
NEEDLE & KNOT: A Framework for
Meta-Theoretical Specifications with Binding

Steven Keuchel
Ghent University

steven.keuchel@ugent.be

Klara Mardirosian
KU Leuven

klara.mar@cs.kuleuven.be

Tom Schrijvers
KU Leuven

tom.schrijvers@kuleuven.be

1. Introduction
This extended abstract showcases NEEDLE & KNOT, a framework
for programming language mechanization. Our framework tackles
the problem that formal proofs about programming language se-
mantics and type-systems are long and error-prone. To guarantee
their correctness, techniques for mechanical formalization in proof
assistants, such as ones based on type-theories, have received much
attention in recent years. However, human mechanizers of pro-
gramming language meta-theory are unnecessarily burdened with
boilerplate that arises from variable bindings in programming lan-
guages. To tackle the substantial boilerplate for richer languages,
support from the proof assistant or from tools is mandatory.

NEEDLE & KNOT specifically target the boilerplate that arises
in type-safety proofs of typed programming languages. In partic-
ular, they use the syntactic approach to programming language
metatheory, invented by Wright and Felleisen [13] and popularized
by Pierce [10]. The treatment of variable binding typically com-
prises the better part of such formalizations. Most of this variable
binding infrastructure is repetitive and tedious boilerplate. By boil-
erplate we mean mechanical operations and lemmas that appear
in many languages, such as: 1) common operations like calculat-
ing the sets of free variables or the domain of a typing context,
appending contexts and substitutions; 2) lemmas about operations
like commutation of substitutions or the interaction between the
free-variable calculation and substitution; and 3) lemmas about se-
mantic relations such as the preservation of well-scoping and typ-
ing under operations.

Our approach consists of two ingredients: 1) KNOT, a domain-
specific specification language for abstract syntax and relational
semantics of programming languages and 2) NEEDLE, a tool to
generate COQ code from KNOT specifications. Our case studies
demonstrate that this approach significantly reduces the size of lan-
guage mechanizations and enables the mechanizer to skip the te-
dious boilerplate and directly work on the interesting meta-theory.

2. KNOT Specifications
This section illustrates KNOT on a specification of the simply-
typed lambda calculus (STLC). More elaborate specifications can
be found on our project page [1] and in the papers [7, 8].

2.1 Syntax Specifications
The following code snippet shows the KNOT declarations for the
syntax of STLC:

namespace Var : Tm sort Tm :=
sort Ty := + var (x@Var)
| tarr (T1 T2: Ty) | abs (x:Var) (T: Ty) ([x]t: Tm)
| tunit | app (t1 t2: Tm)

| tt

We start with the declaration of a namespace Var for term
variables, which is followed by the declarations of the two sorts
of STLC: simple types and terms. 1

Variable bindings are declared via binding specifications that
can be inserted in square brackets [] before a field. In the exam-
ple the abstraction case abs is the only one that contains a binding
specification [x]t which denotes that the variable x is brought into
scope in the body t. KNOT also supports richer binding specifi-
cations, e.g. it allows to bind an arbitrary amount of variables for
instance defined by binding forms such as declaration lists or typed
patterns [8].

The variable constructor var is specifically denoted as such by
introducing it with a + rather than than a |. Moreover, the variable
x appears in a different mode in the var constructor than in the abs
constructor: the λ-abstraction binds the variable x and we call it a
binding occurrence whereas the x in the variable constructor is a
reference or use occurrence.

Requiring the variable constructor to have no other fields than
a single reference and disallowing all other constructors to have
references essentially enforces a free monad-like structure on the
syntax which allows NEEDLE to derive the substitution function
fully generically.

2.2 Semantic Specifications
In addition to the specification of abstract syntax, KNOT also sup-
ports the definition of semantic relations like typing or reduction.
The following code extends the example specification in Section
2.1 with the typing relation for STLC:

env Env :=
+ empty
| evar : Var -> Ty : Typing

relation [Env] Typing Tm Ty :=
+ Tvar : {x -> T} -> Typing (var x) T
| Tabs : [x -> T1] Typing t (weaken T2 x) ->

Typing (abs x T1 t) (tarr T1 T2)
| Tapp : Typing t1 (tarr T11 T12) ->

Typing t2 T11 -> Typing (app t1 t2) T12
| Ttt : Typing (tt) (tunit)

The first declaration introduces typing environments Env that
map term variables to their associated types. It also states that
the term variable binding in the environment are substitutable for
Typing judgements. The typing relation Typing contains a rule for
each constructor of the Tm sort.

The rule Tvar takes care of the variable case, and like variable
constructors it is specifically designated as such using a +. The typ-
ing environment Env is only mentioned in the head of the decla-

1 Namespaces and sorts are a distinct concept in KNOT. It is possible to
declare multiple namespaces for the same sort, but usually there is at most
one namespace per sort.

1 2016/11/30

ration but is subsequently left implicit. Here the braces {} denote
a lookup in the implicit environment. The rule simply fetches the
typing information for the variable from the environment.

The rule Tabs for term abstractions (abs x T1 t) needs to
add a binding for the x variable to the implicit environment for the
typing of the body t. Only the difference is recorded: the binding
[x -> T1] is added to the environment. Furthermore, the domain
type T2 changes scope and needs to be explicitly weakened in the
premise.

In order for NEEDLE to derive the substitution lemma for this
relation we need to employ similar restrictions as in Section 2.1.
The variable constructor is required to only have a single lookup
as a premise that match the indices of the conclusions and no other
rules are allowed to contain lookups, or stated more generally, to
inspect the outer environment in any way.

