Designing Dijkstra Monads

Kenji Maillard
j.w.w. D. Ahman, B. Atkey, C.Hriţcu, G.Martinez, E.Tanter, E. Rivas

Eutypes'19 WG, Krakow
February 23, 2019

Programming with side effects

Programming with side effects

We need a model to uniformly account for side-effects !

Monads: a nifty algebraic tool

MX represents a computational context producing values in X

Monads: a nifty algebraic tool

MX represents a computational context producing values in X

A succint syntactic presentation: a type constructor M

$$
\operatorname{ret}^{\mathrm{M}}: X \rightarrow \mathrm{M} X \quad \text { bind }^{\mathrm{M}} \quad: \mathrm{M} X \rightarrow(X \rightarrow \mathrm{M} Y) \rightarrow \mathrm{M} Y
$$

+3 equations (monad laws)

Examples of computational monads

State
$\operatorname{St} X=\mathcal{S} \rightarrow X \times \mathcal{S}$

Examples of computational monads

State
St $X=\mathcal{S} \rightarrow X \times \mathcal{S}$

Exceptions
$\operatorname{Exc} X=X+\mathcal{E}$

Examples of computational monads

State
$\operatorname{St} X=\mathcal{S} \rightarrow X \times \mathcal{S}$

Exceptions
Partiality
$\operatorname{Exc} X=X+\mathcal{E}$
$\operatorname{Div} X=X+\{\Omega\}$

Examples of computational monads

State	Exceptions	Partiality
St $X=\mathcal{S} \rightarrow X \times \mathcal{S}$	Exc $X=X+\mathcal{E}$	Div $X=X+\{\Omega\}$

$$
\begin{aligned}
& \text { Input-OUTPUT } \\
& \text { IO } X=\mu Z . X+(Z \times \mathcal{O})+(\mathcal{I} \rightarrow Z)
\end{aligned}
$$

Examples of computational monads

State
St $X=\mathcal{S} \rightarrow X \times \mathcal{S}$

Exceptions
Partiality
$\operatorname{Exc} X=X+\mathcal{E} \quad \operatorname{Div} X=X+\{\Omega\}$

Input-Output

$$
\mathrm{IO} X=\mu Z . X+(Z \times \mathcal{O})+(\mathcal{I} \rightarrow Z)
$$

Continuations
$\operatorname{Cont}_{\text {Ans }} X=(X \rightarrow$ Ans $) \rightarrow$ Ans

Examples of computational monads

State
St $X=\mathcal{S} \rightarrow X \times \mathcal{S}$

Exceptions
Partiality
$\operatorname{Exc} X=X+\mathcal{E} \quad \operatorname{Div} X=X+\{\Omega\}$

> Input-Output

$$
\mathrm{IO} X=\mu Z \cdot X+(Z \times \mathcal{O})+(\mathcal{I} \rightarrow Z)
$$

Continuations
$\operatorname{Cont}_{\text {Ans }} X=(X \rightarrow$ Ans $) \rightarrow$ Ans

Non-DETERMINism
$\operatorname{NDet} X=\mathcal{P}_{\text {fin }}(X)$

Examples of computational monads

State
St $X=\mathcal{S} \rightarrow X \times \mathcal{S}$

Exceptions
Partiality
$\operatorname{Exc} X=X+\mathcal{E} \quad \operatorname{Div} X=X+\{\Omega\}$

Input-Output

$$
\mathrm{IO} X=\mu Z . X+(Z \times \mathcal{O})+(\mathcal{I} \rightarrow Z)
$$

Continuations
$\operatorname{Cont}_{\text {Ans }} X=(X \rightarrow$ Ans $) \rightarrow$ Ans

Non-DETERMINism
$\operatorname{NDet} X=\mathcal{P}_{\text {fin }}(X)$

Probabilities
$\operatorname{Prob} X=\left\{f: X \rightarrow[0 ; 1] \mid \operatorname{supp}(f)\right.$ finite, $\left.\Sigma_{x \in \operatorname{supp}(f)} f x \leq 1\right\}$

Monadic programming

Moggi's computational lambda-calculus (λ_{C})(Moggi, 1989)

$$
\begin{array}{rlrl}
T: & = & \mathrm{M} T\left|T_{1} \rightarrow T_{2}\right| T_{1} \times T_{2} \mid T_{1}+T_{2} & \\
\text { types } \\
v: & =x|\lambda x . c|\left\langle c_{1}, c_{2}\right\rangle \mid \iota_{i} v & & \text { values } \\
c:: & =v & & \text { returning values } \\
& \mid \text { let } x=c_{1} \text { in } c_{2} & & \text { sequencing computations } \\
& \mid \operatorname{op}\left(c_{1}, \ldots, c_{n}\right) & & \text { effectful operations } \\
& \left|c_{1} c_{2}\right| \pi_{i} c \mid \text { case } c x . c_{1} y \cdot c_{2} & &
\end{array}
$$

Monadic programming

Moggi's computational lambda-calculus (λ_{C})(Moggi, 1989)

$$
\begin{array}{rlrl}
T: & : & =\mathrm{M} T\left|T_{1} \rightarrow T_{2}\right| T_{1} \times T_{2} \mid T_{1}+T_{2} & \\
\text { types } \\
v:: & =x|\lambda x . c|\left\langle c_{1}, c_{2}\right\rangle \mid \iota_{i} v & & \text { values } \\
c:: & =v & & \text { returning values } \\
& \mid \text { let } x=c_{1} \text { in } c_{2} & & \text { sequencing computations } \\
& \mid \operatorname{op}\left(c_{1}, \ldots, c_{n}\right) & & \text { effectful operations }
\end{array}
$$

