
TTT: Type Theory Based Tools January 15, 2017 - 1 / 39

Cubical Type Theory: a constructive
interpretation of the univalence axiom
Anders Mörtberg – Inria Sophia-Antipolis

Cubical Type Theory

Goal: provide a computational justification for Homotopy Type Theory
and Univalent Foundations

We have designed a type theory where univalence computes and with
support for higher inductive types

From the point of view of type theory this work is mainly about equality

TTT 2017: Cubical Type Theory January 15, 2017 - 2 / 39

Equality/Identity types in type theory

Inductive eq (A : Type) (a : A) : A -> Type :=
refl : eq A a a

Notation (a = b) := (eq A a b).
Notation 1_a := (refl a).

Lemma eq_sym (A : Type) (a b : A) : a = b -> b = a.

Lemma eq_trans (A : Type) (a b c : A) : a = b -> b = c -> a = c.

Lemma eq_trans_refl_l (A : Type) (a b : A) (p : a = b), eq_trans 1_a p = p.

Lemma eq_trans_refl_r (A : Type) (a b : A) (p : a = b), eq_trans p 1_b = p.

...

Equality is proof relevant

TTT 2017: Cubical Type Theory January 15, 2017 - 3 / 39

Equality: transport

Definition transport (A : Type) (P : A -> Type)
(a b : A) (p : a = b) : P a -> P b := ...

“Leibniz Indiscernibility of Identicals”: identical objects satisfy the same
properties

TTT 2017: Cubical Type Theory January 15, 2017 - 4 / 39

Problems with equality in type theory

I Not possible to prove that pointwise equal functions are equal
(function extensionality)

I Not easy to define quotients (“setoid nightmare”)
I What is the equality between types, i.e. what is the equality for

Type?

Solution: Homotopy Type Theory and Univalent Foundations

TTT 2017: Cubical Type Theory January 15, 2017 - 5 / 39

Homotopy
Type Theory
Univalent Foundations of Mathematics

THE UNIVALENT FOUNDATIONS PROGRAM

INSTITUTE FOR ADVANCED STUDY

TTT 2017: Cubical Type Theory January 15, 2017 - 6 / 39

Homotopy type theory

“Homotopy theory is the study of homotopy groups; and more generally
of the category of topological spaces and homotopy classes of continuous
mappings”

Type theory Homotopy theory
A Type A Space

a, b : A
p, q : a = b
α, β : p = q
Λ, Θ : α = β

...

a • • b..
.

p

q

α β

Θ

Λ

TTT 2017: Cubical Type Theory January 15, 2017 - 7 / 39

Voevodsky’s univalence axiom

Equivalence of types, Equiv A B, is a generalization of bijection of sets

Univalence axiom: equality of types is equivalent to equivalence of types

univalence : Equiv (A = B) (Equiv A B)

I particular we get a map:

univalence inv : Equiv A B → A = B

TTT 2017: Cubical Type Theory January 15, 2017 - 8 / 39

Univalence axiom: consequences

Can prove function extensionality:

Lemma funext (A B : Type) (f g : A -> B)
(H : forall a, f a = g a), f = g.

Using this one can prove that for example insertion sort and quicksort are
equal as functions and rewrite with this equality

TTT 2017: Cubical Type Theory January 15, 2017 - 9 / 39

Univalence axiom: consequences

Get transport for equivalences:

Definition transport_equiv (P : Type -> Type) (A B : Type)
(p : Equiv A B) : P A -> P B := ...

This can be seen as a new version of Leibniz’s principle: reasoning is
invariant under equivalence

TTT 2017: Cubical Type Theory January 15, 2017 - 10 / 39

Univalence axiom: consequences

Structure identity principle: univalence lifts to structures
(Coquand-Danielsson, Ahrens-Kapulkin-Shulman)

Definition transport_monoid (P : Monoid -> Type)
(A B : Monoid) (p : EquivMonoid A B) : P A -> P B := ...

