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Verified software verification?

Correctness of software is critical in many domains
• Automated software verification tools are getting more and
more accepted and involved in software development process

• But, are these tools themselves correct?
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Ongoing work

LAV
• Deals with code in widely used LLVM IR
• Uses SMT solvers for checking verification conditions

Goals
• Define a suitable LLVM IR semantics
• Model LAV’s correctness conditions construction
• Prove properties of LAV such as soundness and completeness
(for some classes of programs)

Ultimate goal
Formalization within a proof assistant and extraction of a verified
software verifier for LLVM IR
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Restrictions and extensions

Start with a subset of LLVM IR and a subset of LAV
• Consider programs without loops and recursive function calls
(a wider class of programs reduces to this one by unrolling)

• Cover integer manipulations, simple memory model (no
pointers) and only functions with available definitions

• We will denote the set of functions that satisfy these
restrictions as FR and programs consisting of such functions
as PFR

• Cover LAV without optimizations LAVR

Spiral development instead of waterfall development
• Models and proofs should be easily extensible going from very
restricted to the full power of both LLVM IR and LAV
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LLVM IR characteristics

• An LLVM-based compiler is structured as a translation from a
high-level source language to the LLVM IR

• It is SSA-based IR, originally developed as a research tool for
studying optimizations and modern compilation techniques,
but nowadays is much more than that.

• It is a real world IR (not a toy language): big and complex,
spanning a big number of possible language constructs

• It is challenging to formally reason about it
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LLVM IR syntax (picture taken from VeLLVM paper popl’12)

Milena Vujošević Janičić
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LLVM IR example

int add(int x, int y) {
return x + y;

}

int main()
{

int a = add(3,5);
return 0;

}

define i32 @add(i32 %x, i32 %y) #0 {
entry:

%x.addr = alloca i32, align 4
%y.addr = alloca i32, align 4
store i32 %x, i32* %x.addr, align 4
store i32 %y, i32* %y.addr, align 4
%0 = load i32* %x.addr, align 4
%1 = load i32* %y.addr, align 4
%add = add i32 %0, %1
ret i32 %add

}

define i32 @main() #0 {
entry:

%retval = alloca i32, align 4
%a = alloca i32, align 4
store i32 0, i32* %retval
%call = call i32 @add(i32 3, i32 5)
store i32 %call, i32* %a, align 4
ret i32 0

}
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Defining LLVM IR semantics

Different ways for modelling LLVM IR semantics
• Some recent projects give some concrete definitions of
semantics

• It is almost necessary to ignore (or abstract) a number of
details
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Examples of definitons of LLVM IR semantics (1)

Application in cryptography
Corin and Manzano. Efficient Symbolic Execution for Analysing
Cryptographic Protocol Implementations. ESSoS 2011.

LLVM IR semantics for symbolic execution
• Concrete and symbolic semantics for LLVM IR
• Showed that their approach for analysing cryptographic
protocol implementations is sound (by proving operational
correspondence between the two semantics).
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Examples of definitons of LLVM IR semantics (2)

Application in program transformations and compilation
Zhao, Nagarakatte, Martin, and Zdancewic. Formalizing the LLVM
IR for Verified Program Transformations. POPL ’12. 427-440.

Verified LLVM — Vellvm
• A framework that includes a formal semantics and associated
tools for mechanized verification of LLVM IR code, IR to IR
transformations, and analyses.