Ret
$\frac{\Gamma \vdash{ }_{v a l} v: T}{\Gamma \vdash v: \mathrm{M} T}$

Bind
$\frac{\Gamma \vdash c_{1}: \mathrm{M} T_{1} \quad \Gamma, x: T_{1} \vdash c_{2}: \mathrm{M} T_{2}}{\Gamma \vdash \operatorname{let} x=c_{1} \text { in } c_{2}: \mathrm{M} T_{2}}$

Operations associated to monads

a.k.a. generic effects (Plotkin and Power, 2003)

State
get : $\mathbb{1} \rightarrow$ St \mathcal{S}
put : $\mathcal{S} \rightarrow \mathrm{St} \mathbb{1}$

Input-Output
read : $\mathbb{1} \rightarrow \mathrm{IO} \mathcal{I}$
write : $\mathcal{O} \rightarrow \mathrm{IO} \mathbb{1}$

Operations associated to monads

a.k.a. generic effects (Plotkin and Power, 2003)

State
get : $\mathbb{1} \rightarrow$ St \mathcal{S}
put : $\mathcal{S} \rightarrow \mathrm{St} \mathbb{1}$
Exceptions
throw : $\mathcal{E} \rightarrow \operatorname{Exc} \mathbb{1}$

Input-OUTPUT
read: $\mathbb{1} \rightarrow \mathrm{IO} \mathcal{I}$
write $: \mathcal{O} \rightarrow \mathrm{IO} \mathbb{1}$

Partiality
$\operatorname{div}: \mathbb{1} \rightarrow \operatorname{Div} \mathbb{0}$

Operations associated to monads

a.k.a. generic effects (Plotkin and Power, 2003)
State
get $: \mathbb{1} \rightarrow \mathrm{St} \mathcal{S}$
put $: \mathcal{S} \rightarrow \mathrm{St} \mathbb{1}$

Exceptions
throw : $\mathcal{E} \rightarrow \operatorname{Exc} \mathbb{0}$

Input-Output
read : $\mathbb{1} \rightarrow \mathrm{IO} \mathcal{I}$
write : $\mathcal{O} \rightarrow \mathrm{IO} \mathbb{1}$
Partiality
$\operatorname{div}: \mathbb{1} \rightarrow \operatorname{Div} 0$

Probabilities
flip : $[0 ; 1] \rightarrow \operatorname{Prob} \mathbb{B}$

Starting point

Fix M a computational monad

Take a program c: MN, for instance

$$
\begin{aligned}
& \text { let } x=\operatorname{read}() \text { in } \\
& \text { let } y=\operatorname{read}() \text { in } \\
& \text { if } y=0 \text { then throwDiv_by_zero else } x / y
\end{aligned}
$$

Starting point

Fix M a computational monad

Take a program c:MN, for instance

$$
\begin{aligned}
& \text { let } x=\operatorname{read}() \text { in } \\
& \text { let } y=\operatorname{read}() \text { in } \\
& \text { if } y=0 \text { then throwDiv_by_zero else } x / y
\end{aligned}
$$

How can we specify and verify such monadic programs ?

Hoare logic Primer

\{ pre $\}$ code $\{$ post $\}$

$$
\{T\} v\{x=v\} \quad \frac{\{P\} c_{1}\{Q\} \quad \forall x,\{Q(x)\} c_{2}\{R\}}{\{P\} \text { let } x=c_{1} \text { in } c_{2}\{R\}}
$$

Hoare logic Primer

$\{$ pre $\}$ code $\{$ post $\}$

$$
\{T\} v\{x=v\} \quad \frac{\{P\} c_{1}\{Q\} \quad \forall x,\{Q(x)\} c_{2}\{R\}}{\{P\} \operatorname{let} x=c_{1} \operatorname{in} c_{2}\{R\}}
$$

Pure:
Stateful: pre: $S \rightarrow \mathbb{P}$
With exceptions:
pre: \mathbb{P}
pre: \mathbb{P}
post : $X \rightarrow \mathbb{P}$
post: $X \times S \rightarrow \mathbb{P}$
post: $X+E \rightarrow \mathbb{P}$

Weakest precondition calculi

Dijkstra's insight: there is a weakest precondition that can be computed from a program and a postcondition

$$
\vdash\{P\} \subset\{Q\} \quad \Longleftrightarrow \quad \vdash P \Rightarrow \operatorname{wp}[c](Q)
$$

$$
\operatorname{wp}[v](Q)=Q(v) \quad \operatorname{wp}\left[\text { let } x=c_{1} \text { in } c_{2}\right](Q)=\operatorname{wp}\left[c_{1}\right]\left(\lambda x \cdot \operatorname{wp}\left[c_{2}\right](Q)\right)
$$

Weakest precondition calculi

Dijkstra's insight: there is a weakest precondition that can be computed from a program and a postcondition

$$
\vdash\{P\} \subset\{Q\} \quad \Longleftrightarrow \quad \vdash P \Rightarrow \operatorname{wp}[c](Q)
$$

$$
\operatorname{wp}[v](Q)=Q(v) \quad \operatorname{wp}\left[\text { let } x=c_{1} \text { in } c_{2}\right](Q)=\operatorname{wp}\left[c_{1}\right]\left(\lambda x \cdot \operatorname{wp}\left[c_{2}\right](Q)\right)
$$

$$
\begin{aligned}
\text { Pure: } & \mathrm{wp}[c](\cdot):(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
\text { Stateful: } & \mathrm{wp}[c](\cdot):(X \times S \rightarrow \mathbb{P}) \rightarrow S \rightarrow \mathbb{P} \\
\text { With exceptions: } & \mathrm{wp}[c](\cdot):(X+E \rightarrow \mathbb{P}) \rightarrow \mathbb{P}
\end{aligned}
$$

Wait. . . That's a monad!

