F^{*}, from practice to theory

Kenji Maillard, Ens-Inria Paris

EUTYPES 2018, Nijmegen

Application-driven development

Everest a verified HTTPS stack, miTLS a verified implementation of the TLS protocol HaCL* verified cryptographic primitives

Application-driven development

Everest a verified HTTPS stack, miTLS a verified implementation of the TLS protocol HaCL* verified cryptographic primitives

- Extraction to OCaml, F\# and C
- OCaml, F\# : used for compiler, automatic memory management (GC)
- C : used for low-level code, explicit memory management

Effectful code - Computation types

```
let monotonic_counter () =
    let \(\mathrm{r}=\mathrm{alloc} 0\) in
    let incr () = r:= ! \(\mathrm{r}+1\) in
    let get () = ! r in
    let result : t = incr, get in result
```


Effectful code - Computation types

```
type t = (unit }->\mathrm{ St unit) }\times(\mathrm{ unit }->\mathrm{ St Z )
val monotonic_counter : unit }->\mathrm{ St t
let monotonic_counter () =
    let r = alloc 0 in
    let incr () = r:= ! r + 1 <: St unit in
    let get () = !r <: St \mathbb{Z in}
    let result : t = incr, get in result
```


Effectful code - Computation types

```
type t = (unit }->\mathrm{ St unit) }\times(\mathrm{ (unit }->\mathrm{ St Z )
val monotonic_counter : unit }->\mathrm{ St t
let monotonic_counter () =
    let r = alloc 0 in
    let incr () = r:= ! r + 1 <: St unit in
    let get () = !r <: St \mathbb{Z in}
    let result : t = incr, get in result
```

Tot total (effect-free) functions
Dv partial functions
St stateful computations
Ex functions throwing exceptions

Specifying code - pre/post-conditions

val fibonacci : $\mathrm{n}: \mathbb{Z} \rightarrow \mathrm{Dv} \mathbb{Z}$

let rec fibonacci $\mathrm{n}=$
if $n=0 \| n=1$ then 1
else fibonacci ($\mathrm{n}-1$) + fibonacci ($\mathrm{n}-2$)

Specifying code - pre/post-conditions

```
val fibonacci : n:\mathbb{Z }
    (requires _)
    (ensures _)
let rec fibonacci n =
    if n = 0 || n = 1 then 1
    else fibonacci (n-1) + fibonacci (n-2)
```


Specifying code - pre/post-conditions

val fibonacci : n: $\mathbb{Z} \rightarrow$ Pure \mathbb{Z}
(requires $(\mathrm{n} \geq 0)$)
(ensures $(\lambda \cap \rightarrow n \geq 1)$)
let rec fibonacci $\mathrm{n}=$
if $n=0 \| n=1$ then 1
else fibonacci ($\mathrm{n}-1$) + fibonacci ($\mathrm{n}-2$)

Specifying code - pre/post-conditions

val fibonacci : n: $\mathbb{Z} \rightarrow$ Pure \mathbb{Z}
(requires $(\mathrm{n} \geq 0)$)
(ensures $(\lambda \cap \rightarrow n \geq 1)$)
let rec fibonacci $\mathrm{n}=$
if $\mathrm{n}=0$ || $\mathrm{n}=1$ then 1
else fibonacci ($\mathrm{n}-1$) + fibonacci ($\mathrm{n}-2$)

- requires precondition for Pure \rightsquigarrow precondition : Type ${ }_{0}$
- ensures postcondition for Pure \rightsquigarrow postcondition $: ~ a ~ T y p e e_{0}$

Specifying stateful code

val incr : r:ref $\mathbb{Z} \rightarrow$ St \mathbb{Z}
let incr r =
let $\mathrm{x}=$! r in $\mathrm{r}:=\mathrm{x}+1$; x

Specifying stateful code

```
val incr : r:ref \mathbb{Z }
    (requires _)
    (ensures _)
let incr r =
    let x = !r in r := x+1 ; x
```


Specifying stateful code

```
val incr : г:ref \(\mathbb{Z} \rightarrow\) ST \(\mathbb{Z}\)
    (requires \(\left.\left(\lambda h_{0} \rightarrow\right)_{-}\right)\))
    (ensures \(\left(\lambda h_{0} \times h_{1} \rightarrow\right.\) _ ))
let incr r =
    let \(x=\) ! r in \(\mathrm{r}:=\mathrm{x}+1\); x
```

