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Everest a verified HTTPS stack,
miTLS a verified implementation of the TLS protocol
HaCL* verified cryptographic primitives
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Application-driven development

Everest a verified HTTPS stack,
miTLS a verified implementation of the TLS protocol
HaCL* verified cryptographic primitives

▶ Extraction to OCaml, F# and C
▶ OCaml, F# : used for compiler, automatic memory

management (GC)
▶ C : used for low-level code, explicit memory management
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Effectful code - Computation types

let monotonic_counter () =
let r = alloc 0 in
let incr () = r ≔ !r + 1 in
let get () = !r in
let result : t = incr, get in result

Tot total (effect-free) functions
Dv partial functions
St stateful computations
Ex functions throwing exceptions
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Specifying code - pre/post-conditions

val fibonacci : n:ℤ → Dv ℤ

let rec fibonacci n =
if n = 0 ‖ n = 1 then 1
else fibonacci (n-1) + fibonacci (n-2)

▶ requires precondition
for Pure ⇝ precondition : Type0

▶ ensures postcondition
for Pure ⇝ postcondition : α → Type0



4/21

Specifying code - pre/post-conditions

val fibonacci : n:ℤ → Pure ℤ
(requires _)
(ensures _)

let rec fibonacci n =
if n = 0 ‖ n = 1 then 1
else fibonacci (n-1) + fibonacci (n-2)

▶ requires precondition
for Pure ⇝ precondition : Type0

▶ ensures postcondition
for Pure ⇝ postcondition : α → Type0



4/21

Specifying code - pre/post-conditions

val fibonacci : n:ℤ → Pure ℤ
(requires (n ≥ 0))
(ensures (λ n → n ≥ 1))

let rec fibonacci n =
if n = 0 ‖ n = 1 then 1
else fibonacci (n-1) + fibonacci (n-2)

▶ requires precondition
for Pure ⇝ precondition : Type0

▶ ensures postcondition
for Pure ⇝ postcondition : α → Type0



4/21

Specifying code - pre/post-conditions

val fibonacci : n:ℤ → Pure ℤ
(requires (n ≥ 0))
(ensures (λ n → n ≥ 1))

let rec fibonacci n =
if n = 0 ‖ n = 1 then 1
else fibonacci (n-1) + fibonacci (n-2)

▶ requires precondition
for Pure ⇝ precondition : Type0

▶ ensures postcondition
for Pure ⇝ postcondition : α → Type0



5/21

Specifying stateful code

val incr : r:ref ℤ → St ℤ

let incr r =
let x = !r in r ≔ x+1 ; x

▶ requires precondition
for ST ⇝ precondition : heap → Type0

▶ ensures postcondition
for ST ⇝ postcondition : heap → α → heap → Type0
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Specifying stateful code

val incr : r:ref ℤ → ST ℤ
(requires (λ h0 →⊤ ))
(ensures (λ h0 x h1 → modifies (only r) h0 h1

∧ sel h1 r == x + 1
∧ x = sel h0 r))

let incr r =
let x = !r in r ≔ x+1 ; x

▶ requires precondition
for ST ⇝ precondition : heap → Type0

▶ ensures postcondition
for ST ⇝ postcondition : heap → α → heap → Type0
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F∗ by examples

The Pure core of F∗

Extending F∗with monadic effects
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A Dependent Type Theory

The core of F∗ is a DTT featuring :
▶ Dependent products and sums

λ x → e : (x:a) → b

(| t, p |) : (x:a & b)

▶ a hierarchy of predicative universes
Type u#n : Type u#(n+1)

▶ Inductives datatypes & dependent pattern-matching

type vector (a:Type) : ℕ → Type =
| NilV : vector a 0
| ConsV : (n:ℕ) → a → vector a n → vector a (n+1)
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An Extensional Type Theory

Equality reflection & conversion :

Γ ⊢ a == bEq-Refl
Γ ⊢ a ∼= b

Γ ⊢ t : a Γ ⊢ a ∼= b
Conv

Γ ⊢ t : b

provable equality coincides with definitional equality
a == b a ∼= b

▶ checking whether two terms are equal is undecidable
▶ As a consequence typechecking is undecidable
▶ The F∗ typechecker relies on the SMT to discharge these

equalities
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Refinement types

a.k.a. subset types :

let ℕ = z:ℤ{z > 0}

▶ Introduced by
Γ ⊢ t : a Γ ⊢ witness : p[t/x]

Γ ⊢ t : (x:a{p})

▶ Eliminated by subtyping

Γ ⊢ (x:a{p}) <: a
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The logical core

Refinement enables defining a squash operation :

let squash (p:Type) : Type0 = x:unit{p}

let prop = a:Type0 {∀ (x:a). x === ()}

The logical operations are the squashed version of the relevant
ones :

let ( ∧ ) (p q : Type) : Type0 = squash (p × q)
let (⟹) (p q : Type) : Type0 = squash (p → q)

let ( ∀ ) (a:Type) (p:a → Type0 ) = squash (x:a → p x)
let ( ∃ ) (a:Type) (p:a → Type0 ) = squash (x:a & p x)
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Refining computation types