Pure: $\quad W^{\mathrm{Id}}:(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P}$

$\operatorname{ret}^{\mathrm{W}^{\mathrm{Id}}}: X \rightarrow \mathrm{~W}^{\mathrm{Id}} X \quad$ bind ${ }^{\mathrm{W}^{\mathrm{Id}}}: \mathrm{W}^{\mathrm{Id}} X \rightarrow\left(X \rightarrow \mathrm{~W}^{\mathrm{Id}} Y\right) \rightarrow \mathrm{W}^{\mathrm{Id}} Y$ $\operatorname{ret}^{\mathrm{W}^{\mathrm{Id}}} \times Q=Q(x) \quad \operatorname{bind}^{\mathrm{W}^{\mathrm{Id}}} w_{1} w_{2} Q=w_{1}\left(\lambda x \cdot w_{2}(x)(Q)\right)$

Wait. . . That's a monad!

Pure: $\quad W^{\mathrm{Id}}:(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P}$

$$
\begin{aligned}
& \operatorname{ret}^{\mathrm{W}^{\mathrm{Id}}}: X \rightarrow \mathrm{~W}^{\mathrm{Id}} X \quad \text { bind }^{\mathrm{W}^{\text {Id }}}: \mathrm{W}^{\mathrm{Id}} X \rightarrow\left(X \rightarrow \mathrm{~W}^{\mathrm{Id}} Y\right) \rightarrow \mathrm{W}^{\mathrm{Id}} Y \\
& \operatorname{ret}^{\mathrm{W}^{\mathrm{Id}}} \times Q=Q(x) \quad \text { bind }^{\mathrm{W}^{\mathrm{Id}}} w_{1} w_{2} Q=w_{1}\left(\lambda x \cdot w_{2}(x)(Q)\right)
\end{aligned}
$$

Continuation monad with answer type \mathbb{P} :

$$
\mathrm{W}^{\mathrm{Id}} X=\operatorname{Cont}_{\mathbb{P}}(X)=(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P}
$$

Wait. . . That's a monad!

Pure: $\quad W^{\mathrm{Id}}:(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P}$

$$
\begin{aligned}
& \operatorname{ret}^{\mathrm{W}^{\mathrm{Id}}}: X \rightarrow \mathrm{~W}^{\mathrm{Id}} X \quad \text { bind }^{\mathrm{W}^{\mathrm{Id}}}: \mathrm{W}^{\mathrm{Id}} X \rightarrow\left(X \rightarrow \mathrm{~W}^{\mathrm{Id}} Y\right) \rightarrow \mathrm{W}^{\mathrm{Id}} Y \\
& \operatorname{ret}^{\mathrm{W}}{ }^{\mathrm{Id}} \times Q=Q(x) \quad \text { bind }^{\mathrm{W}^{\mathrm{Id}}} w_{1} w_{2} Q=w_{1}\left(\lambda x \cdot w_{2}(x)(Q)\right)
\end{aligned}
$$

Continuation monad with answer type \mathbb{P} :

$$
\mathrm{W}^{\mathrm{Id}} X=\operatorname{Cont}_{\mathbb{P}}(X)=(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P}
$$

Stateful:
With exceptions:

$$
\begin{aligned}
\mathrm{W}^{\mathrm{St}} & :(X \times S \rightarrow \mathbb{P}) \rightarrow S \rightarrow \mathbb{P} \\
\mathrm{~W}^{\mathrm{Exc}} & :(X+E \rightarrow \mathbb{P}) \rightarrow \mathbb{P}
\end{aligned}
$$

Specification monads

Key idea: specifications can also be uniformly captured by monads!

Weakest precondition: Strongest postcondition: Pre/Postconditions:

$$
\begin{aligned}
\operatorname{Cont}_{\mathbb{P}} X & =(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
\text { StrPost } X & =\mathbb{P} \rightarrow X \rightarrow \mathbb{P} \\
\text { PrePost } X & =\mathbb{P} \times(X \rightarrow \mathbb{P})
\end{aligned}
$$

Specification monads

Key idea: specifications can also be uniformly captured by monads!

$$
\begin{array}{rlrl}
\text { Weakest precondition: } & \text { Cont }_{\mathbb{P}} X & =(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
\text { Strongest postcondition: } & & \text { StrPost } X & =\mathbb{P} \rightarrow X \rightarrow \mathbb{P} \\
\text { Pre/Postconditions: } & & \text { PrePost } X & =\mathbb{P} \times(X \rightarrow \mathbb{P})
\end{array}
$$

What's in a specification monad W ?
\triangleright specifications can be compared by strength

$$
w_{1} \leq \operatorname{Cont}_{\mathbb{P}} X w_{2} \quad \Leftrightarrow \quad \forall p: X \rightarrow \mathbb{P}, w_{1} p \Longrightarrow w_{2} p
$$

\triangleright bind W is monotonic in both its arguments
\sim restriction to monotonic elements in Cont ${ }_{\mathbb{P}}$, StrPost