- requires precondition for ST \rightsquigarrow precondition : heap \rightarrow Type $_{0}$
- ensures postcondition for ST \rightsquigarrow postcondition : heap $\rightarrow \mathrm{a} \rightarrow$ heap \rightarrow Type $_{0}$

Specifying stateful code

val incr : r: ref $\mathbb{Z} \rightarrow$ ST \mathbb{Z}
(requires $\left(\lambda h_{0} \rightarrow T\right.$))
(ensures ($\lambda h_{0} \times h_{1} \rightarrow$ modifies (only r) $h_{0} h_{1}$

$$
\begin{aligned}
& \wedge \operatorname{sel} h_{1} r=x+1 \\
& \left.\left.\wedge x=\operatorname{sel} h_{0} r\right)\right)
\end{aligned}
$$

let incr r =
let $x=$! r in $\mathrm{r}:=\mathrm{x}+1$; x

- requires precondition for ST \rightsquigarrow precondition : heap \rightarrow Type $_{0}$
- ensures postcondition for ST \rightsquigarrow postcondition : heap $\rightarrow \mathrm{a} \rightarrow$ heap \rightarrow Type $_{0}$

F* by examples

The Pure core of F^{*}

Extending F^{*} with monadic effects

A Dependent Type Theory

The core of F^{*} is a DTT featuring :

- Dependent products and sums

$$
\begin{aligned}
\lambda x \rightarrow e & :(x: a) \rightarrow b \\
(|t, p|) & :(x: a \& b)
\end{aligned}
$$

A Dependent Type Theory

The core of F^{*} is a DTT featuring :

- Dependent products and sums

$$
\begin{aligned}
\lambda x \rightarrow e & :(x: a) \rightarrow b \\
(|t, p|) & :(x: a \& b)
\end{aligned}
$$

- a hierarchy of predicative universes
Type u\#n : Type u\#(n+1)

A Dependent Type Theory

The core of F^{*} is a DTT featuring :

- Dependent products and sums

$$
\begin{aligned}
\lambda x \rightarrow e & :(x: a) \rightarrow b \\
(|t, p|) & :(x: a \& b)
\end{aligned}
$$

- a hierarchy of predicative universes
Type u\#n : Type u\#(n+1)
- Inductives datatypes \& dependent pattern-matching

```
type vector (a:Type) : N -> Type =
    | NilV : vector a 0
    | ConsV : (n:N ) }->\textrm{a}->\mathrm{ vector a n m vector a ( }\textrm{n}+1
```


An Extensional Type Theory

Equality reflection \& conversion :
Eq-RefL $\frac{\Gamma \vdash \mathrm{a}=\mathrm{b}}{\Gamma \vdash \mathrm{a} \cong \mathrm{b}} \quad \operatorname{Conv} \frac{\Gamma \vdash \mathrm{t}: \mathrm{a} \quad \Gamma \vdash \mathrm{a} \cong \mathrm{b}}{\Gamma \vdash t: b}$

An Extensional Type Theory

Equality reflection \& conversion :

$$
\mathrm{Eq}-\mathrm{REFL} \frac{\Gamma \vdash \mathrm{a}=\mathrm{b}}{\Gamma \vdash \mathrm{a} \cong \mathrm{~b}}
$$

$\operatorname{Conv} \frac{\Gamma \vdash \mathrm{t}: \mathrm{a} \quad \Gamma \vdash \mathrm{a} \cong \mathrm{b}}{\Gamma \vdash t: b}$
provable equality
coincides with
definitional equality

$$
\mathrm{a}=\mathrm{b}
$$

$$
\mathrm{a} \cong \mathrm{~b}
$$

- checking whether two terms are equal is undecidable
- As a consequence typechecking is undecidable
- The F^{*} typechecker relies on the SMT to discharge these equalities

Refinement types

a.k.a. subset types :

$$
\text { let } \mathbb{N}=z: \mathbb{Z}\{z>0\}
$$

- Introduced by

$$
\frac{\Gamma \vdash t: a \quad \Gamma \vdash \text { witness }: \mathrm{p}[\mathrm{t} / \mathrm{x}]}{\Gamma \vdash \mathrm{t}:(\mathrm{x}: \mathrm{a}\{p\})}
$$

