
Fast Elaboration for Dependent Type Theories

András Kovács

Eötvös Loránd University, Budapest

EUTypes WG Meeting, Krakow, 24 February 2019

1 / 15

Motivation, overview

Performance issues in current proof assistants.

Even greater performance demands on future proof assistants.

Cubical type theories, univalence, HITs, QITs: more moving parts,
computing transports, possibly huge computationally relevant proof terms.

Current goals:
Considering elaboration from ground-up, with performance as priority.
Benchmarking a prototype against Coq and Agda.

2 / 15

Motivation, overview

Performance issues in current proof assistants.

Even greater performance demands on future proof assistants.

Cubical type theories, univalence, HITs, QITs: more moving parts,
computing transports, possibly huge computationally relevant proof terms.

Current goals:
Considering elaboration from ground-up, with performance as priority.
Benchmarking a prototype against Coq and Agda.

2 / 15

Motivation, overview

Performance issues in current proof assistants.

Even greater performance demands on future proof assistants.

Cubical type theories, univalence, HITs, QITs: more moving parts,
computing transports, possibly huge computationally relevant proof terms.

Current goals:
Considering elaboration from ground-up, with performance as priority.
Benchmarking a prototype against Coq and Agda.

2 / 15

Motivation, overview

Performance issues in current proof assistants.

Even greater performance demands on future proof assistants.

Cubical type theories, univalence, HITs, QITs: more moving parts,
computing transports, possibly huge computationally relevant proof terms.

Current goals:
Considering elaboration from ground-up, with performance as priority.
Benchmarking a prototype against Coq and Agda.

2 / 15

Elaboration
Computing (explicit, well-typed) core from (implicit, incomplete) source
language. Includes type checking, unification, desugaring, tactics, etc.

Minimal example for filling holes:

id : (A : Set) → A → A

id A x = x

id' : (A : Set) → A → A

id' A x = id _ x

Output:

id : (A : Set) → A → A

id A x = x

id' : (A : Set) → A → A

id' A x = id A x

3 / 15

Two core computational tasks in elaboration:

1 βη-conversion checking.
2 Generating solutions for holes (metavariables).

4 / 15

Two core computational tasks in elaboration:
1 βη-conversion checking.

2 Generating solutions for holes (metavariables).

4 / 15

Two core computational tasks in elaboration:
1 βη-conversion checking.
2 Generating solutions for holes (metavariables).

4 / 15

Solving metas in the standard way
1: Source:

id : (A : Set) → A → A

id A x = x

id' : (A : Set) → A → A

id' A x = id _ x

2: Plug hole with fresh meta:

α = λ A x. ?

id : (A : Set) → A → A

id A x = x

id' : (A : Set) → A → A

id' A x = id (α A x) x

3: Solve meta:

α = λ A x. A

id : (A : Set) → A → A

id A x = x

id' : (A : Set) → A → A

id' A x = id (α A x) x

4: Unfold meta in output:

id : (A : Set) → A → A

id A x = x

id' : (A : Set) → A → A

id' A x = id A x

5 / 15

Problems with the standard way
Metas are essentially unscoped: solutions can’t refer to other definitions
and meta solutions. Hence: everything must be unfolded.

Input:

id' : {A : Set} → A → A

id' = id id id id

Output:

id' : {A : Set} → A → A

id' = λ {A} →

(id {((A → A) → A → A) → (A → A) → A → A})

(id {(A → A) → A → A})

(id {A → A})

(id {A})

6 / 15

Problems with the standard way
Metas are essentially unscoped: solutions can’t refer to other definitions
and meta solutions. Hence: everything must be unfolded.

Input:

id' : {A : Set} → A → A

id' = id id id id

Output:

id' : {A : Set} → A → A

id' = λ {A} →

(id {((A → A) → A → A) → (A → A) → A → A})

(id {(A → A) → A → A})

(id {A → A})

(id {A})

6 / 15

A better elaboration output

id' : {A : Set} → A → A

id' {A} =

let α : Set = A

β : Set = α → α

γ : Set = β → β

δ : Set = γ → γ

in (id {δ}) (id {γ}) (id {β}) (id {α})

7 / 15

This is a classic example for exponential time Hindley-Milner inference.

In Hindley-Milner, such silly programs are rare, and meta solutions don’t
get large in practice.