Predicate transformers from monad transformers

Examples of predicate transformer monads:

$$
\begin{array}{rc}
\text { Pure: } & \mathrm{W}^{\mathrm{Id}}:(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
\text { Stateful: } & \mathrm{W}^{\mathrm{St}}:(X \times \mathcal{S} \rightarrow \mathbb{P}) \rightarrow \mathcal{S} \rightarrow \mathbb{P} \\
\text { With exceptions: } & \mathrm{W}^{\mathrm{Exc}}:(X+\mathcal{E} \rightarrow \mathbb{P}) \rightarrow \mathbb{P}
\end{array}
$$

Predicate transformers from monad transformers

Examples of predicate transformer monads:

$$
\begin{array}{cc}
\text { Pure: } & \mathrm{W}^{\mathrm{Id}}:(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
\text { Stateful: } & \mathrm{W}^{\mathrm{St}}:(X \times \mathcal{S} \rightarrow \mathbb{P}) \rightarrow \mathcal{S} \rightarrow \mathbb{P} \\
\text { With exceptions: } & \mathrm{W}^{\mathrm{Exc}}:(X+\mathcal{E} \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
& \\
\mathrm{W}^{\mathrm{Id}}=\mathcal{T}^{\mathrm{Id}}\left(\text { Cont }_{\mathbb{P}}\right) & \mathcal{T}^{\mathrm{Id}}(\mathrm{M})=\mathrm{M} \\
\mathrm{~W}^{\mathrm{St}}=\mathcal{T}^{\mathrm{St}}\left(\text { Cont }_{\mathbb{P}}\right) & \mathcal{T}^{\mathrm{St}}(\mathrm{M})=\mathcal{S} \rightarrow \mathrm{M}(-\times \mathcal{S}) \\
\mathrm{W}^{\mathrm{Exc}}=\mathcal{T}^{\text {Exc }}\left(\text { Cont }_{\mathbb{P}}\right) & \mathcal{T}^{\mathrm{Exc}}(\mathrm{M})=\mathrm{M}(-+\mathcal{E})
\end{array}
$$

Predicate transformers from monad transformers

Examples of predicate transformer monads:

$$
\begin{array}{cr}
\text { Pure: } & \mathrm{W}^{\mathrm{Id}}:(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
\text { Stateful: } & \mathrm{W}^{\mathrm{St}}:(X \times \mathcal{S} \rightarrow \mathbb{P}) \rightarrow \mathcal{S} \rightarrow \mathbb{P} \\
\text { With exceptions: } & \mathrm{W}^{\mathrm{Exc}}:(X+\mathcal{E} \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
& \\
\mathrm{W}^{\mathrm{Id}}=\mathcal{T}^{\mathrm{Id}}\left(\text { Cont }_{\mathbb{P}}\right) & \mathcal{T}^{\mathrm{Id}}(\mathrm{M})=\mathrm{M} \\
\mathrm{~W}^{\mathrm{St}}=\mathcal{T}^{\mathrm{St}}\left(\text { Cont }_{\mathbb{P}}\right) & \mathcal{T}^{\mathrm{St}}(\mathrm{M})=\mathcal{S} \rightarrow \mathrm{M}(-\times \mathcal{S}) \\
\mathrm{W}^{\mathrm{Exc}}=\mathcal{T}^{\mathrm{Exc}}\left(\text { Cont }_{\mathbb{P}}\right) & \mathcal{T}^{\mathrm{Exc}}(\mathrm{M})=\mathrm{M}(-+\mathcal{E})
\end{array}
$$

Monad transformer $\mathcal{T}:\left\{\begin{array}{l}\text { map a monad } \mathrm{M} \text { to a monad } \mathcal{T} \mathrm{M} \\ \operatorname{lift}^{\mathcal{T}}: \mathrm{M} \rightarrow \mathcal{T} \mathrm{M}\end{array}\right.$

Relating computations \& specifications

M

computational monad

code
$c: M \mathbb{N}$

W
specification monad

specification
$w_{c}: W \mathbb{N}$

Relating computations \& specifications

M

computational monad

code
$c: M \mathbb{N}$

W

specification
$w_{c}: W \mathbb{N}$

\triangleright For a fixed M, is there a canonical W ?

Relating computations \& specifications

computational monad
specification monad

code
$c: M \mathbb{N}$

specification
$w_{c}: W \mathbb{N}$

\triangleright For a fixed M, is there a canonical W ?
\triangleright What kind of structure θ relate M and W ?

Relating computations \& specifications

computational monad
specification monad

code
$c: M N$

specification
$w_{c}: W \mathbb{N}$

\triangleright For a fixed M, is there a canonical W ?
\triangleright What kind of structure θ relate M and W ?
\triangleright Is θ canonical wrt. M and W ?

Specifying programs with exceptions

$$
\begin{gathered}
\theta^{\mathrm{Exc}}: \operatorname{Exc} X \quad \longrightarrow \quad \mathrm{~W}^{\mathrm{Exc}} X=(X+\mathcal{E} \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
\theta^{\mathrm{Exc}}(m)=\lambda p . p m
\end{gathered}
$$

Specifying programs with exceptions

$\theta^{\text {Exc }}: \operatorname{Exc} X \quad \longrightarrow \quad \mathrm{~W}^{\mathrm{Exc}} X=(X+\mathcal{E} \rightarrow \mathbb{P}) \rightarrow \mathbb{P}$

$$
\theta^{\mathrm{Exc}}(m)=\lambda p \cdot p m
$$

$$
\begin{aligned}
\theta^{\mathrm{Exc}}\left(\mathrm{ret}^{\mathrm{Exc}} v\right) & =\mathrm{ret}^{\mathrm{W}^{\mathrm{Exc}}} v \\
\theta^{\mathrm{Exc}}\left(\operatorname{bind}^{\mathrm{Exc}} m f\right) & =\operatorname{bind}^{\mathrm{W}^{\mathrm{Exc}}}\left(\theta^{\mathrm{Exc}} m\right)\left(\theta^{\mathrm{Exc}} \circ f\right)
\end{aligned}
$$