- Eliminated by subtyping

$$
\Gamma \vdash(x: a\{p\})<: \text { a }
$$

The logical core

Refinement enables defining a squash operation :

$$
\begin{aligned}
& \text { let squash }(p: \text { Type }): \text { Type }_{9}=x: u n i t\{p\} \\
& \text { let prop }=a: \operatorname{Type}_{0}\{\forall(x: a) \cdot x==()\}
\end{aligned}
$$

The logical core

Refinement enables defining a squash operation :

$$
\begin{aligned}
& \text { let squash (p:Type) : Type }=x: u n i t\{p\} \\
& \text { let prop }=a: \operatorname{Type}_{0}\{\forall(x: a) \cdot x===()\}
\end{aligned}
$$

The logical operations are the squashed version of the relevant ones:

```
let ( ^ ) (p q : Type) : Type }\mp@subsup{0}{0}{= squash ( p x q)
let (\Longrightarrow) (p q : Type) : Type }\mp@subsup{\mp@code{0}}{= squash ( p -> q)}{
let ( \forall ) (a:Type) (p:a -> Type . ) = squash (x:a -> p x)
let ( \exists ) (a:Type) (p:a -> Type ) = squash (x:a & p x)
```


Refining computation types

Hoare triples

$$
\Gamma \vdash\{\text { pre }\} \text { e }\{\lambda(x: a) \rightarrow \text { post } x\}
$$

are classified in F^{*} by the computation type

$$
\Gamma \vdash \text { e : Pure a pre post }
$$

Refining computation types

Hoare triples

$$
\Gamma \vdash\{\text { pre }\} \text { e }\{\lambda(x: a) \rightarrow \text { post } x\}
$$

are classified in F^{*} by the computation type

$$
\Gamma \vdash \text { e : Pure a pre post }
$$

which can be recast in the primitive predicate-transformer indexed

$$
\Gamma \vdash \mathrm{e}: \text { PURE a wp }
$$

with

$$
\begin{aligned}
& \text { val wp : }\left(\mathrm{a} \rightarrow \text { Type }_{\theta}\right) \rightarrow \text { Type }_{\theta} \\
& \text { let wp }\left(p: \mathrm{a} \rightarrow \text { Type }_{\theta}\right)=\text { pre } \wedge(\forall(x: a) \text {. post } x \Longrightarrow \mathrm{p})
\end{aligned}
$$

Guard condition

A semantic termination criterion is imposed on fixpoints :

```
let rec fibonacci \(n=\)
    if \(n=0 \| n=1\) then 1
    else fibonacci ( \(\mathrm{n}-1\) ) + fibonacci ( \(\mathrm{n}-2\) )
```


Guard condition

A semantic termination criterion is imposed on fixpoints :

```
let rec fibonacci n =
    if n = 0 | n = 1 then 1
    else fibonacci (n-1) + fibonacci (n-2)
```

Inside the recursive definition :

$$
\text { fibonacci }: n_{0}: \mathbb{N}\left\{n_{0} \ll n\right\} \rightarrow \mathbb{N}
$$

Guard condition

A semantic termination criterion is imposed on fixpoints :

```
let rec fibonacci n =
    if n = 0 | n = 1 then 1
    else fibonacci (n-1) + fibonacci (n-2)
```

Inside the recursive definition :

$$
\text { fibonacci }: n_{0}: \mathbb{N}\left\{n_{0} \ll n\right\} \rightarrow \mathbb{N}
$$

Generates the verification condition

$$
(n-1) \ll n \wedge(n-2) \ll n
$$

Guard condition

A semantic termination criterion is imposed on fixpoints :

```
let rec fibonacci n =
    if n = 0 | n = 1 then 1
    else fibonacci (n-1) + fibonacci (n-2)
```

Inside the recursive definition :

$$
\text { fibonacci }: n_{0}: \mathbb{N}\left\{n_{0} \ll n\right\} \rightarrow \mathbb{N}
$$