Can be used for program and data refinements: can prove properties on
the monoid of unary natural numbers by computing with the monoid of
binary natural numbers

TTT 2017: Cubical Type Theory January 15, 2017 - 11 / 39

Univalence axiom: problems

The univalence axiom can be added to type theory as an axiom:

Definition eqweqmap (A B : Type) (p : A = B) : Equiv A B :=

Axiom univalence (A B : Type), is_equiv (eqweqmap A B).

This is consistent by Voevodsky’s simplicial set model

By doing this type theory looses its good computational properties, in
particular one can construct terms that are stuck

TTT 2017: Cubical Type Theory January 15, 2017 - 12 / 39

Cubical Type Theory

An extension of dependent type theory which allows the user to directly
argue about n-dimensional cubes (points, lines, squares, cubes etc.)
representing equality proofs

Based on a model in cubical sets formulated in a constructive metatheory

Each type has a “cubical” structure

TTT 2017: Cubical Type Theory January 15, 2017 - 13 / 39

Cubical Type Theory

Extends dependent type theory (with η for functions and pairs) with:

1. Path types
2. Composition operations
3. Glue types (univalence)
4. Identity types
5. Higher inductive types

TTT 2017: Cubical Type Theory January 15, 2017 - 14 / 39

Path types

Path types provides a convenient syntax for reasoning about (higher)
equality proofs

Contexts can contain variables in the interval:

Γ `
Γ, i : I `

Formal representation of the interval, I:

r, s ::= 0 | 1 | i | 1− r | r ∧ s | r ∨ s

i, j, k... formal symbols/names representing directions/dimensions

TTT 2017: Cubical Type Theory January 15, 2017 - 15 / 39

Path types

i : I ` A corresponds to a line:

A(i/0) A(i/1)A
i

i : I, j : I ` A corresponds to a square:

A(i/0)(j/1) A(i/1)(j/1)

A(i/0)(j/0) A(i/1)(j/0)

A(j/1)

A

A(j/0)

A(i/0) A(i/1)
j

i

and so on...

TTT 2017: Cubical Type Theory January 15, 2017 - 16 / 39

Path types: rules

Γ ` A Γ, i : I ` t : A

Γ ` 〈i〉 t : Path A t(i/0) t(i/1)

Γ ` t : Path A u0 u1 Γ ` r : I
Γ ` t r : A

Γ ` A Γ, i : I ` t : A

Γ ` (〈i〉 t) r = t(i/r) : A

Γ, i : I ` t i = u i : A

Γ ` t = u : Path A u0 u1

Γ ` t : Path A u0 u1

Γ ` t 0 = u0 : A

Γ ` t : Path A u0 u1

Γ ` t 1 = u1 : A

TTT 2017: Cubical Type Theory January 15, 2017 - 17 / 39

Path types

Path abstraction, 〈i〉 t, binds the name i in t

t(i/0) t(i/1)
〈i〉 t

Path application, p r, applies a path p to an element r : I

a b
p

b a
〈i〉 p (1−i)

TTT 2017: Cubical Type Theory January 15, 2017 - 18 / 39

Path types are great! (function extensionality)

Given (dependent) functions f, g : (x : A)→ B and that are pointwise
equal:

p : (x : A)→ Path B (f x) (g x)

we can prove that the functions are equal by:

〈i〉 λx : A. p x i : Path ((x : A)→ B) f g

TTT 2017: Cubical Type Theory January 15, 2017 - 19 / 39

Path types are great! (maponpaths)

Given f : A→ B and p : Path A a b we can define:

ap f p = 〈i〉 f (p i) : Path B (f a) (f b)

satisfying definitionally:

ap id p = p
ap (f ◦ g) p = ap f (ap g p)

This way we get new ways for reasoning about equality: inline ap, funext,
symmetry... with new definitional equalities

TTT 2017: Cubical Type Theory January 15, 2017 - 20 / 39

Composition operations

We want to be able to compose paths:

a b
p

b c
q

We do this by computing the dashed line in:

a c

a bp

a q

In general this corresponds to computing the missing sides of
n-dimensional cubes