Specifying programs with exceptions

$\theta^{\mathrm{Exc}} \quad: \quad \operatorname{Exc} X \quad \longrightarrow \quad \mathrm{~W}^{\mathrm{Exc}} X=(X+\mathcal{E} \rightarrow \mathbb{P}) \rightarrow \mathbb{P}$

$$
\theta^{\mathrm{Exc}}(m)=\lambda p \cdot p m
$$

$$
\begin{array}{cc}
\theta^{\mathrm{Tot}}: \operatorname{Exc} X & \longrightarrow \\
\mathrm{~W}^{\mathrm{Id}} X=(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
\theta^{\mathrm{Tot}}(\operatorname{inr} v)=\lambda p . p v & \theta^{\mathrm{Tot}}(\operatorname{inl} e)=\lambda p . \perp
\end{array}
$$

Specifying programs with exceptions

$\theta^{\text {Exc }} \quad: \quad \operatorname{Exc} X \quad \longrightarrow \quad \mathrm{~W}^{\mathrm{Exc}} X=(X+\mathcal{E} \rightarrow \mathbb{P}) \rightarrow \mathbb{P}$

$$
\theta^{\mathrm{Exc}}(m)=\lambda p \cdot p m
$$

$$
\begin{aligned}
& \theta^{\text {Tot }}: \quad \operatorname{Exc} X \quad \longrightarrow \quad \mathrm{~W}^{\mathrm{Id}} X=(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
& \theta^{\mathrm{Tot}}(\operatorname{inr} v)=\lambda p . p v \\
& \theta^{\mathrm{Tot}}(\operatorname{inl} e)=\lambda p . \perp \\
& \theta^{\text {Part }} \quad: \quad \operatorname{Exc} X \quad \longrightarrow \quad \mathrm{~W}^{\mathrm{Id}} X=(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
& \theta^{\text {Part }}(\operatorname{inr} v)=\lambda p . p v \\
& \theta^{\text {Part }}(\operatorname{inl} e)=\lambda p . \top
\end{aligned}
$$

Effect observation

An effect observation θ (Katsumata, 2014)

is a monad morphism, that is

$$
\theta\left(\operatorname{ret}^{\mathrm{M}} v\right)=\operatorname{ret}^{\mathrm{W}} v \quad \theta\left(\operatorname{bind}^{\mathrm{M}} m f\right)=\operatorname{bind}^{\mathrm{W}}(\theta m)(\theta \circ f)
$$

Relating stateful computations \& specifications

$$
\theta^{\mathrm{St}}:\left\{\begin{array}{clc}
\mathcal{S} \rightarrow X \times \mathcal{S} & \longrightarrow \quad \mathrm{W}^{\mathrm{St}} X=(X \times \mathcal{S} \rightarrow \mathbb{P}) \rightarrow \mathcal{S} \rightarrow \mathbb{P} \\
m & \longmapsto & \lambda p s_{0} . \text { let }\left\langle r, s_{1}\right\rangle=m s_{0} \text { in } p\left\langle r, s_{1}\right\rangle
\end{array}\right.
$$

Relating stateful computations \& specifications

$$
\theta^{\mathrm{St}}:\left\{\begin{array}{clc}
\mathcal{S} \rightarrow X \times \mathcal{S} & \longrightarrow \quad \mathrm{W}^{\mathrm{St}} X=(X \times \mathcal{S} \rightarrow \mathbb{P}) \rightarrow \mathcal{S} \rightarrow \mathbb{P} \\
m & \longmapsto \lambda p s_{0} . \text { let }\left\langle r, s_{1}\right\rangle=m s_{0} \text { in } p\left\langle r, s_{1}\right\rangle
\end{array}\right.
$$

$$
\begin{array}{ccc}
\text { Id } & \begin{array}{c}
\text { ret } \\
\text { Cont }_{P} \\
\hline \theta^{\mathrm{St}}: \mathcal{T}^{\mathrm{St}}(\mathrm{Id}) \\
\mathcal{T}^{\mathrm{St}}(\text { ret }) \\
\mathcal{T}^{\text {St }}\left(\text { Cont }_{\mathbb{P}}\right)
\end{array}
\end{array}
$$

Relating stateful computations \& specifications

$$
\theta^{\mathrm{St}}:\left\{\begin{array}{clc}
\mathcal{S} \rightarrow X \times \mathcal{S} & \longrightarrow & \mathrm{W}^{\mathrm{St}} X=(X \times \mathcal{S} \rightarrow \mathbb{P}) \rightarrow \mathcal{S} \rightarrow \mathbb{P} \\
m & \longmapsto \lambda p s_{0} . \text { let }\left\langle r, s_{1}\right\rangle=m s_{0} \text { in } p\left\langle r, s_{1}\right\rangle
\end{array}\right.
$$

$$
\begin{array}{ccc}
\text { Id } & \xrightarrow{\text { ret }} & \text { Cont }_{\mathbb{P}} \\
\hline \theta^{\mathrm{St}}: \mathcal{T}^{\mathrm{St}}(\mathrm{Id}) & \xrightarrow[\mathcal{T}^{\mathrm{St}}(\text { ret })]{\longrightarrow} & \mathcal{T}^{\mathrm{St}}\left(\text { Cont }_{\mathbb{P}}\right)
\end{array}
$$