Hoare triples

Γ ⊢ {pre} e {λ (x:a) → post x}

are classified in F∗ by the computation type

Γ ⊢ e : Pure a pre post

which can be recast in the primitive predicate-transformer indexed

Γ ⊢ e : PURE a wp

with

val wp : (a → Type0 ) → Type0
let wp (p : a → Type0 ) = pre ∧ (∀ (x:a). post x⟹p x)
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Guard condition
A semantic termination criterion is imposed on fixpoints :

let rec fibonacci n =
if n = 0 ‖ n = 1 then 1
else fibonacci (n-1) + fibonacci (n-2)

Inside the recursive definition :

fibonacci : n0:ℕ{n0 ≪ n} → ℕ

Generates the verification condition

(n-1) ≪ n ∧ (n-2) ≪ n

▶ n ≪ n+1 for positive integer n
▶ subterm ordering e.g. xs ≪ ConsV x xs

▶ lexicographic ordering %[x1 ; y1 ; z1] ≪ %[x2 ; y2 ; z2]
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Monadic effects in F*

We build F∗ effects on top of a monadic specification

let mem : Type = ℤ
type st (a:Type) = mem → Tot (a × mem)

total new_effect {
STATE : a:Type → Effect with
repr = st ;
return = λ (a:Type) (x:a) (m:mem) → x, m ;
bind = λ (a b:Type) (f:st a) (g:a → st b) (m:mem) →

let z,m' = f m in g z m' ;
get = λ () (m:mem) → m, m;
put = λ (m0 m1 :mem) → (), m0

}

▶ This representation is a model usually kept abstract
▶ Revealed in specification for reasoning
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Stateful predicate transformer

let mem : Type = ℤ
type st_pre = mem → Type0
type st_post (a:Type) = a × mem → Type0
type st_wp (a:Type) = st_post a → st_pre

After unfolding and swapping arguments we have :

type st_wp (a:Type) = mem → (a × mem → Type0 ) → Type0
= mem → M (a × mem)

where M X = (X → Type0) → Type0

▶ The weakest-precondition calculus shares some structure with
the monadic presentation of the effect
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Dijkstra monads

In order to specify programs effects carries the structure of Dijkstra
monad, that is :

▶ A monad of weakest-precondition WP : Type → Type

let pure_wp a = (a → Type0 ) → Type0
let st_wp a = mem → (a × mem → Type0 ) → Type0

▶ a type constructor T : a:Type → WP a → Type

PURE : (a:Type) → pure_wp a → Type
STATE : (a:Type) → st_wp a → Type

▶ operations indexed by the monad WP
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Dijkstra monads - operations

The operations

val return : (a:Type) (x:a) → T a (return_wp x)
val bind : (a b:Type) →

wp1 :WP a → T a wp1 →
(wp2 :a → WP b) → (x:a → T b (wp2 x)) →
T b (bind_wp wp1 wp2 )

satisfy analogs of the monadic equations, for instance

let left_unit (a b:Type) (wp:a → WP b) (f:x:a → T b (wp x)) =
∀ (x:a). bind a b (return x) f == f x
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Deriving the full STATE effect

let st_wp a = mem → (a × mem → Type0 ) → Type0

STATE (a:Type) (wp:st_wp a) =
m0 :mem → PURE (a × mem) (wp m0 <: pure_wp (a × mem))

We can elaborate the Dijkstra monad for state on top of PURE !

This is not an isolated case :

▶ We define our effects in DM, a simply typed language
▶ and generate through DM4Free a djiksta monad in F∗
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DM4Free : What do we get ?

▶ an extensible mechanism for user defined effects such as
state, exceptions, continuations. . .

▶ a simple semantic, defined on top of the Pure core
▶ Compositionality through subeffecting

⇝ monad morphisms elaborate to lifts between effects
▶ reification enables extrinsic reasoning for effectful code

val STATE?.reify :
(unit → STATE a wp) → m0 :mem → GHOST (a × mem) (wp m0 )
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Ongoing & Future work

▶ Extending DM4Free to inductive types/algebraic effects
⇝ Not straightforward, there is no sum of the IO monad with
M X = (X → Type0) → Type0 in Set

▶ A categorical account of Dijkstra monads closer to our use
▶ more generally we strive for a verified metatheory and a

(self ?)-certified compiler

Thank you !
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Semantic of PURE

With DM4Free, the definable computation types are defined on top
of PURE.

In order to define a realizability model à la NuPRL, we need to give
a semantic to PURE, for instance :

Jx:a → PURE b wpK = ∩
p:b→P x : {a |wp p} → {y : b |p y}

Other obstacles on the way of defining a model :
▶ ≪ is well-founded
▶ subtyping is coherent
▶ status of non-terminating functions (does not hinder the logic)
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DM4Free, Graphically
▶ Two syntactic transfomation from DM to F∗
▶ e∗ for specification, e for implementation
▶ Related through typing (logical relation)
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