In dependent TT, the size of solved metas often dominates the elaboration
output. Hence, poor meta solutions imply poor elaboration output, and
also cause slowdowns whenever we need to compute with these solutions
during further elaboration.

Quadratic and worse solution sizes are quite easy to get.

Example: elaborating length-indexed vector expressions with implicit
length indices is quadratic in Agda and Coq: each cons contains a unary
natural number index with the size of the vector tail.

(Can hash consing help? Not really: overheads and failure to handle beta
redexes.)

8 / 15

This is a classic example for exponential time Hindley-Milner inference.

In Hindley-Milner, such silly programs are rare, and meta solutions don’t
get large in practice.

In dependent TT, the size of solved metas often dominates the elaboration
output. Hence, poor meta solutions imply poor elaboration output, and
also cause slowdowns whenever we need to compute with these solutions
during further elaboration.

Quadratic and worse solution sizes are quite easy to get.

Example: elaborating length-indexed vector expressions with implicit
length indices is quadratic in Agda and Coq: each cons contains a unary
natural number index with the size of the vector tail.

(Can hash consing help? Not really: overheads and failure to handle beta
redexes.)

8 / 15

This is a classic example for exponential time Hindley-Milner inference.

In Hindley-Milner, such silly programs are rare, and meta solutions don’t
get large in practice.

In dependent TT, the size of solved metas often dominates the elaboration
output. Hence, poor meta solutions imply poor elaboration output, and
also cause slowdowns whenever we need to compute with these solutions
during further elaboration.

Quadratic and worse solution sizes are quite easy to get.

Example: elaborating length-indexed vector expressions with implicit
length indices is quadratic in Agda and Coq: each cons contains a unary
natural number index with the size of the vector tail.

(Can hash consing help? Not really: overheads and failure to handle beta
redexes.)

8 / 15

This is a classic example for exponential time Hindley-Milner inference.

In Hindley-Milner, such silly programs are rare, and meta solutions don’t
get large in practice.

In dependent TT, the size of solved metas often dominates the elaboration
output. Hence, poor meta solutions imply poor elaboration output, and
also cause slowdowns whenever we need to compute with these solutions
during further elaboration.

Quadratic and worse solution sizes are quite easy to get.

Example: elaborating length-indexed vector expressions with implicit
length indices is quadratic in Agda and Coq: each cons contains a unary
natural number index with the size of the vector tail.

(Can hash consing help? Not really: overheads and failure to handle beta
redexes.)

8 / 15

This is a classic example for exponential time Hindley-Milner inference.

In Hindley-Milner, such silly programs are rare, and meta solutions don’t
get large in practice.

In dependent TT, the size of solved metas often dominates the elaboration
output. Hence, poor meta solutions imply poor elaboration output, and
also cause slowdowns whenever we need to compute with these solutions
during further elaboration.

Quadratic and worse solution sizes are quite easy to get.

Example: elaborating length-indexed vector expressions with implicit
length indices is quadratic in Agda and Coq: each cons contains a unary
natural number index with the size of the vector tail.

(Can hash consing help? Not really: overheads and failure to handle beta
redexes.)

8 / 15

This is a classic example for exponential time Hindley-Milner inference.

In Hindley-Milner, such silly programs are rare, and meta solutions don’t
get large in practice.

In dependent TT, the size of solved metas often dominates the elaboration
output. Hence, poor meta solutions imply poor elaboration output, and
also cause slowdowns whenever we need to compute with these solutions
during further elaboration.

Quadratic and worse solution sizes are quite easy to get.

Example: elaborating length-indexed vector expressions with implicit
length indices is quadratic in Agda and Coq: each cons contains a unary
natural number index with the size of the vector tail.

(Can hash consing help? Not really: overheads and failure to handle beta
redexes.)

8 / 15

Scoping for metavariables
Metavariables must be scoped more precisely than in Agda/Coq, in order
to have high-quality solutions.

How precise?
1 Full precision: metas are elaborated into let-definitions in arbitrary

local scopes.
▶ Dependently typed upgrade of Krishnawami and Dunfield’s

mixed-prefix bidirectional checkers.
▶ Allows fast let-generalization.
▶ More efficient, better output.
▶ Challenging to implement.