We can do that whenever we have a monad transformer \mathcal{T}

$$
\mathcal{T}^{\mathrm{Exc}} \quad \mathcal{T}^{\mathrm{St}} \circ \mathcal{T}^{\mathrm{Exc}} \quad \mathcal{T}^{\mathrm{Exc}} \circ \mathcal{T}^{\mathrm{St}}
$$

Verifying non-deterministic programs

Angelic non-determinism θ^{\exists} vs Demonic non-determinism θ^{\forall}

Input-Output in context

$\mathcal{L}=(\mathcal{I}+\mathcal{O})^{*}$

$$
\begin{aligned}
& \theta^{\mathrm{S}}(\text { write } o)=\lambda p \cdot p() \\
& \theta^{\mathrm{Fr}}(\text { write } o)=\lambda p \cdot p\langle(),[o]\rangle
\end{aligned}
$$

$\theta^{\text {Hist }}($ write $o)=\lambda p \log \cdot p\langle(),(o:: \log)\rangle$

A second bridge between computations and specifications

M
 computational monad

code
$c: M N$

predicate transformer monad
specification
$w_{c}: W \mathbb{N}$

A second bridge between computations and specifications

M
computational monad

W
 predicate transformer monad

code
$c: M \mathbb{N}$

specification
$w_{c}: W \mathbb{N}$

Dijkstra monad
$c: \mathcal{D}^{\mathrm{M}} \mathbb{N} w_{c}$

A second bridge between computations and specifications

M
computational monad

W
 predicate transformer monad

$$
\begin{array}{cc}
\text { code } & \text { specification } \\
c: \mathrm{M} \mathbb{N} & w_{c}: \mathrm{W} \mathbb{N}
\end{array} \text { Dijkstra monad }_{c: \mathcal{D}^{\mathrm{M}} \mathbb{N} w_{c}} \begin{aligned}
& \\
& \operatorname{ret}^{D^{\mathrm{M}}:(x: A) \rightarrow \mathcal{D}^{\mathrm{M}} A\left(\text { ret }^{\mathrm{W}} \times\right) \quad \frac{m: \mathcal{D}^{\mathrm{M}} A w_{1}}{\operatorname{bind}^{D^{M}} m f: \mathcal{D}^{\mathrm{M}} B\left(\operatorname{bind}^{\mathrm{W}} w_{1} w_{2}\right)}}
\end{aligned}
$$

Monadic program verification in F^{\star}

Dijkstra monads are heavily used in F^{\star} :
\triangleright Dependently-typed, programs and specifications in the same language

Monadic program verification in F^{\star}

Dijkstra monads are heavily used in F^{\star} :
\triangleright Dependently-typed, programs and specifications in the same language
\triangleright Multiple primitive effects (from C, OCaml)

$$
\begin{gathered}
\text { Pure } A\left(w: W^{\mathrm{Id}} A\right) \quad \operatorname{Div} A\left(w: W^{\mathrm{Id}} A\right) \quad \operatorname{State} A\left(w: W^{\mathrm{St}} A\right) \\
\operatorname{Exc} A\left(w: W^{\mathrm{Exc}} A\right) \quad \operatorname{All} A\left(w: W^{\operatorname{StExc}} A\right)
\end{gathered}
$$

Monadic program verification in F^{\star}

Dijkstra monads are heavily used in F^{\star} :
\triangleright Dependently-typed, programs and specifications in the same language
\triangleright Multiple primitive effects (from C, OCaml)

```
Pure A(w:\mp@subsup{W}{}{\mathrm{ Id }}A)\quad Div A(w:\mp@subsup{W}{}{\mathrm{ Id }}A)\quad State A (w:\mp@subsup{W}{}{\mathrm{ St }}A)
Exc}A(w:\mp@subsup{W}{}{\textrm{Exc}}A)\quad\mathrm{ All }A(w:\mp@subsup{W}{}{\textrm{StExc}}A
let rec fib ( }\textrm{n}:\mathbb{N}\mathrm{ )
    : PURE N (\lambda p | | r. r\geqn ^ r> 0 \Longrightarrowp r)
    =
    if n\leq1 then 1 else fib ( }\textrm{n}-1)+f;\mp@code{fib}(\textrm{n}-2
```


Monadic program verification in F^{\star}

Dijkstra monads are heavily used in F^{\star} :
\triangleright Dependently-typed, programs and specifications in the same language
\triangleright Multiple primitive effects (from C, OCaml)

```
Pure A(w:\mp@subsup{W}{}{\textrm{Id}}A)\quad Div}A(w:\mp@subsup{W}{}{\textrm{Id}}A)\quad\mathrm{ State }A(w:\mp@subsup{W}{}{\textrm{St}}A
Exc}A(w:\mp@subsup{W}{}{\textrm{Exc}}A)\quad\mathrm{ All }A(w:\mp@subsup{W}{}{\textrm{StExc}}A
let rec fib (n:\mathbb{N})
    : Pure \mathbb{N (requires T)}
        (ensures (\lambda r > r n n ^r>0))
    =
    if n s 1 then 1 else fib (n-1) + fib ( }n-2
```


Dijkstra monads in F^{\star}

\triangleright Region and stack-based low-level model for extraction to C, used for implementing cryptographic primitives and protocols: HACI*, MiTLS

Dijkstra monads in F^{\star}

\triangleright Region and stack-based low-level model for extraction to C, used for implementing cryptographic primitives and protocols: HACI*, MiTLS
\triangleright Dijkstra Monads For Free (DM4Free) (Ahman et al., 2017) User-defined effects: monads in a DSL elaborate to

- a specification monad W
- a Dijkstra monad \mathcal{D} indexed by W

Dijkstra monads in F^{\star}

\triangleright Region and stack-based low-level model for extraction to C, used for implementing cryptographic primitives and protocols: HACI*, MiTLS
\triangleright Dijkstra Monads For Free (DM4Free) (Ahman et al., 2017) User-defined effects: monads in a DSL elaborate to

- a specification monad W
- a Dijkstra monad \mathcal{D} indexed by W
\sim State, exceptions, State+Exceptions,...
\sim No Input-output, non-determinism, probabilities...