3. The NEEDLE Tool
KNOT comes with a code generator tool, NEEDLE, that com-
piles KNOT specifications to specicalized COQ code. It uses a
de Bruijn representation that has been sufficiently generalized to
deal with multiple namespaces, e.g. to support truly heterogeneous
binders [8]. NEEDLE uses various syntax-directed elaborations to
generate functions for syntactic operations, theorems statements
and proof terms. Only lemmas that do not depend on the user-
specified abstract syntax are handled by (generic) proof tactics.

The kind of generated boilerplate includes:

1. Shifting, substitution and size functions.
2. Commutation and cancellation lemmas.
3. Well-scopedness predicates.
4. Shifting and substitution lemmas for well-scopedness.
5. Environment lookups.
6. Well-scopedness lemmas for lookups.
7. Well-scopedness lemmas for relations.
8. Shifting and substitution lemmas for relations.

NEEDLE also comes with a tactic library for automatically dis-
charging proof obligations that frequently come up in proofs of
weakening and substitution lemmas of type-systems. The code gen-
erator produces the necessary hints.

Not all type systems meet the restrictions of Section 2.2, e.g.
algorithmic type systems usually have specialized variable rules,
and the substitution lemma may not be fully derivable. In these
cases NEEDLE leaves minimal proof obligations for the human
mechanizer to fill in the gaps.

4. Case Studies
We have performed a case study of type-safety mechanizations,
that we regularly update, to demonstrate the benefits of the KNOT
approach. It allows us to make two complimentary evaluations. The
first considers different mechanizations for the same language (the
POPLMARK challenge) authored by different people with different
degrees of automation or tool support. The second compares KNOT
against manual mechanizations (written by the same author in a
consistent and highly automated style) across different languages.

POPLmark Comparison Because it is the most widely imple-
mented benchmark for mechanizing metatheory, we use parts 1A
+ 2A of the POPLMARK challenge to compare our work with
that of others [4, 5, 9, 11, 12]. These parts prove type-safety for
System F<: with algorithmic subtyping. Among these, the KNOT-
based solution is with 192 SLOC by far the smallest, comprising
half the SLOC of the next smallest solution that we are aware of,
which is based on the AUTOSUBST [11] library.

Manual vs. NEEDLE Mechanizations The previous comparison
only considers the type-safety proof for a single language, and thus
paints a rather one-sided picture of the savings to be had. For this
reason, our second comparison considers the savings across 11 lan-
guages. For each language, we have two COQ formalizations: one
developed without tool support and one that uses NEEDLE’s gener-
ated code. As their mechanizations are not readily available across
different tools and systems, we here pit KNOT & NEEDLE only
against our own manual mechanizations. To yield representative re-
sults, all our manual mechanizations have been written by the same
author in a consistent and highly automated style.

The 11 textbook calculi we consider range from the simply
typed lambda calculus to variants of System F that include mixes
products with nested pattern matching, existentials, sub-typing and
type operators.

5. Ongoing and future work
In an effort to precisely characterize the class of programming lan-
guages that KNOT supports and to further extend it, our current
work focuses on a thorough understanding of the algebraic founda-
tions of NEEDLE and KNOT. This will also increase the confidence
in the correctness of our approach.

Previous work on the foundations of syntax with binders in-
cludes Fiore et al.’s [6] approach based on initial algebra seman-
tics. Altenkirch et al. [2, 3] use relative monads, a generalization
of monads, to model intrinsic well-scoping and well-typing rela-
tions in such a way that the substitution lemma coincides with the
relative monad’s bind.

Our goal is to adapt Altenkirch et al.’s results to more traditional
extrinsic relations. Furthermore, we aim at extending these results
to a generic universe of languages and relations.

References
[1] Needle & Knot Project Page. https://users.ugent.be/

~skeuchel/knot. Accessed: 2016-11-28.
[2] T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be

endofunctors. In L. Ong, editor, Foundations of Software Science and
Computational Structures, volume 6014 of LNCS. Springer, 2010.

[3] T. Altenkirch, J. Chapman, and T. Uustalu. Relative monads for-
malised. JFR, 7(1), 2014.

[4] B. Aydemir and S. Weirich. LNgen: Tool support for locally nameless
representations. Technical report, UPenn, 2010.

[5] A. Charguéraud. http://www.chargueraud.org/softs/ln/. Ac-
cessed: 2015-07-02.

[6] M. P. Fiore, G. Plotkin, and D. Turi. Abstract Syntax and Variable
Binding, 2003. Extended Abstract.

[7] S. Keuchel, T. Schrijvers, and S. Weirich. Needle & Knot: Binder
Boilerplate Bound Tighter. Unpublished Draft.

[8] S. Keuchel, S. Weirich, and T. Schrijvers. Needle & Knot: Binder
Boilerplate Tied Up. In ESOP. Springer, 2016.

[9] G. Lee, B. C. Oliveira, S. Cho, and K. Yi. GMeta: A generic for-
mal metatheory framework for first-order representations. In ESOP.
Springer, 2012.

[10] B. C. Pierce. Types and Programming Languages. MIT press, 2002.
[11] S. Schäfer, T. Tebbi, and G. Smolka. Autosubst: Reasoning with de

bruijn terms and parallel substitutions. In X. Zhang and C. Urban,
editors, ITP’15, LNAI. Springer, 2015.

[12] J. Vouillon. A solution to the poplmark challenge based on de bruijn
indices. JAR, 49(3), 2012.

[13] A. Wright and M. Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1), 1994.

2 2016/11/30

https://users.ugent.be/~skeuchel/knot
https://users.ugent.be/~skeuchel/knot
http://www.chargueraud.org/softs/ln/

	Introduction
	Knot Specifications
	Syntax Specifications
	Semantic Specifications

	The Needle Tool
	Case Studies
	Ongoing and future work