2 Limited precision: metas only have top-level scope, and are elaborated
into top-level mutual (unordered) definition blocks.

▶ Easy to implement.
▶ Less efficient and captures less sharing.
▶ Implemented in prototype.

9 / 15

Scoping for metavariables
Metavariables must be scoped more precisely than in Agda/Coq, in order
to have high-quality solutions.

How precise?

1 Full precision: metas are elaborated into let-definitions in arbitrary
local scopes.

▶ Dependently typed upgrade of Krishnawami and Dunfield’s
mixed-prefix bidirectional checkers.

▶ Allows fast let-generalization.
▶ More efficient, better output.
▶ Challenging to implement.

2 Limited precision: metas only have top-level scope, and are elaborated
into top-level mutual (unordered) definition blocks.

▶ Easy to implement.
▶ Less efficient and captures less sharing.
▶ Implemented in prototype.

9 / 15

Scoping for metavariables
Metavariables must be scoped more precisely than in Agda/Coq, in order
to have high-quality solutions.

How precise?
1 Full precision: metas are elaborated into let-definitions in arbitrary

local scopes.
▶ Dependently typed upgrade of Krishnawami and Dunfield’s

mixed-prefix bidirectional checkers.
▶ Allows fast let-generalization.
▶ More efficient, better output.
▶ Challenging to implement.

2 Limited precision: metas only have top-level scope, and are elaborated
into top-level mutual (unordered) definition blocks.

▶ Easy to implement.
▶ Less efficient and captures less sharing.
▶ Implemented in prototype.

9 / 15

Scoping for metavariables
Metavariables must be scoped more precisely than in Agda/Coq, in order
to have high-quality solutions.

How precise?
1 Full precision: metas are elaborated into let-definitions in arbitrary

local scopes.
▶ Dependently typed upgrade of Krishnawami and Dunfield’s

mixed-prefix bidirectional checkers.
▶ Allows fast let-generalization.
▶ More efficient, better output.
▶ Challenging to implement.

2 Limited precision: metas only have top-level scope, and are elaborated
into top-level mutual (unordered) definition blocks.

▶ Easy to implement.
▶ Less efficient and captures less sharing.
▶ Implemented in prototype.

9 / 15

Evaluators for elaboration
Recall the two computational tasks: conversion checking, meta solution
generation.

We need to perform both at the same time efficiently.

Conversion checking requires fast call-by-need evaluation to fully unfolded
values.

But for meta solutions, unfolded/normalized terms are very bad.

Solution: a “glued” evaluator, which computes two different semantic
values at the same time.

1 Glued values: fully unfolded values, which also carry local values
around.

2 Local values: these are computed to some head normal form while
not unfolding some class of definitions.

10 / 15

Evaluators for elaboration
Recall the two computational tasks: conversion checking, meta solution
generation.

We need to perform both at the same time efficiently.

Conversion checking requires fast call-by-need evaluation to fully unfolded
values.

But for meta solutions, unfolded/normalized terms are very bad.

Solution: a “glued” evaluator, which computes two different semantic
values at the same time.

1 Glued values: fully unfolded values, which also carry local values
around.

2 Local values: these are computed to some head normal form while
not unfolding some class of definitions.

10 / 15

Evaluators for elaboration
Recall the two computational tasks: conversion checking, meta solution
generation.

We need to perform both at the same time efficiently.

Conversion checking requires fast call-by-need evaluation to fully unfolded
values.

But for meta solutions, unfolded/normalized terms are very bad.

Solution: a “glued” evaluator, which computes two different semantic
values at the same time.

1 Glued values: fully unfolded values, which also carry local values
around.

2 Local values: these are computed to some head normal form while
not unfolding some class of definitions.

10 / 15

Evaluators for elaboration
Recall the two computational tasks: conversion checking, meta solution
generation.

We need to perform both at the same time efficiently.

Conversion checking requires fast call-by-need evaluation to fully unfolded
values.

But for meta solutions, unfolded/normalized terms are very bad.

Solution: a “glued” evaluator, which computes two different semantic
values at the same time.

1 Glued values: fully unfolded values, which also carry local values
around.

2 Local values: these are computed to some head normal form while
not unfolding some class of definitions.

10 / 15

Evaluators for elaboration
Recall the two computational tasks: conversion checking, meta solution
generation.

