
Equations: a tool for dependent pattern-matching

Cyprien Mangin
IRIF, Univ. Paris Diderot

Paris, France
cyprien.mangin@m4x.org

Matthieu Sozeau
Inria Paris & IRIF, Univ. Paris Diderot

Paris, France
matthieu.sozeau@inria.fr

Abstract
EQUATIONS1 (Sozeau 2010) is a toolbox built as a plugin for
the COQ proof assistant which adds some capabilities for writing
dependently-typed programs. As a main feature, it is capable to
compile a high-level specification of a function to a pure COQ term.
The specification is given as a list of pattern-matching clauses, sim-
ilar to what is possible in Agda (Norell 2007) or Lean (de Moura
et al. 2015). These clauses can be arbitrarily dependent, and EQUA-
TIONS also enables the use of complex recursion schemes to define
recursive functions whose termination is not structural.

The compilation scheme used by EQUATIONS relies on the
work of Goguen et al. (Goguen et al. 2006) In essence, depen-
dent pattern-matching is compiled away by generalizing through
the use of equality the term being pattern-matched on, and the sim-
plification of the ensuing equalities. In addition to this, EQUATIONS
derives the propositional equalities between both sides of a pattern-
matching clause, allowing the user to simplify a function without
repeating the simplification steps and abstracting from the actual
encoding of the function (e.g. in which order pattern-matching is
performed, or how simplification of equalities is done).

EQUATIONS also derives automatically a functional elimination
scheme, which lets the user reason directly on the final branches of
the function, instead of doing the usual induction on its arguments.
This allows for much shorter and natural proofs when establishing
some fact about a function, since the user does not have to do again
the splitting, or any reasoning that intervened during the dependent
pattern-matching itself. The corresponding proof-terms are also
much smaller.

Finally, EQUATIONS comes with some tools to reason about
dependently-typed terms, even if they are not defined with EQUA-
TIONS. For instance, the tactic depelim is a more complete re-
placement for the built-in tactic dependent destruction when
it comes to eliminating dependent terms. EQUATIONS also allows
to derive several utilities about inductive families, for instance: de-
cidable equality, a signature to pack a term in an inductive type with
its indices, a well-founded subterm relationship on the elements of
the inductive type (for computational inductive families, it mimicks
the implicit subterm relationship used by the syntactic guardedness
criterion) and a principle of ”no confusion” (McBride 2000) which
subsumes injectivity and disjointness of its constructors.

Keywords COQ, dependent pattern-matching, proof assistants
The aim of this presentation is to first introduce what EQUA-

TIONS is and underline its main features, as well as give some small
examples to give a grasp of the syntax itself, and the use of the ad-
ditional features such as functional elimination or dependent elim-
ination of a variable.

Then we will talk about the recent improvements that have been
brought to EQUATIONS. These are mainly:

1 http://github.com/mattam82/Coq-Equations

• the transition from a translation based on heterogeneous equali-
ties, as it was the case in the original work by Goguen et al., to a
translated built on a homogeneous equality between telescopes
of terms, as was explored by J. Cockx (Cockx et al. 2014);
• the extension of the syntax of functions defined with EQUA-

TIONS to include a where keyword, which essentially acts as a
let-in. This allows the definition of nested recursive functions
using logical recursion, for instance;
• some work has been done to reduce the use of axioms in gen-

eral, such as propositional irrelevance or a more precise decid-
able equality.

Now we will explain in more details these improvements and
how they can be used.

From heterogeneous to homogeneous equalities
In a first iteration, EQUATIONS was basically a textbook implemen-
tation of the work of Goguen et al., using heterogeneous equality as
a way to express identity between indices whose type involve other
indices. Heterogeneous equality, also known as John Major equal-
ity (McBride 2000), is useful because it is a simple way to convey
what we need without worrying about the type of these indices. It
has, however, the undesirable drawback of forcing the use of an ax-
iom equvalent to the axiom K when we need to simplify such an
equality.

This is fine in some settings, but EQUATIONS also aims to be
used in the context of the recent field of homotopy type theory
(The Univalent Foundations Program 2013), which often admits
the univalence axiom, incompatible with the axiom K. Axiom K
is still useful or even necessary to have in some cases, at least on
some types. Therefore, we need a finer-grained control of its use,
instead of requiring it globally. The use of heterogeneous equalities
would indeed simply require K on Type, which is exactly what we
want to avoid.

One solution is to replace a list of heterogeneous equalities,
where the type of the sides of an equality might depend on the
previous one, by one single equality between telescopes of the
same type, which are simply nested dependent pairs. We can then
simplify this homogeneous equality in a similar way, and only
require the use of the axiom K on some of the elements of these
telescopes, instead of globally.

Currently, this is implemented, and while the heterogeneous
equalities are still what is used by default – pattern-matching is
more expressive if one does not mind the axiom K – the user can
switch easily to the version which uses homogeneous equality and
specific instances of K instead.

Using where

A less heavy change is the addition of the where keyword to the
syntax of EQUATIONS. In some cases, we need some kind of nested

http://github.com/mattam82/Coq-Equations


dependent pattern-matching. This is exactly what where allows to
do by providing a let-in which will capture the local context.

A simple example is working with rose trees, which have the
following definition:

Variable (A : Set).
Inductive rose_tree : Set :=
| leaf : A → rose_tree
| node : list rose_tree → rose_tree.

The more natural way to express what happens in the node case is
to use nested recursion, which the where keyword allows to use.
For instance, if we want to write a function which returns a list of
elements inside the rose tree:

Equations elements (t : rose_tree) : list A :=
elements t by rec t (MR lt size) :=
elements (leaf a) := cons a nil;
elements (node l) := aux l _

where aux (x : list rose_tree)
(H : list_size size x < size (node l)) : list A :=

aux x H by rec x (MR lt (list_size size)) :=
aux nil _ := nil;
aux (cons t x) H := elements t ++ aux x _.

