
Overview of the system LAV
Ongoing and future work

Modelling Program Behaviour within Software
Verification Tool LAV

Milena Vujošević Janičić

Faculty of Mathematics
University of Belgrade

Serbia

TTT, Paris, January 2017.

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

Joint work with

Viktor
Kuncak
EPFL
Switzerland

Dušan Tošić
University of
Belgrade,
Serbia

Filip Marić
University of
Belgrade,
Serbia

Branislava Živković
University of
Belgrade,
Serbia

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

Overview of the talk

Modelling Program Behaviour within LAV

1 Overview of the system LAV
External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

2 Ongoing and future work
Evaluation
Applications
Functional correctness
Parallelisation

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

1 Overview of the system LAV
2 Ongoing and future work

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

Scope and aims

Modelling program behaviour
One of the first steps for using logical reasoning for software
verification
We describe the model used and the way the program
semantics is treated in our software verification tool LAV.

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

Scope and aims

LAV — http://argo.matf.bg.ac.rs/?content=lav

LAV — a lion in Serbian (LLVM Automated Verifier)
Proving user given assertions and a bug finding tool:

division by zero
buffer overflows
null pointer dereferencing

Primarily aimed for C programs
Implemented in C++, publicly available and open source
LAV combines symbolic execution, SAT encoding of program’s
control-flow, bounded model checking

Milena Vujošević Janičić Modelling Program Behaviour within LAV

http://argo.matf.bg.ac.rs/?content=lav


Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

LAV and External Systems

LLVM, LAV and SMT solvers

Code

LLVM
llvm.org

LAVLLVM IR

SMT
solver

Boolector,
MathSAT,
Yices, Z3

formula

sat/unsat

formula

sat/unsat

Report

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

LAV and External Systems

LLVM, LAV and SMT solvers

Code

LLVM
llvm.org LAVLLVM IR

SMT
solver

Boolector,
MathSAT,
Yices, Z3

formula

sat/unsat

formula

sat/unsat

Report

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

LAV and External Systems

LLVM, LAV and SMT solvers

Code

LLVM
llvm.org LAVLLVM IR

SMT
solver

Boolector,
MathSAT,
Yices, Z3

formula

sat/unsat

formula

sat/unsat

Report

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

LAV and External Systems

LLVM, LAV and SMT solvers

Code

LLVM
llvm.org LAVLLVM IR

SMT
solver

Boolector,
MathSAT,
Yices, Z3

formula

sat/unsat

formula

sat/unsat

Report

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

LAV and External Systems

LLVM, LAV and SMT solvers

Code

LLVM
llvm.org LAVLLVM IR

SMT
solver

Boolector,
MathSAT,
Yices, Z3

formula

sat/unsat

formula

sat/unsat

Report

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

LAV and External Systems

LLVM, LAV and SMT solvers

Code

LLVM
llvm.org LAVLLVM IR

SMT
solver

Boolector,
MathSAT,
Yices, Z3

formula

sat/unsat

formula

sat/unsat

Report

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

LAV and External Systems

LLVM, LAV and SMT solvers

Code

LLVM
llvm.org LAVLLVM IR

SMT
solver

Boolector,
MathSAT,
Yices, Z3

formula

sat/unsat

formula

sat/unsat

Report

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

LAV and External Systems

LLVM, LAV and SMT solvers

Code

LLVM
llvm.org LAVLLVM IR

SMT
solver

Boolector,
MathSAT,
Yices, Z3

formula

sat/unsat

formula

sat/unsat

Report

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

Symbolic execution

Block summary
LLVM IR — blocks of code with no internal branching or loops
LAV performs symbolic execution to obtain block summaries:
FOL formulas describing each block

Transformation(b) =
∧

v∈V

(eb(v) = ev )
∧

AdditionalConstraints(b)

where V is a set of variables and ev is the value of v at the
end of the block, e(b, v), expressed in terms of initial values
(values at the starting point of the block)
AdditionalConstraints keep track of some important
constraints for variables

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

Symbolic execution

Pointers and memory
Flat memory model, accessing memory via pointers — the
theory of arrays:

store — function for storing a value at a certain index
select — function for reading a value at a certain index
Axioms

∀a ∀i ∀v (select(store(a, i , v), i) = v)
∀a ∀i ∀j ∀v (i 6= j ⇒ select(store(a, i , v), j) = select(a, j))

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

Symbolic execution

Buffers, Structures and Unions
Buffers — sequences of memory locations allocated statically
or dynamically and accessible by a pointer p and an offset n.
Uninterpreted functions left and right keep track of the
number of bytes reserved for a pointer
Axioms:

∀p ∀n left(p + n) = left(p)− n
∀p ∀n right(p + n) = right(p)− n

For efficiency reasons, only relevant instances of these axioms
are added to the set of additional constraints attached to the
block.