Generates the verification condition

$$
(n-1) \ll n \wedge(n-2) \ll n
$$

- $\mathrm{n} \ll \mathrm{n}+1$ for positive integer n
- subterm ordering e.g. xs \ll ConsV x xs
- lexicographic ordering $\%\left[x_{1} ; y_{1} ; z_{1}\right] \ll \%\left[x_{2} ; y_{2} ; z_{2}\right]$

F* by examples

The Pure core of F^{*}

Extending F^{*} with monadic effects

F* by examples

The Pure core of F^{*}

Extending F^{*} with monadic effects

Monadic effects in F^{*}

We build F^{*} effects on top of a monadic specification
let mem : Type $=\mathbb{Z}$ type st (a:Type) $=$ mem \rightarrow Tot (a \times mem)

Monadic effects in F^{*}

We build F^{*} effects on top of a monadic specification
let mem : Type $=\mathbb{Z}$ type st (a:Type) $=$ mem \rightarrow Tot (a \times mem)

```
total new_effect {
    STATE : a:Type }->\mathrm{ Effect with
    repr = st ;
    return = \lambda (a:Type) (x:a) (m:mem) }->\textrm{x, m ;
    bind = \lambda (a b:Type) (f:st a) (g:a -> st b) (m:mem) }
        let z,m' = f m in g z m' ;
    get = \lambda () (m:mem) }->\textrm{m},\textrm{m}
    put = \lambda (m}\mp@subsup{m}{0}{}\mp@subsup{m}{1}{}:\mathrm{ mem ) }->(),\mp@subsup{m}{0}{
}
```


Monadic effects in F^{*}

We build F^{*} effects on top of a monadic specification

```
let mem : Type = \mathbb{Z}
type st (a:Type) = mem }->\mathrm{ Tot (a x mem)
```

```
total new_effect \{
    STATE : a:Type \(\rightarrow\) Effect with
    repr = st ;
    return = \(\lambda\) (a:Type) (x:a) (m:mem) \(\rightarrow x, m ;\)
    bind \(=\lambda\) (a b:Type) (f:st a) (g:a \(\rightarrow\) st b) (m:mem) \(\rightarrow\)
        let \(z, m^{\prime}=f\) min g z m' ;
    get \(=\lambda()(m: m e m) \rightarrow m, m ;\)
    put \(=\lambda\left(m_{0} m_{1}:\right.\) mem \() \rightarrow(), m_{0}\)
\}
```

- This representation is a model usually kept abstract
- Revealed in specification for reasoning

Stateful predicate transformer

let mem : Type $=\mathbb{Z}$ type st_pre $=$ mem \rightarrow Type $_{0}$
type st_post $(a:$ Type $)=a \times$ mem \rightarrow Type $_{0}$
type st_wp (a:Type) = st_post a \rightarrow st_pre

Stateful predicate transformer

let mem : Type $=\mathbb{Z}$ type st_pre $=$ mem \rightarrow Type $_{6}$
type st_post (a:Type) = a \times mem \rightarrow Type $_{0}$
type st_wp (a:Type) = st_post a \rightarrow st_pre

After unfolding and swapping arguments we have :

$$
\begin{aligned}
\text { type st_wp }(\mathrm{a}: \text { Type }) & =\text { mem } \rightarrow\left(\mathrm{a} \times \text { mem } \rightarrow \text { Type }{ }_{0}\right) \rightarrow \text { Type }_{0} \\
& =\text { mem } \rightarrow M(\mathrm{a} \times \text { mem })
\end{aligned} \quad \begin{aligned}
& \text { where } M X=\left(X \rightarrow \text { Type }_{0}\right) \rightarrow \text { Type }_{0}
\end{aligned}
$$

Stateful predicate transformer

let mem : Type $=\mathbb{Z}$
type st_pre $=$ mem \rightarrow Type $_{6}$
type st_post (a:Type) = a \times mem \rightarrow Type $_{0}$
type st_wp (a:Type) = st_post a \rightarrow st_pre

After unfolding and swapping arguments we have :

$$
\begin{aligned}
\text { type st_wp }(\mathrm{a}: \text { Type }) & =\text { mem } \rightarrow\left(\mathrm{a} \times \text { mem } \rightarrow \text { Type }{ }_{0}\right) \rightarrow \text { Type }_{0} \\
& =\text { mem } \rightarrow M(\mathrm{a} \times \text { mem })
\end{aligned} \quad \begin{aligned}
\text { where } M X=\left(X \rightarrow \text { Type }_{0}\right) \rightarrow \text { Type }_{0}
\end{aligned}
$$

