIONS

Thysepal 5: X S0y Abpget: X

APP
I'' Ay st:)Y
S t
eval > > eval —» —» e {r_aliui
ARG | » apply —» Z[X] %
I —» T > ' A E >

WHAT HAVE WE GAINED?

Modular formulation of defunctionalisation
specification of low-level interfaces

flexible choice of low-level details
(represented by type annotations)

whole-program analysis becomes type inference

The proof of correctness factors in two manageable parts.
1. Correctness of translation to modules
2. Correctness of low-level implementation of modules

THANK YOU FOR YOUR ATTENTION!

