
Equations: a tool for dependent pattern-matching

Cyprien Mangin
cyprien.mangin@m4x.org

Matthieu Sozeau
matthieu.sozeau@inria.fr

Inria Paris & IRIF, Université Paris-Diderot

January 14, 2017

1



Outline

1 Setting and overview

2 Main features

3 Recent improvements

2



Outline

1 Setting and overview

2 Main features

3 Recent improvements

3



Setting

I CIC : dependent type theory + W-types.

I Type families.

I We only allow basic pattern-matching on W-types (eliminators).

I From a list of clauses, build a splitting tree.

I From the splitting tree, build a term in CIC.

4



Compilation of the splitting tree

Say we want to split on a variable (x : I~u).

1 Generalize the variable by introducing fresh indices ~v, a fresh
variable (y : I~v), and added equalities between ~u and ~v, and x
and y.

2 Eliminate the fresh variable y.

3 Simplify the equalities.

5



Outline

1 Setting and overview

2 Main features

3 Recent improvements

6



A few examples

I Simple function definition.

I Refinement (with clause)

I Well-founded recursion (by rec keyword)

7



Reasoning support: equations

I Automatic generation of equations for each leaf of the splitting
tree.

I Reduction of function calls without going through the reduction
itself.

I Sometimes, the function does not even compute definitionally.

8



Reasoning support: functional elimination

Equations will automatically generate a principle of functional
elimination.

I Useful to show properties about a function.

I No unnecessary cases, all the splitting and the logical reasoning
is already done.

9



Other tools

I depelim tactic, which reuses the splitting mechanism inherent
to Equations.

I Automatic derivation of various classes about inductive types:
I Decidable equality.
I Signature (pack a term in an inductive type with its indices).
I Well-founded subterm relationship (structural recursion without

the guard condition).
I Principle of no confusion (injection and disjointness of

constructors).

10



Outline

1 Setting and overview

2 Main features

3 Recent improvements

11



Local definition (where keyword)

I Similar to a let-in.

I Provide a definition through a splitting tree, as usual.

I Possible to combine it with well-founded recursion to obtain
nested or mutual recursion.

12



Less axioms

Proof irrelevance was used to prove the fixpoint lemmas about
well-founded recursion. We avoid it by proving it directly for the
accessibility relation.
Additionally, a lot of work about the axiom K...

13



From heterogeneous to homogeneous equalities

When we generalize a variable (x : I~u), we introduce equalities.
Before, we used heterogeneous equalities:

I Easy to manipulate (less dependency between equalities).

I Entails the use of the axiom K.

Now we use homogeneous equalities between telescopes.

I Have to be careful because each equality depends on the
previous one.

I The use of the rule K is targeted to a specific type.

14



Conclusion

Equations was already used succesfully for a few applications:

I Normalization of LF.

I Consistency of predicative System F.

I Reflexive tactic to decide equality of polynomials.

For now, the main focus is to polish the current features to allow a
first stable release soon.
Equations is available on GitHub 1 and OPAM.

1https://github.com/mattam82/coq-equations
15

https://github.com/mattam82/coq-equations

	Setting and overview
	Main features
	Recent improvements