We need to perform both at the same time efficiently.

Conversion checking requires fast call-by-need evaluation to fully unfolded
values.

But for meta solutions, unfolded/normalized terms are very bad.

Solution: a “glued” evaluator, which computes two different semantic
values at the same time.

1 Glued values: fully unfolded values, which also carry local values
around.

2 Local values: these are computed to some head normal form while
not unfolding some class of definitions.

10 / 15

Evaluators for elaboration
Recall the two computational tasks: conversion checking, meta solution
generation.

We need to perform both at the same time efficiently.

Conversion checking requires fast call-by-need evaluation to fully unfolded
values.

But for meta solutions, unfolded/normalized terms are very bad.

Solution: a “glued” evaluator, which computes two different semantic
values at the same time.

1 Glued values: fully unfolded values, which also carry local values
around.

2 Local values: these are computed to some head normal form while
not unfolding some class of definitions.

10 / 15

Minimal glued evaluator in Haskell
Glues call-by-need and call-by-name machines together.

data Tm = Var Int | App Tm Tm | Lam Tm

data Val = VNe Int [Val] [Cl] | VLam [Val] [Cl] Tm

data Cl = Cl [Cl] Tm

eval ∷ [Val] → [Cl] → Tm → Val

eval vs cs t = case t of

Var i → case lookup i vs of

Just v -> v

Nothing -> VNe (length vs - i - 1) [] []

App t u → case (eval vs cs t, eval vs cs u) of

(VLam vs' cs' t', u') → eval (u':vs') (Cl cs u :cs') t'

(VNe i vs' cs' , u') → VNe i (u':vs') (Cl cs u :cs')

Lam t → VLam vs cs t

11 / 15

Glued evaluation

Unification is an operation on glued values.

Whenever we have a meta on one side of an equation, we get a local value
for a compact solution, and a glued value for fast occurs checking and
(Miller) pattern condition checking.

We can also reuse local values for fast approximate checks: first try to
unify local values, if that doesn’t yield a definite result, retry full
unification on glued values.

In principle, one could glue together any number of different evaluators,
each optimized for a specific task. Gluing just two machines seems to
strike a good balance of complexity and constant overheads.

12 / 15

Glued evaluation

Unification is an operation on glued values.

Whenever we have a meta on one side of an equation, we get a local value
for a compact solution, and a glued value for fast occurs checking and
(Miller) pattern condition checking.

We can also reuse local values for fast approximate checks: first try to
unify local values, if that doesn’t yield a definite result, retry full
unification on glued values.

In principle, one could glue together any number of different evaluators,
each optimized for a specific task. Gluing just two machines seems to
strike a good balance of complexity and constant overheads.

12 / 15

Glued evaluation

Unification is an operation on glued values.

Whenever we have a meta on one side of an equation, we get a local value
for a compact solution, and a glued value for fast occurs checking and
(Miller) pattern condition checking.

We can also reuse local values for fast approximate checks: first try to
unify local values, if that doesn’t yield a definite result, retry full
unification on glued values.

In principle, one could glue together any number of different evaluators,
each optimized for a specific task. Gluing just two machines seems to
strike a good balance of complexity and constant overheads.

12 / 15

Glued evaluation

Unification is an operation on glued values.

Whenever we have a meta on one side of an equation, we get a local value
for a compact solution, and a glued value for fast occurs checking and
(Miller) pattern condition checking.

We can also reuse local values for fast approximate checks: first try to
unify local values, if that doesn’t yield a definite result, retry full
unification on glued values.

In principle, one could glue together any number of different evaluators,
each optimized for a specific task. Gluing just two machines seems to
strike a good balance of complexity and constant overheads.

12 / 15

Takeaways so far
Kernel should consist of core syntax and a carefully chosen semantic
domain (in our case, a particular environment machine). (Early example:
Coquand (1996), since then: mini-TT, cubicaltt).

We should not compute directly on core syntax!

Core syntax should be treated as immutable machine code, used mainly for
on thing: evaluating into semantic domain. Unification, scope checking
etc. are all operations on semantic values.

We can go from semantics to syntax by a readback operation, which
generates meta solutions.

Computing in the presence of metas is critically important, so metas
should be in the kernel as well.

We get a larger kernel than in the Coq-style, but benefits seem to be
significant.