From effect observation to Dijkstra monad

From effect observation to Dijkstra monad

$$
\mathcal{D}^{\mathrm{M}} A(w: \mathrm{W} A)=\left\{m: \mathrm{M} A \mid w \leq{ }^{\mathrm{W}} \theta(m)\right\}
$$

A Dijkstra monad for demonic non-determinism

Recall that there is an effect observation

$$
\begin{gathered}
\theta^{\forall}: \quad \operatorname{NDet} A \quad \longrightarrow \quad \mathrm{~W}^{\mathrm{Id}} A=(A \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
\theta^{\forall}(m)=\lambda p \cdot \forall v \in m, p v
\end{gathered}
$$

A Dijkstra monad for demonic non-determinism

Recall that there is an effect observation

$$
\begin{gathered}
\theta^{\forall}: \quad \operatorname{NDet} A \quad \longrightarrow \quad \mathrm{~W}^{\mathrm{Id}} A=(A \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
\theta^{\forall}(m)=\lambda p . \forall v \in m, p v
\end{gathered}
$$

We obtain a Dijkstra monad

$$
\begin{aligned}
& \mathrm{ND}:(A: \text { Type }) \rightarrow\left(w: \mathrm{W}^{\mathrm{Id}} A\right) \rightarrow \text { Type } \\
& \text { choose }:(u: \mathbb{1}) \rightarrow \mathrm{ND} \mathbb{B}(\lambda p . p \text { true } \wedge p \text { false }) \\
& \text { fail }:(u: \mathbb{1}) \rightarrow \mathrm{ND} \mathbb{B}(\lambda p . \top)
\end{aligned}
$$

A Dijkstra monad for demonic non-determinism

Recall that there is an effect observation

$$
\begin{gathered}
\theta^{\forall}: \quad \operatorname{NDet} A \quad \longrightarrow \quad \mathrm{~W}^{\mathrm{Id}} A=(A \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
\theta^{\forall}(m)=\lambda p . \forall v \in m, p v
\end{gathered}
$$

We obtain a Dijkstra monad

$$
\begin{aligned}
& \text { ND }:(A: \text { Type }) \rightarrow\left(w: \mathrm{W}^{\mathrm{Id}} A\right) \rightarrow \text { Type } \\
& \text { choose }:(u: \mathbb{1}) \rightarrow \mathrm{ND} \mathbb{B}(\lambda p . p \text { true } \wedge p \text { false }) \\
& \text { fail }:(u: \mathbb{1}) \rightarrow \mathrm{ND} \mathbb{B}(\lambda p . \top)
\end{aligned}
$$

```
let rec pick #a (l : list a)
    : ND a (\lambda p f V x. List.memP x l \Longrightarrow p x)
    =
    match l with
    | [] -> fail ()
    x.:xs }->\mathrm{ if choose true false then x else pick xs
```


Computing pythagorean triples

```
let guard (b:bool)
    : ND unit (\lambda p }->\textrm{b}\Longrightarrow\textrm{p}()
    =
    if b then () else fail ()
let pyths ()
```



```
    (\lambda p 枝 y z. x\timesx + y\timesy == z\timesz = p (x,y,z))
    =
    let l = [1;2;3;4;5;6;7;8;9;10] in
    let x = pick l in
    let y = pick l in
    let z = pick l in
    guard (x\timesx + y\timesy = z\timesz);
    (x,y,z)
```


Synthesis

\triangleright Start with a computational monad M
\triangleright Select a specification monad W
\triangleright Define an effect observation $\theta: \mathrm{M} \rightarrow \mathrm{W}$
\triangleright Obtain a Dijkstra monad \mathcal{D}^{M} indexed by W
\leadsto Convenient way to verify code in M

Synthesis

\triangleright Start with a computational monad M
\triangleright Select a specification monad W
\triangleright Define an effect observation $\theta: \mathrm{M} \rightarrow \mathrm{W}$
\triangleright Obtain a Dijkstra monad \mathcal{D}^{M} indexed by W
\leadsto Convenient way to verify code in M

Further questions:
\triangleright How far is \mathcal{D}^{M} from θ ?
\triangleright Can we explain the previous awkward restrictions in DM4Free ?