- The weakest-precondition calculus shares some structure with the monadic presentation of the effect

Dijkstra monads

In order to specify programs effects carries the structure of Dijkstra monad, that is :

Dijkstra monads

In order to specify programs effects carries the structure of Dijkstra monad, that is :

- A monad of weakest-precondition WP : Type \rightarrow Type

$$
\begin{aligned}
& \text { let pure_wp a }=\left(a \rightarrow \text { Type }_{\theta}\right) \rightarrow \text { Type }_{6} \\
& \text { let st_wp } a=\text { mem } \rightarrow\left(a \times \text { mem } \rightarrow \text { Type }_{9}\right) \rightarrow \text { Type }_{\theta}
\end{aligned}
$$

Dijkstra monads

In order to specify programs effects carries the structure of Dijkstra monad, that is :

- A monad of weakest-precondition WP : Type \rightarrow Type

$$
\begin{aligned}
& \text { let pure_wp a }=\left(a \rightarrow \text { Type }_{9}\right) \rightarrow \text { Type }_{\theta} \\
& \text { let } s t _w p \text { mem } \rightarrow\left(a \times \text { mem } \rightarrow \text { Type }_{\theta}\right) \rightarrow \text { Type }_{\theta}
\end{aligned}
$$

- a type constructor T : a:Type \rightarrow WP a \rightarrow Type

$$
\begin{aligned}
& \text { PURE : (a:Type) } \rightarrow \text { pure_wp a } \rightarrow \text { Type } \\
& \text { STATE : (a:Type) } \rightarrow \text { st_wp a } \rightarrow \text { Type }
\end{aligned}
$$

Dijkstra monads

In order to specify programs effects carries the structure of Dijkstra monad, that is :

- A monad of weakest-precondition WP : Type \rightarrow Type

$$
\begin{aligned}
& \text { let pure_wp a }=\left(a \rightarrow \text { Type }_{\theta}\right) \rightarrow \text { Type }_{6} \\
& \text { let st_wp } a=\text { mem } \rightarrow\left(a \times \text { mem } \rightarrow \text { Type }_{9}\right) \rightarrow \text { Type }_{\theta}
\end{aligned}
$$

- a type constructor T : a:Type \rightarrow WP a \rightarrow Type

$$
\begin{aligned}
& \text { PURE : (a:Type) } \rightarrow \text { pure_wp a } \rightarrow \text { Type } \\
& \text { STATE : }(a: \text { Type) } \rightarrow \text { st_wp a } \rightarrow \text { Type }
\end{aligned}
$$

- operations indexed by the monad WP

Dijkstra monads - operations

The operations

$$
\begin{aligned}
& \text { val return : (a:Type) (x:a) } \rightarrow \text { T a (return_wp x) } \\
& \text { val bind : (a b:Type) } \rightarrow \\
& \mathrm{wp}_{1}: \mathrm{WP} \text { a } \rightarrow \mathrm{T} \text { a } \mathrm{wp}_{1} \rightarrow \\
& \left(w p_{2}: a \rightarrow W P b\right) \rightarrow\left(x: a \rightarrow T \text { b }\left(w p_{2} x\right)\right) \rightarrow \\
& \text { T b (bind_wp }{w p_{1}} \quad{w p_{2}} \text {) }
\end{aligned}
$$

satisfy analogs of the monadic equations, for instance
let left_unit (a b:Type) (wp:a \rightarrow WP b) (f:x:a \rightarrow T b (wp $x)$) $=$ $\forall(x: a)$. bind $a b(r e t u r n x) f==f x$

Deriving the full STATE effect

let st_wp $a=$ mem $\rightarrow\left(a \times\right.$ mem \rightarrow Type $\left._{0}\right) \rightarrow$ Type $_{0}$
STATE (a:Type) (wp:st_wp a) = $m_{0}:$ mem \rightarrow PURE (a \times mem) $\left(w p m_{0}<:\right.$ pure_wp (a \times mem))

We can elaborate the Dijkstra monad for state on top of PURE!