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

Control Flow

Blocks of code

pred 1 pred 2 ... pred N

b
(c1, ..., cM)

succ 1 succ 2 ... succ M

SAT encoding
Propositional variables encode transitions between blocks
Propositional variables are used to reconstruct a program path
from the model generated by a solver

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

FOL encoding

Description of a block: block’s summary ∧ control flow information

Descripton(b) = EntryCond(b) ∧ Transformation(b) ∧ ExitCond(b)

EntryCond(b) = activating(b) ∧ initialize(b)

Transformation(b) =
∧

v∈V

(eb(v) = ev )
∧

AdditionalConstraints(b)

ExitCond(b) = jump(b) ∧ leaving(b)

Descriptions are used for constructing compound
correctness/incorrectness conditions of individual instructions

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

FOL encoding

Entry condition

activating(b): There was a transition from a predecessor block to
the block b iff the block b was active: ∨

pred∈P
transition(pred , b)

 ⇔ active(b)

initialize(b): If the block b is reached from the block pred , then
the initial values of variables within the block b will
be the values of the variables at the leaving point of
pred :

∧
pred∈P

transition(pred , b) ⇒
∧

v∈Vf

e(pred , v) = s(b, v)



Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

FOL encoding

Exit conditions
jump(b): If the block b was active and if a leaving condition ci

of the block b was met, then the control was passed
to the block succi , and vice versa:∧

succi∈S
((active(b) ∧ e(b, ci )) ⇔ transition(b, succi ))

leaving(b): The block b was active iff it led to some other block
(or to exit of the function):

active(b) ⇔
∨

succ∈S
transition(b, succ)

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

Control Flow

Loops
Loops are eliminated:

Overapproximation: simulation of the first n and the last m
entries to the loop
Underapproximation: loops are unrolled

Function calls
Case 1: A contract available
Case 2: A definition available:

The postcondition ψ of the called function is
conjunction of descriptions of its blocks
ψ is inlined into caller’s summary

Case 3: Nothing available: the memory is set to a new fresh
variable

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

Correctness conditions

Correctness conditions
C ⇒ safe(c) — correctness condition
C ⇒ ¬safe(c) — incorrectness condition
C — context C defines command’s neighbourhood that is
taken into consideration
safe(c) — safety property of a command c given by a bug
definition or by an assertion

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

Correctness conditions

Types of commands: Safe, Flawed, Unreachable and Unsafe

� C ⇒ safe(c) — the command c is safe in the context C. It is
also safe in all wider contexts (if it is reachable).
� C ⇒ ¬safe(c) — the command c is flawed in the context C.
It is also flawed in all wider contexts (if it is reachable)
� C ⇒ safe(c) and � C ⇒ ¬safe(c) — the command c is
unreachable. It is also unreachable in all wider contexts.
2 C ⇒ safe(c) and 2 C ⇒ ¬safe(c) — the command c is
unsafe in the context C. In some wider context it may change
its status.

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

Correctness conditions

Types of commands: Safe, Flawed, Unreachable and Unsafe

� C ⇒ safe(c) — the command c is safe in the context C. It is
also safe in all wider contexts (if it is reachable).
� C ⇒ ¬safe(c) — the command c is flawed in the context C.
It is also flawed in all wider contexts (if it is reachable)
� C ⇒ safe(c) and � C ⇒ ¬safe(c) — the command c is
unreachable. It is also unreachable in all wider contexts.
2 C ⇒ safe(c) and 2 C ⇒ ¬safe(c) — the command c is
unsafe in the context C. In some wider context it may change
its status.

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

Correctness conditions

Contexts
Checking status in wider contexts usually takes more time
LAV: empty context —> block context —> function context
—> other wider contexts
Wider contexts are considered only for unsafe commands
Different contexts give room for different kind of parallelisation
(ongiong work)

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

Transforming a Code Model to a SMT Goal

Code model
The (quantifier-free) formula that models a program code
typically uses:

bit-vector arithmetic (or linear arithmetic),
theory of uninterpreted functions,
the theory or arrays (optionally)

There are several SMT solvers that provide support for such
combinations of theories.

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

External Systems
Symbolic execution and SAT encoding
Correctness conditions
Optimizations

Optimizations

Some optimizations
Only one description is constructed for consecutive blocks
Rewriting is applied for simplifying expressions in formulas
Unchanged values of variables are monitored and propagated
through the blocks
Selective usage of information in different contexts
Incremental usage of SMT solvers
Reduction of the number of solver calls

Future work
Optimisations are not formally described and should be formally
justified.