From Dijkstra monad to effect observation

Given a Dijkstra monad \mathcal{D} over W

From Dijkstra monad to effect observation

Given a Dijkstra monad \mathcal{D} over W

$$
\mathrm{MA}=(w: \mathrm{W} A) \times \mathcal{D} A w
$$

$\mathrm{M} \xrightarrow[1]{\pi_{1}} \mathrm{~W}$

From Dijkstra monad to effect observation

Given a Dijkstra monad \mathcal{D} over W

$$
\mathrm{MA}=(w: \mathrm{W} A) \times \mathcal{D} A w
$$

$$
\mathrm{M} \xrightarrow[\pi_{1}]{ } \mathrm{W}
$$

Extends to a (categorical) equivalence
Dijkstra monads \cong Effect observations (W, D)
$\theta: \mathrm{M} \rightarrow \mathrm{W}$

A DSL for monad transformers

$$
\begin{gathered}
C::=\mathbb{M} A\left|C_{1} \times C_{2}\right|(x: A) \rightarrow C \mid C_{1} \rightarrow C_{2} \quad A \in \text { Type }_{\mathcal{L}} \\
t::=\text { ret } \mid \text { bind }\left|\left\langle t_{1}, t_{2}\right\rangle\right| \pi_{i} t|x| \lambda x . t\left|t_{1} t_{2}\right| \lambda^{\diamond x . t \mid t u}
\end{gathered}
$$

A DSL for monad transformers

$$
\begin{gathered}
C::=M A\left|C_{1} \times C_{2}\right|(x: A) \rightarrow C \mid C_{1} \rightarrow C_{2} \quad A \in \text { Type }_{\mathcal{L}} \\
t::=\text { ret } \mid \text { bind }\left|\left\langle t_{1}, t_{2}\right\rangle\right| \pi_{i} t|x| \lambda x . t\left|t_{1} t_{2}\right| \lambda^{\diamond} x . t \mid t u
\end{gathered}
$$

Observation 1: from monads $C[X]$ and M we can derive a monad $\mathcal{T}^{C}(M)$ Just substitute M by M in $\mathrm{C}[X]$

A DSL for monad transformers

$$
\begin{gathered}
C::=M A\left|C_{1} \times C_{2}\right|(x: A) \rightarrow C \mid C_{1} \rightarrow C_{2} \quad A \in \text { Type }_{\mathcal{L}} \\
t::=\text { ret } \mid \text { bind }\left|\left\langle t_{1}, t_{2}\right\rangle\right| \pi_{i} t|x| \lambda x . t\left|t_{1} t_{2}\right| \lambda^{\circ} x . t \mid t u
\end{gathered}
$$

Observation 1: from monads $C[X]$ and M we can derive a monad $\mathcal{T}^{C}(M)$ Just substitute M by M in $C[X]$

Observation 2: $\mathcal{T}^{C}(\mathrm{M})=C[\mathrm{M} / \mathrm{M}]$ comes with an M -algebra structure α

A DSL for monad transformers

$$
\begin{gathered}
C::=M A\left|C_{1} \times C_{2}\right|(x: A) \rightarrow C \mid C_{1} \rightarrow C_{2} \quad A \in \text { Type }_{\mathcal{L}} \\
t::=\text { ret } \mid \text { bind }\left|\left\langle t_{1}, t_{2}\right\rangle\right| \pi_{i} t|x| \lambda x . t\left|t_{1} t_{2}\right| \lambda^{\circ} x . t \mid t u
\end{gathered}
$$

Observation 1: from monads $C[X]$ and M we can derive a monad $\mathcal{T}^{C}(M)$ Just substitute M by M in $C[X]$

Observation 2: $\mathcal{T}^{C}(\mathrm{M})=C[\mathrm{M} / \mathrm{M}]$ comes with an M -algebra structure α

$$
\text { lift } \left.\quad: \quad \mathrm{M} \xrightarrow{\mathrm{M}\left(\mathrm{ret} \mathcal{T}^{c}(\mathrm{M})\right.}\right) \mathrm{M}\left(\mathcal{T}^{c}(\mathrm{M})\right) \xrightarrow{\alpha} \mathcal{T}^{c}(\mathrm{M})
$$

Reinterpreting DM4Free

Under a few conditions on $C: \mathcal{T}^{C}$ is actually a monad transformer
\sim uses a logical relation to extend \mathcal{T}^{C} on monad morphisms

Reinterpreting DM4Free

Under a few conditions on $C: \mathcal{T}^{C}$ is actually a monad transformer
\sim uses a logical relation to extend \mathcal{T}^{C} on monad morphisms

Effect observation for DM4Free:

Reinterpreting DM4Free

Under a few conditions on $C: \mathcal{T}^{C}$ is actually a monad transformer
\sim uses a logical relation to extend \mathcal{T}^{C} on monad morphisms

Effect observation for DM4Free:

For a general monad $C: \mathcal{T}^{C}$ only preserves monadic relations not monad morphisms

Further directions

\triangleright Monadic relations as effect observations

Further directions

\triangleright Monadic relations as effect observations
\triangleright Partial implementations in Coq, F^{\star}

Further directions

\triangleright Monadic relations as effect observations
\triangleright Partial implementations in Coq, F^{\star}
\triangleright Algebraic effects and handlers

Further directions

\triangleright Monadic relations as effect observations
\triangleright Partial implementations in Coq, F^{\star}
\triangleright Algebraic effects and handlers
\triangleright Relational reasoning

Further directions

\triangleright Monadic relations as effect observations
\triangleright Partial implementations in Coq, F^{\star}
\triangleright Algebraic effects and handlers
\triangleright Relational reasoning

Thank you !

Bibliography

D. Ahman, C. Hriţcu, K. Maillard, G. Martínez, G. Plotkin, J. Protzenko, A. Rastogi, and N. Swamy. Dijkstra monads for free. POPL. 2017.
S. Katsumata. Parametric effect monads and semantics of effect systems. POPL. 2014.
E. Moggi. Computational lambda-calculus and monads. LICS. 1989.
G. D. Plotkin and J. Power. Algebraic operations and generic effects. Applied Categorical Structures, 11(1):69-94, 2003.