• It is built using the Coq interactive theorem prover.
• It includes multiple operational semantics and proves relations
among them to facilitate different reasoning styles in the
context of compiler’s transformations.
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Our LLVM IR semantics

Transition system
• Instructions change memoryMC
• The semantics is described in terms of a transition system with
states 〈f : bn : ck,MC〉 and with transitions corresponding to
executions of individual instructions

• Our semantic must cover runtime and other errors
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Our LLVM IR semantics

Error conditions
• Runtime errors or unexpected program behaviour can be
caused by invalid operands values

• Some error conditions:

bop type op1, op2 error kind error condition
add overflow signed(type) ∧ op1 > 0

∧op2 > 0 ∧ op1 + op2 < 0
sub signed(type) ∧ op1 > 0

∧op2 < 0 ∧ op1 + op2 < 0
sdiv signed(type) ∧ op1 = min_value(type)

∧op2 = −1
mul signed(type) ∧ op2 > 0

∧op1 > max_value(type)/op2
udiv, sdiv, division op2 = 0
urem, srem by zero
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Some concrete semantics rules

Binary operations
c = (id = bop t op1, op2) ∧i ¬condi(err_kindi, bop(t,MC(op1),MC(op2)))
〈f : bn : ck,MC〉 →P 〈f : bn : ck+1,MC{id 7→ (t,MC(op1) bopMC(op2))}〉

BOP

c = (id = bop t op1, op2) condi(err_kindi, bop(t,MC(op1),MC(op2)))
〈f : bn : ck,MC〉 →P ERR

BOPerri

Branching
c = (br val l1 l2)

MC(val) = > block(l1) = bt

〈f : bn : ck,MC〉 →P 〈f : bt : c1,MC〉
BRT

c = (br val l1 l2)
MC(val) = ⊥ block(l2) = bf

〈f : bn : ck,MC〉 →P 〈f : bf : c1,MC〉
BRF
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Execution

Definition (Partial concrete execution)
For a program P, for a function f = (fdcl, b1 . . . bn . . . bm) and a
command ck of a block bn, a partial concrete execution
CE(P,f :bn:ck) is a sequence of states s1s2...sl such that

s1 = 〈f : b1 : c1,MC[a1,...ai]〉
∗→P 〈f : bn : ck,M

bn:ck−1

C 〉

→P 〈f : b : c,Mbn:ck
C 〉 = sl

(Intuitively, ck is the last executed instruction.)
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Execution and transition — concrete

Definition (Concrete block execution and transition)
Let CE◦ be a partial concrete execution s1s2...sl.
concrete block execution If there exists i such that

i ∈ {1, . . . , (l − 1)} and si = 〈f : b : c,MC〉 is in
CE◦, we say that a block b gets executed in CE◦ and
we write CE◦ I b.

concrete block transition If there exists v such that
v ∈ {1, . . . , (l − 1)} and
sv = 〈f : bi : cj ,MC〉→P〈f : bi+1 : c1,M′C〉 = sv+1

are in CE◦, we say that there is transition from block
bi to block bi+1 and we write CE◦ I tr(bi, bi+1).
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Introducing orderings

Execution paths
• Intuitively, LAV constructs a formula that describes all possible
executions through a function (or through a part of a function)

• A model of such formula should correspond to some concrete
(partial) execution

• We need to sort functions and blocks (instructions inside one
block are naturally sorted)
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Ordering functions

Partial ordering ≺f

• For a recursion-free program P and its set of functions F , we
define relation ≺f :≺f⊆ F × F in the following way: f1 ≺f f2
if f1 is called within f2 and ≺f is transitivity closed.

• ≺f is a strict partial ordering over F
• A sequence of functions f1, f2, ... fn is sorted if there are no
indices i and j such that i < j and fj ≺f fi (Intuitively, such
an ordering of the functions corresponds to one of bottom-up
traversals of the control-flow graph for P.)
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Ordering blocks

Partial ordering ≺b

• For a loop free function f and its blocks bi, we define relation
≺b⊆ B × B in the following way: b1 ≺b b2 if b1 has b2 as an
immediate successor and ≺b is transitivity closed.