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

Evaluation
Applications
Functional correctness
Parallelisation

1 Overview of the system LAV
2 Ongoing and future work

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

Evaluation
Applications
Functional correctness
Parallelisation

Related tools

Comparison to related tools
Related tools are based on symbolic execution and model
checking
CBMC (http://www.cprover.org/cbmc/), LLBMC
(http://llbmc.org/), ESBMC (http://www.esbmc.org/),
Klee (https://klee.github.io/)
Comparison was done on different benchmarks, LAV gave good
results
Details in: M.V. Janicic, V. Kuncak ”Development and
Evaluation of LAV: an SMT-Based Error Finding Platform”
(VSTTE ’12)

Milena Vujošević Janičić Modelling Program Behaviour within LAV

http://www.cprover.org/cbmc/
http://llbmc.org/
http://www.esbmc.org/
https://klee.github.io/


Overview of the system LAV
Ongoing and future work

Evaluation
Applications
Functional correctness
Parallelisation

Applications in Education

Applications in Education
Safety-critical computer programs vs students’ programs
Software verification can add to the quality of automated
grading
Details in: M.V. Janičić, M. Nikolić, D. Tošić, V. Kuncak,
”Software Verification and Graph Symilarity for Automated
Evaluation of Students’ Programs”, Information and Software
Technology, Elsevier, 2013.

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

Evaluation
Applications
Functional correctness
Parallelisation

Applications in Education

Regression verification

Functional equivalence of similar programs (student’s and
teacher’s solution)
Partial equivalence and k-equivalence
Advantages and challenges

Higher level of reliability
No need for explicit specification
Undecidability
Nontrivial transformations of programs are necessary

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

Evaluation
Applications
Functional correctness
Parallelisation

Applications in Education

Regression verification
Developing set of tools for necessary program transformations
Using LAV for proving partial functional equivalence (methods
described in B. Godlin, O. Strichman ”Regression verification:
proving the equivalence of similar programs”, (2013) Software
Testing, Verification & Reliability. John Wiley & Sons.) and
for proving k equivalence.
Details in:M. V. Janičić and F. Marić. Regression Verification
for Automated Evaluation of Students Programs, 2016.
Submitted.
We are interested in developing new methods

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

Evaluation
Applications
Functional correctness
Parallelisation

Parallelisation in LAV

Motivation
Take advantage of both hardware properties and
characteristics of software verification conditions
Different contexts give room for different kind of parallelisation
BMC — one compound formula describing program execution,
does not scale well
Simple example
int f(int a, int b, int c, int d) {
a = (b<<3)*((c>>2)/3);
b = (a<<3)*((c>>2)/3);
c = (b<<3)*((a>>2)/3); //3 commands simulating complex calculations
a = b/c + c/a + a/b;
b = a/d; //4 divisions, 4 checks for division by zero
return b;

}

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

Evaluation
Applications
Functional correctness
Parallelisation

Experiments

no lines LAV CBMC
14 0.08 0.64
15 0.08 0.99
16 0.09 1.17
17 0.10 1.34
18 0.09 2.44
19 0.09 3.16
20 0.11 4.06
21 0.10 18.63
22 0.14 27.20
23 0.11 22.56
24 0.11 48.25
25 0.12 79.45
26 0.14 108.93
27 0.13 215.31
28 0.17 ↗
29 0.13 ↗
30 0.13 ↗
60 0.23 ↗

Justification for the previous intuition:
already 28 commands time out for
CBMC (state of the art BMC), while
parallelisation of block context within
LAV gives results that are scaling well.
Results are given in seconds.

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

Evaluation
Applications
Functional correctness
Parallelisation

Parallelisation in LAV

Parallelisation of functions
Programs consist of functions — parallelisation may be
naturally done by verifying functions in parallel
There are similar examples where this parallelisation may
significantly speed-up verification time

Ongoing and future work
We have very promising experimental results, but need formal
justification that these parallelisations keep semantics and
produce valid results.
We also need to formally describe types of commands.

Milena Vujošević Janičić Modelling Program Behaviour within LAV



Overview of the system LAV
Ongoing and future work

Evaluation
Applications
Functional correctness
Parallelisation

Ongoing and future work
We hope that firmer theoretical grounds would lead us to new
insights and further improvements of the tool.

Thank you!

Milena Vujošević Janičić Modelling Program Behaviour within LAV


	Overview of the system LAV
	External Systems
	Symbolic execution and SAT encoding
	Correctness conditions
	Optimizations

	Ongoing and future work
	Evaluation
	Applications
	Functional correctness
	Parallelisation