TTT 2017: Cubical Type Theory January 15, 2017 - 21 / 39

Composition operations

Box principle: any open box has a lid

Cubical version of the Kan condition for simplicial sets:

“Any horn can be filled”

First formulated by Daniel Kan in “Abstract Homotopy I” (1955) for
cubical complexes

TTT 2017: Cubical Type Theory January 15, 2017 - 22 / 39

Context restrictions

To formulate this we need syntax for representing partially specified
n-dimensional cubes

We add context restrictions Γ, ϕ where ϕ is a “face formula”
representing a subset of the faces of a cube

ϕ,ψ ::= 0F | 1F | (i = 0) | (i = 1) | ϕ ∧ ψ | ϕ ∨ ψ

TTT 2017: Cubical Type Theory January 15, 2017 - 23 / 39

Partial types
If Γ, ϕ ` A then A is a partial type of extent ϕ

A partial type i : I, (i = 0) ∨ (i = 1) ` A corresponds to:

A(i/0) • • A(i/1)

A partial type i j : I, (i = 0) ∨ (i = 1) ∨ (j = 0) ` A corresponds to:

• •

• •
A(j/0)

A(i/0) A(i/1)
j

i

TTT 2017: Cubical Type Theory January 15, 2017 - 24 / 39

Partial elements

Any judgment valid in a context Γ is also valid in a restriction Γ, ϕ

Γ ` A
Γ, ϕ ` A

If Γ ` A and Γ, ϕ ` a : A then a is a partial element of A of extent ϕ.
We write Γ ` b : A[ϕ 7→ a] for:

Γ ` b : A Γ, ϕ ` a : A Γ, ϕ ` a = b : A

TTT 2017: Cubical Type Theory January 15, 2017 - 25 / 39

Box principle

We can now formulate the box principle in type theory:

Γ, i : I ` A Γ ` a0 : A(i/0)[ϕ 7→ u(i/0)] Γ, ϕ, i : I ` u : A

Γ ` compi A [ϕ 7→ u] a0 : A(i/1)[ϕ 7→ u(i/1)]

I a0 is the bottom
I u is the sides
I compi A [ϕ 7→ u] a0 is the lid

Equality judgments for compi A [ϕ 7→ u] a0 are defined by cases on A

TTT 2017: Cubical Type Theory January 15, 2017 - 26 / 39

Composition operations: example

With composition we can justify transitivity of path types:

Γ ` p : Path A a b Γ ` q : Path A b c

Γ ` 〈i〉 compj A [(i = 0) 7→ a, (i = 1) 7→ q j] (p i) : Path A a c

a c

a b
p i

a q j
j

i

TTT 2017: Cubical Type Theory January 15, 2017 - 27 / 39

Cast as a composition

Composition for ϕ = 0F corresponds to cast:

Γ, i : I ` A Γ ` a : A(i/0)

Γ ` casti A a = compi A [] a : A(i/1)

a • • casti A a

A(i/0) A(i/1)A
i

Using this we can define transport, path induction...

TTT 2017: Cubical Type Theory January 15, 2017 - 28 / 39

Glue types

We extend the system with Glue types, these allow us to:
I Define composition for the universe
I Prove univalence

Composition for these types is the most complicated part of the system

TTT 2017: Cubical Type Theory January 15, 2017 - 29 / 39

Example: unary and binary numbers

Let nat be unary natural numbers and binnat be binary natural
numbers. We have an equivalence

e : nat→ binnat

and we want to construct a path P with P (i/0) = nat and
P (i/1) = binnat:

nat binnat
P

TTT 2017: Cubical Type Theory January 15, 2017 - 30 / 39

Example: unary and binary numbers

P should also store information about e, we achieve this by “glueing”:

nat binnat

binnat binnat

P

e ∼ id∼

binnat

We write

P = 〈i〉 Glue binnat [(i = 0) 7→ (nat, e), (i = 1) 7→ (binnat, id)]

TTT 2017: Cubical Type Theory January 15, 2017 - 31 / 39

Univalence?