Deriving the full STATE effect

let st_wp a $=$ mem $\rightarrow\left(\mathrm{a} \times \mathrm{mem} \rightarrow\right.$ Type $\left._{0}\right) \rightarrow$ Type $_{6}$
STATE (a:Type) (wp:st_wp a) = $m_{0}:$ mem \rightarrow PURE (a \times mem) (wp $m_{0}<:$ pure_wp (a \times mem))

We can elaborate the Dijkstra monad for state on top of PURE!

This is not an isolated case :

- We define our effects in DM, a simply typed language

Deriving the full STATE effect

let st_wp a $=$ mem $\rightarrow\left(\mathrm{a} \times\right.$ mem \rightarrow Type $\left._{0}\right) \rightarrow$ Type $_{6}$
STATE (a:Type) (wp:st_wp a) = $m_{0}:$ mem \rightarrow PURE (a \times mem) (wp $m_{0}<:$ pure_wp (a \times mem))

We can elaborate the Dijkstra monad for state on top of PURE!

This is not an isolated case:

- We define our effects in DM, a simply typed language
- and generate through DM4Free a djiksta monad in F^{*}

DM4Free : What do we get ?

- an extensible mechanism for user defined effects such as state, exceptions, continuations...

DM4Free: What do we get ?

- an extensible mechanism for user defined effects such as state, exceptions, continuations...
- a simple semantic, defined on top of the Pure core

DM4Free: What do we get ?

- an extensible mechanism for user defined effects such as state, exceptions, continuations...
- a simple semantic, defined on top of the Pure core
- Compositionality through subeffecting
\rightsquigarrow monad morphisms elaborate to lifts between effects

DM4Free : What do we get ?

- an extensible mechanism for user defined effects such as state, exceptions, continuations...
- a simple semantic, defined on top of the Pure core
- Compositionality through subeffecting
\rightsquigarrow monad morphisms elaborate to lifts between effects
- reification enables extrinsic reasoning for effectful code

```
val STATE?.reify :
    (unit }->\mathrm{ STATE a wp) }->\mp@subsup{m}{e}{}:mem ->GHOST (a x mem) (wp m m )
```


Ongoing \& Future work

- Extending DM4Free to inductive types/algebraic effects \rightsquigarrow Not straightforward, there is no sum of the IO monad with M X $=\left(X \rightarrow\right.$ Type $\left._{0}\right) \rightarrow$ Type $_{0}$ in Set
- A categorical account of Dijkstra monads closer to our use
- more generally we strive for a verified metatheory and a (self ?)-certified compiler

Ongoing \& Future work

- Extending DM4Free to inductive types/algebraic effects \rightsquigarrow Not straightforward, there is no sum of the IO monad with M $\mathrm{X}=\left(\mathrm{X} \rightarrow\right.$ Type $\left._{0}\right) \rightarrow$ Type $_{0}$ in Set
- A categorical account of Dijkstra monads closer to our use
- more generally we strive for a verified metatheory and a (self ?)-certified compiler

Thank you !

Semantic of PURE

With DM4Free, the definable computation types are defined on top of PURE.

In order to define a realizability model à la $N u P R L$, we need to give a semantic to PURE, for instance :

$$
\llbracket \mathrm{x}: \mathrm{a} \rightarrow \text { PURE } \mathrm{b} w p \rrbracket=\bigcap_{p: b \rightarrow \mathbb{P}} x:\{a \mid w p p\} \rightarrow\{y: b \mid p y\}
$$

Semantic of PURE

With DM4Free, the definable computation types are defined on top of PURE.

In order to define a realizability model à la $N u P R L$, we need to give a semantic to PURE, for instance :

$$
\llbracket x: a \rightarrow \text { PURE } b w p \rrbracket=\bigcap_{p: b \rightarrow \mathbb{P}^{x}} x:\{a \mid w p p\} \rightarrow\{y: b \mid p y\}
$$

Other obstacles on the way of defining a model :

- << is well-founded
- subtyping is coherent
- status of non-terminating functions (does not hinder the logic)

DM4Free, Graphically

- Two syntactic transfomation from DM to F*
- e^{*} for specification, \underline{e} for implementation
- Related through typing (logical relation)

