
Verification of the SQL compilation chain

Chantal Keller
Joint work with Léo Andres, Véronique Benzaken, Évelyne

Contejean, Raphaël Cornet and Eunice Martins

January, 23rd 2018

Verification of the SQL compilation chain Chantal Keller 1 / 16



Formal guaranties for data-centric applications

Relational databases

well-studied theory [Codd70]

mature implementations

Oracle, DB2 IBM, SQLServer, Postgresql, MySql, SQLite . . .

a standard SQL

Verification of the SQL compilation chain Chantal Keller 2 / 16



SQL: a declarative language

say what but not how

select lastname
from people p, director d, role r, movie m
where

d.mid = r.mid and d.pid = r.pid and p.pid = d.pid and m.mid = d.mid
and m.year > 1950;

1 collect all the data, then filter
2 collect only useful data, as fast as possible

Verification of the SQL compilation chain Chantal Keller 3 / 16



SQL: a declarative language

say what but not how

select lastname
from people p, director d, role r, movie m
where

d.mid = r.mid and d.pid = r.pid and p.pid = d.pid and m.mid = d.mid
and m.year > 1950;

1 collect all the data, then filter

2 collect only useful data, as fast as possible

Verification of the SQL compilation chain Chantal Keller 3 / 16



SQL: a declarative language

say what but not how

select lastname
from people p, director d, role r, movie m
where

d.mid = r.mid and d.pid = r.pid and p.pid = d.pid and m.mid = d.mid
and m.year > 1950;

1 collect all the data, then filter
2 collect only useful data, as fast as possible

Verification of the SQL compilation chain Chantal Keller 3 / 16



Compilation: from solution 1 to solution 2

select lastname
from people p, director d, role r, movie m
where

d.mid = r.mid and d.pid = r.pid and p.pid = d.pid and m.mid = d.mid
and m.year > 1950;

σd.mid = r.mid∧...

×

× movie

× role

people director

Verification of the SQL compilation chain Chantal Keller 4 / 16



Compilation: from solution 1 to solution 2

σd.mid = r.mid∧...