What do we need to prove univalence?

univalence : Equiv (Path U A B) (Equiv A B)

By an observation of Dan Licata it suffices to define a function:

ua : Equiv A B → Path U A B

such that for any e : Equiv A B and a : A:

Path B (cast (ua e) a) (e.1 a)

TTT 2017: Cubical Type Theory January 15, 2017 - 32 / 39

Univalence

Given e : Equiv A B we can define the term

ua : Path U A B = 〈i〉 Glue B [(i = 0) 7→ (A, e), (i = 1) 7→ (B, idB)]

which satisfies the necessary computation rule

Univalence is hence provable in the system, but it is often more
convenient to work with the Glue types directly

TTT 2017: Cubical Type Theory January 15, 2017 - 33 / 39

cubicaltt

We have a prototype implementation written in Haskell:

https://github.com/mortberg/cubicaltt/

The implementation contains an evaluator, typechecker, parser, etc, but
it has no “fancy” features of modern proof assistants (unification,
implicit arguments, type classes...)

TTT 2017: Cubical Type Theory January 15, 2017 - 34 / 39

https://github.com/mortberg/cubicaltt/

Computing with univalence: bool = bool

data bool = false | true

negBool : bool → bool = split
false → true
true → false

negBoolK : (b : bool) → Path bool (negBool (negBool b)) b = split
false → <i> false
true → <i> true

negBoolEquiv : equiv bool bool =
(negBool,gradLemma bool bool negBool negBool negBoolK negBoolK)

negBoolEq : Path U bool bool =
<i> Glue bool [(i = 0) 7→ (bool,negBoolEquiv)

, (i = 1) 7→ (bool,idEquiv bool)]

> cast negBoolEq true
EVAL: false

TTT 2017: Cubical Type Theory January 15, 2017 - 35 / 39

Computing with univalence

We have implemented many more examples:
I Unary and binary numbers
I Fundamental group of the circle (compute winding numbers)
I Voevodsky’s impredicative set quotients
I Dan Grayson’s definition of the circle using Z-torsors and a proof

that it is equivalent to the HIT circle (Rafaël Bocquet)
I Structure identity principle for categories (Rafaël Bocquet)
I Universe categories and C-systems, proof that two equivalent

universe categories give two equal C-systems (Rafaël Bocquet)
I Z as a HIT
I T ' S1 × S1 (Dan Licata, 60 LOC)
I ...

TTT 2017: Cubical Type Theory January 15, 2017 - 36 / 39

Normal form of univalence

module nthmUniv where

import univalence

nthmUniv : (t : (A X : U) → Id U X A → equiv X A) (A : U)
(X : U) → isEquiv (Id U X A) (equiv X A) (t A X) = \(t : (A X : U)
→ (IdP (<!0> U) X A) → (Sigma (X → A) (λ(f : X → A) → (y : A)
→ Sigma (Sigma X (λ(x : X) → IdP (<!0> A) y (f x))) (λ(x : Sigma X
(λ(x : X) → IdP (<!0> A) y (f x))) → (y0 : Sigma X (λ(x0 : X) →
IdP (<!0> A) y (f x0))) → IdP (<!0> Sigma X (λ(x0 : X) → IdP (<!0>
A) y (f x0))) x y0)))) → λ(A x : U) → ...

It takes 8min to compute it, it is about 12MB and it takes 50 hours to
typecheck it!

TTT 2017: Cubical Type Theory January 15, 2017 - 37 / 39

Current and future work

I Normalization and decidability of typechecking (S. Huber’s PhD
thesis contains canonicity proof)

I Formalize correctness of the model (Orton/Pitts has formalized
large parts in Agda in a more general framework, and we are working
with M. Bickford to formalize the whole model in Nuprl)

I General formulation and semantics of higher inductive types
I Implement a new, or extend an existing, proof assistant with cubical

features (experimental implementation of cubical Agda by A.
Vezzosi)

TTT 2017: Cubical Type Theory January 15, 2017 - 38 / 39

Thank you for your attention!

TTT 2017: Cubical Type Theory January 15, 2017 - 39 / 39