Notice that we explicitely use a well-founded relation on rose
trees and on lists of rose trees to define this function, through the
use of the by rec clause. For instance, elements is defined by
recursion on its argument t, which will be decreasing according
to the relation MR lt size, the relation induced by the size of a
tree.

We will need to fulfill some proofs here to justify the recursion,
but this is easily done thanks to the obligations mechanism of COQ.

Note that even in this case, EQUATIONS is still able to derive the
usual lemmas and principles about this function, like the equations
between the left- and right-hand sides of the clauses and a func-
tional elimination principle. The extracted code for this function
simply does nested recursion and removes the H argument of aux

which is only used to justify recursive calls. It is also easy to use
functional elimination to define an additional aux definition without
this assumption and show its equivalence with the original one.

Towards less axioms
The axiom K is not the only axiom which is useful to reason about
dependent pattern-matching combined with functional elimination
and other features of EQUATIONS. We also work on reducing or
controlling better the use of these other axioms.

For example, we need some kind of proof irrelevance to prove
the fixpoint lemmas about function defined using a general recursor
– and not the structural recursion. Instead of admitting it globally,
we just prove it for the inductive type representing accessibility
for a relation in COQ, and work from there. This only requires
functional extensionality, which is not only unavoidable, but also
more widely accepted and used than propositional irrelevance.

Another example is the use of decidable equality to prove
uniqueness of identity proofs (UIP/K) on some type. To construct
these UIP proofs we actually only rely on pointed decidable equal-
ity, which is a slight restriction over decidable equality on the whole
type.

A small example
To have another grasp of the syntax of EQUATIONS, here is a
short example that demonstrates the basic use of EQUATIONS and
functional elimination.

Inductive vect : nat → Set :=
| nil : vect O
| cons : forall (n : nat), A → vect n → vect (S n).

Equations dest {n : nat} (v : vect (S n)) :
(A * vect n) :=

dest (cons x v) := (x, v).

Goal forall (n : nat) (v : vect (S n)),
cons (fst (dest v)) (snd (dest v)) = v.

Proof.
intros.
funelim (dest v).
reflexivity.

Qed.

The use of funelim will automatically discard the impossible nil

case, just like we did not need to provide anything for this branch
while defining the function dest. Of course, on such a simple exam-
ple, it would be still very easy to do in pure COQ, but EQUATIONS
will work for arbitrarily deep and complicated definitions.

Applications and future work
EQUATIONS has been successfully used in some developments.

We used it to prove the consistency of Leivant’s Predicative Sys-
tem F through hereditary substitution (Mangin and Sozeau 2015).
It allowed to write in a very natural way a constructive normaliza-
tion function for this language. The examples provided with EQUA-
TIONS also include a proof of normalization for LF, and an example
reflexive tactic to decide equality of polynomials by R. Bocquet. In
this formalization, originally a course project, the representation
of a polynomial is indexed by its number of free variables and a
boolean indicating if it is null. This was the shortest and arguably
the cleanest submission for this project.

EQUATIONS has of course more room for improvement. First of
all, the current features need more polish. At the time of the writing
of this abstract, EQUATIONS is released as version 0.9 on GitHub
and OPAM. We plan to release the first stable version shortly.

References
J. Cockx, D. Devriese, and F. Piessens. Pattern matching without k. SIG-

PLAN Not., 49(9):257–268, Aug. 2014.
L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The

Lean Theorem Prover (System Description), pages 378–388. Springer
International Publishing, Cham, 2015. ISBN 978-3-319-21401-6.

H. Goguen, C. McBride, and J. McKinna. Eliminating Dependent Pattern
Matching. In K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, editors,
Essays Dedicated to Joseph A. Goguen, volume 4060 of Lecture Notes in
Computer Science, pages 521–540. Springer, 2006. ISBN 3-540-35462-
X.

C. Mangin and M. Sozeau. Equations for Hereditary Substitution in
Leivant’s Predicative System F: A Case Study. In Proceedings Tenth
International Workshop on Logical Frameworks and Meta Languages:
Theory and Practice, volume 185 of EPTCS, May 2015. LFMTP’15.

C. McBride. Elimination with a motive. In International Workshop on
Types for Proofs and Programs, pages 197–216. Springer, 2000.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,
September 2007.

M. Sozeau. Equations: A dependent pattern-matching compiler. In First In-
ternational Conference on Interactive Theorem Proving. Springer, July
2010.

The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations for Mathematics. Institute for Advanced Study, 2013.

http://doi.acm.org/10.1145/2692915.2628139
http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://www.cs.st-andrews.ac.uk/~james/RESEARCH/pattern-elimination-final.pdf
http://www.cs.st-andrews.ac.uk/~james/RESEARCH/pattern-elimination-final.pdf
http://www.irif.univ-paris-diderot.fr/~sozeau/research/publications/Equations_for_Hereditary_Substitution_in_Leivants_Predicative_System_F:_a_case_study.pdf
http://www.irif.univ-paris-diderot.fr/~sozeau/research/publications/Equations_for_Hereditary_Substitution_in_Leivants_Predicative_System_F:_a_case_study.pdf
http://www.cs.chalmers.se/~ulfn/papers/thesis.html
http://www.cs.chalmers.se/~ulfn/papers/thesis.html
http://www.irif.univ-paris-diderot.fr/~sozeau/research/publications/Equations:_A_Dependent_Pattern-Matching_Compiler.pdf
http://homotopytypetheory.org/book
http://homotopytypetheory.org/book