13 / 15

Takeaways so far
Kernel should consist of core syntax and a carefully chosen semantic
domain (in our case, a particular environment machine). (Early example:
Coquand (1996), since then: mini-TT, cubicaltt).

We should not compute directly on core syntax!

Core syntax should be treated as immutable machine code, used mainly for
on thing: evaluating into semantic domain. Unification, scope checking
etc. are all operations on semantic values.

We can go from semantics to syntax by a readback operation, which
generates meta solutions.

Computing in the presence of metas is critically important, so metas
should be in the kernel as well.

We get a larger kernel than in the Coq-style, but benefits seem to be
significant.

13 / 15

Takeaways so far
Kernel should consist of core syntax and a carefully chosen semantic
domain (in our case, a particular environment machine). (Early example:
Coquand (1996), since then: mini-TT, cubicaltt).

We should not compute directly on core syntax!

Core syntax should be treated as immutable machine code, used mainly for
on thing: evaluating into semantic domain. Unification, scope checking
etc. are all operations on semantic values.

We can go from semantics to syntax by a readback operation, which
generates meta solutions.

Computing in the presence of metas is critically important, so metas
should be in the kernel as well.

We get a larger kernel than in the Coq-style, but benefits seem to be
significant.

13 / 15

Takeaways so far
Kernel should consist of core syntax and a carefully chosen semantic
domain (in our case, a particular environment machine). (Early example:
Coquand (1996), since then: mini-TT, cubicaltt).

We should not compute directly on core syntax!

Core syntax should be treated as immutable machine code, used mainly for
on thing: evaluating into semantic domain. Unification, scope checking
etc. are all operations on semantic values.

We can go from semantics to syntax by a readback operation, which
generates meta solutions.

Computing in the presence of metas is critically important, so metas
should be in the kernel as well.

We get a larger kernel than in the Coq-style, but benefits seem to be
significant.

13 / 15

Takeaways so far
Kernel should consist of core syntax and a carefully chosen semantic
domain (in our case, a particular environment machine). (Early example:
Coquand (1996), since then: mini-TT, cubicaltt).

We should not compute directly on core syntax!

Core syntax should be treated as immutable machine code, used mainly for
on thing: evaluating into semantic domain. Unification, scope checking
etc. are all operations on semantic values.

We can go from semantics to syntax by a readback operation, which
generates meta solutions.

Computing in the presence of metas is critically important, so metas
should be in the kernel as well.

We get a larger kernel than in the Coq-style, but benefits seem to be
significant.

13 / 15

Takeaways so far
Kernel should consist of core syntax and a carefully chosen semantic
domain (in our case, a particular environment machine). (Early example:
Coquand (1996), since then: mini-TT, cubicaltt).

We should not compute directly on core syntax!

Core syntax should be treated as immutable machine code, used mainly for
on thing: evaluating into semantic domain. Unification, scope checking
etc. are all operations on semantic values.

We can go from semantics to syntax by a readback operation, which
generates meta solutions.

Computing in the presence of metas is critically important, so metas
should be in the kernel as well.

We get a larger kernel than in the Coq-style, but benefits seem to be
significant.

13 / 15

Prototype implementation

Available: https://github.com/AndrasKovacs/smalltt

Obviously more limited than Agda/Coq ...

... but I see no reason why an extended version to Agda/Coq capabilities
would be significantly slower.

14 / 15

https://github.com/AndrasKovacs/smalltt

Prototype implementation

Available: https://github.com/AndrasKovacs/smalltt

Obviously more limited than Agda/Coq ...

... but I see no reason why an extended version to Agda/Coq capabilities
would be significantly slower.

14 / 15

https://github.com/AndrasKovacs/smalltt

Prototype implementation

Available: https://github.com/AndrasKovacs/smalltt

Obviously more limited than Agda/Coq ...

... but I see no reason why an extended version to Agda/Coq capabilities
would be significantly slower.

14 / 15

https://github.com/AndrasKovacs/smalltt

Prototype implementation

Available: https://github.com/AndrasKovacs/smalltt

Obviously more limited than Agda/Coq ...

... but I see no reason why an extended version to Agda/Coq capabilities
would be significantly slower.

14 / 15

https://github.com/AndrasKovacs/smalltt

Thank you!

15 / 15