×

× movie

× role

people director

σ m.mid = d.mid
∧ year > 1950

×

σp.pid = d.pid movie

×

σ r.mid = d.mid
∧ r.pid = d.pid

people

×

role director

Verification of the SQL compilation chain Chantal Keller 4 / 16



Compilation: from solution 1 to solution 2

σ m.mid = d.mid
∧ year > 1950

×

σp.pid = d.pid movie

×

σ r.mid = d.mid
∧ r.pid = d.pid

people

×

role director

Index Join

Index Join
Index Scan on movie
Index Cond: mid = d.mid
Filter: year > 1950

Hash Join
r.mid = d.mid ∧
r.pid = d.pid

Index Scan on people
Index Cond: pid = d.pid

Seq Scan
on role Hash

Seq Scan
on director

Verification of the SQL compilation chain Chantal Keller 4 / 16



The compilation chain

, verified in Coq

SQL

parser/ preprocessing semantics
analysis

AST (extended) relational
algebra

query execution plan

logical optimisation logical
query plan rewriting

physical optimisation
plan generation

e1

e2

e1 → e2

Verification of the SQL compilation chain Chantal Keller 5 / 16

executable
semantics

correct and
complete parsing

semantic preserving
transformation

semantic preserving
optimisations

adequacy between logical
and physical operators

trace
verification



The compilation chain, verified in Coq

SQL

parser/ preprocessing semantics
analysis

AST (extended) relational
algebra

query execution plan

logical optimisation logical
query plan rewriting

physical optimisation
plan generation

e1

e2

e1 → e2

Verification of the SQL compilation chain Chantal Keller 5 / 16

executable
semantics

correct and
complete parsing

semantic preserving
transformation

semantic preserving
optimisations

adequacy between logical
and physical operators

trace
verification



The compilation chain, verified in Coq

SQL

parser/ preprocessing semantics
analysis

AST (extended) relational
algebra

query execution plan

logical optimisation logical
query plan rewriting

physical optimisation
plan generation

e1

e2

e1 → e2

Verification of the SQL compilation chain Chantal Keller 5 / 16

executable
semantics

correct and
complete parsing

semantic preserving
transformation

semantic preserving
optimisations

adequacy between logical
and physical operators

trace
verification



The compilation chain, verified in Coq

SQL

parser/ preprocessing semantics
analysis

AST (extended) relational
algebra

query execution plan

logical optimisation logical
query plan rewriting

physical optimisation
plan generation

e1

e2

e1 → e2

Verification of the SQL compilation chain Chantal Keller 5 / 16

executable
semantics

correct and
complete parsing

semantic preserving
transformation

semantic preserving
optimisations

adequacy between logical
and physical operators

trace
verification



The compilation chain, verified in Coq

SQL

parser/ preprocessing semantics
analysis

AST (extended) relational
algebra

query execution plan

logical optimisation logical
query plan rewriting

physical optimisation
plan generation

e1

e2

e1 → e2

Verification of the SQL compilation chain Chantal Keller 5 / 16

executable
semantics

correct and
complete parsing

semantic preserving
transformation

semantic preserving
optimisations

adequacy between logical
and physical operators

trace
verification



The compilation chain, verified in Coq

SQL

parser/ preprocessing semantics
analysis

AST (extended) relational
algebra

query execution plan

logical optimisation logical
query plan rewriting

physical optimisation
plan generation

e1

e2

e1 → e2

Verification of the SQL compilation chain Chantal Keller 5 / 16

executable
semantics

correct and
complete parsing

semantic preserving
transformation

semantic preserving
optimisations

adequacy between logical
and physical operators

trace
verification



The compilation chain, verified in Coq

SQL

parser/ preprocessing semantics
analysis

AST (extended) relational
algebra

query execution plan

logical optimisation logical
query plan rewriting

physical optimisation
plan generation

e1

e2

e1 → e2

Verification of the SQL compilation chain Chantal Keller 5 / 16

executable
semantics

correct and
complete parsing

semantic preserving
transformation

semantic preserving
optimisations

adequacy between logical
and physical operators

trace
verification



The compilation chain, verified in Coq

SQL

parser/ preprocessing semantics
analysis

AST (extended) relational
algebra

query execution plan

logical optimisation logical
query plan rewriting

physical optimisation
plan generation

e1

e2

e1 → e2

Verification of the SQL compilation chain Chantal Keller 5 / 16

executable
semantics

correct and
complete parsing

semantic preserving
transformation

semantic preserving
optimisations

adequacy between logical
and physical operators

trace
verification



Not detailed parts

SQL

parser/ preprocessing semantics
analysis

AST (extended) relational
algebra

query execution plan

logical optimisation logical
query plan rewriting

physical optimisation
plan generation

e1

e2

e1 → e2

Verification of the SQL compilation chain Chantal Keller 6 / 16

executable
semantics

correct and
complete parsing

semantic preserving
transformation

semantic preserving
optimisations



Runtime: physical algebra

SQL

parser/ preprocessing semantics
analysis

AST (extended) relational
algebra

query execution plan

logical optimisation logical
query plan rewriting

physical optimisation
plan generation

e1

e2

e1 → e2

Verification of the SQL compilation chain Chantal Keller 7 / 16

executable
semantics



Iterator interface: online algorithms

Index Join

Index Join
Index Scan on movie
Index Cond: mid = d.mid
Filter: year > 1950

Hash Join
r.mid = d.mid ∧
r.pid = d.pid

Index Scan on people
Index Cond: pid = d.pid

Seq Scan
on role Hash

Seq Scan
on director

Verification of the SQL compilation chain Chantal Keller 8 / 16



Abstract iterator interface

Record Cursor (elt : Type) : Type := {
cursor : Type;
next : cursor → result elt * cursor;
has_next : cursor → Prop;
reset : cursor → cursor;

collection : cursor → list elt;
visited : cursor → list elt;
coherent : cursor → Prop;

next_collection : forall c, coherent c → collection (snd (next c))) = collection c;
next_coherent : forall c, coherent c → coherent (snd (next c));
...

ubound : cursor → nat;
ubound_complete :

forall c acc, coherent c → ∼has_next (fst (iter next (ubound c) c acc));
}.

Verification of the SQL compilation chain Chantal Keller 9 / 16



Implementations and combinations

Iterator interface operators
φ algebra

data
centric

operators
simple index

based
sort

based
sql

algebra

map Seq Scan Index scan
Bitmap index scan Sort scan r , π

join Nested loop
Block nested loop

Hash join
Index join Sort merge join ×

filter Filter σ
group Group γ
avg
count
max
sum

Aggregate
Hash

Hash aggregate
aggregate

Intermediate results storage operators
Materialize

Verification of the SQL compilation chain Chantal Keller 10 / 16



Adequacy between logical and physical operators

SQL

parser/ preprocessing semantics
analysis

AST (extended) relational
algebra

query execution plan

logical optimisation logical
query plan rewriting

physical optimisation
plan generation

e1

e2

e1 → e2

Verification of the SQL compilation chain Chantal Keller 11 / 16

adequacy between logical
and physical operators



High-level specification of data-centric operators

Definition is_a_filter_op (init res : container) (p : A → bool) :=
forall t, nb_occ t res = (nb_occ t init) * (if p t then 1 else 0).

Lemma Filter_is_a_filter_op c p:
is_a_filter_op (materialize c) (materialize (mk_Filter c p)) p.

Lemma Sigma_is_computable_by_any_filter_op :
forall init res p, is_a_filter_op init res p →
forall q,

eval_query env q =R= content init →
eval_query env (Sigma p q) =R= content res.

Verification of the SQL compilation chain Chantal Keller 12 / 16



Certification of query execution plans

SQL

parser/ preprocessing semantics
analysis

AST (extended) relational
algebra

query execution plan

logical optimisation logical
query plan rewriting

physical optimisation
plan generation

e1

e2

e1 → e2

Verification of the SQL compilation chain Chantal Keller 13 / 16

trace
verification



Using traces

A good query planner is complex software

Instead, call an external planner and check the answer
Oracle, Postgresql

Bonus: a posteriori certification of these software

Verification of the SQL compilation chain Chantal Keller 14 / 16



Checking the answer

We adopt a reflexive approach

1 associate a logical operator to each physical operator:
adequacy

2 guess which optimisations have been used: “replay” them
using the property that they are semantic preserving

Guessing may be hard: no known normal form

Verification of the SQL compilation chain Chantal Keller 15 / 16



Conclusion

The first verification of the full SQL compilation chain

Combines lots of techniques provided by Type Theory
high degree of abstraction
“traditional” proofs of algorithms
reflexive verification of traces
program extraction
. . .

Perspective: non-relational databases
abstraction should be good enough to handle them

Verification of the SQL compilation chain Chantal Keller 16 / 16