• ≺b is a strict partial ordering over B
• A sequence of blocks b1, b2, ... bn sorted if there are no
indices i and j such that i < j and bj ≺b bi (Intuitively, such
an ordering of the blocks corresponds to one of top-down
traversals of the control-flow graph for the function f .)
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Transition system

Annotating states 〈F (fdcl, B (C c C )B) F,Mb
S , CbS〉

• Annotating instructions, blocks and functions (FR)
• F (fdcl, B (C c C) B) F is a sequence of functions f .
• fi = (fdcl, B (C c C) B) is partly annotated.
• Mb

S corresponds to a symbolic memory
• CbS set of constraints which are necessary for modelling
concepts like pointers and function calls
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Some transition rules

Binary operations
c = (id = bop t op1, op2) ec = ∨icond(err_kind, bop(t,Mb

S(op1),M
b
S(op2)))

btr =
∧
id∈ID(final(b, id) =Mb

S(id))
∧
condi∈CbS

condi

pftr = active(b1)
∧
∀b∈B ann(b)

∧
entry(b) ∧ active(b)

〈F (fdcl, B
(
C cC

)
B F,Mb

S , C
b
S〉  P

〈F (fdcl, B
(
Cc〈ec,btr,pftr〉C

)
B) F,Mb

S{id 7→ (t,Mb
S(op1) sbopMb

S(op2))}, C
b
S〉

SBOP

Branching instruction
c = (br val l1 l2) ec = ⊥

btr =
∧
id∈ID(final(b, id) =Mb

S(id))
∧
condi∈CbS

condi

pftr = active(b1)
∧
∀b∈B ann(b)

∧
entry(b) ∧ active(b)

desc = entry(b) ∧ btr ∧ exit(b, val, l1, l2)

〈F (fdcl, B
(
Cc
)

B,Mb
S , C

b
S〉  P 〈F (fdcl, B

(
Cc〈ec,btr,pftr〉

)〈desc〉
B,Mε

S , ∅〉
SBR
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Modelling links between blocks

entry(b) = activating(b) ∧ initialize(b)

exit(b, val, l1, l2) = jump(b, {(block(l1), val =s >), (block(l2), val =s ⊥)})
∧leaving(b, {block(l1), block(l2)})

activating(b) =


(∨

pred∈preds(b) transition(pred, b)
)
⇔ active(b), if |preds(b)| > 1

transition(pred, b)⇔ active(b), if preds(b) = {pred}
> if preds(b) = ∅

initialize(b) =



∧
pred∈preds(b)(transition(pred, b)⇒∧
id∈ID final(pred, id) = init(b, id)), if |preds(b)| > 1

transition(pred, b)⇒∧
id∈ID final(pred, id) = init(b, id), if preds(b) = {pred}
> if preds(b) = ∅

jump(b,S) =


∧

(succ,c)∈S ((active(b) ∧ c)⇔ transition(b, succ)) , if |S| > 1

active(b)⇔ transition(b, succ), if S = {succ,>}
>, if S = ∅

leaving(b,S) =


active(b)⇔

∨
succ∈S transition(b, succ), if |S| > 1

active(b)⇔ transition(b, succ), if S = {succ}
>, if S = ∅
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Description

Definition (Partial function description)
For a program P ∈ PFR , for a function f = (fdcl, b1b2...bn...bm)
and a command ck of a block bn, if it holds

〈F (fdcl, b1b2...bn...bm)F,Mε
S , ∅〉

∗
 P 〈F (fdcl, b

〈desc1〉
1 b

〈desc2〉
2 ...CckC...bm)F,M

bn:ck−1
S , Cb

n:(k−1)

S 〉

 P 〈F (fdcl, b
〈desc1〉
1 b

〈desc2〉
2 ...Cc

〈ec,btr,pftr〉
k

cC...bm)F,Mbn:ck
S , Cb

n:k

S 〉

a partial function description DE(P,f :bn:ck) is defined as

pftr ∧ btr
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(University of Belgrade) Propreties of software verification tool LAV EUTypes 21 / 30



Motivation LLVM IR Properties of LAV Conclusions and further work

Correspondence

Definition (Correspondence ./)
We say that partial concrete execution CE◦ corresponds to a model
MDE◦ of partial function description DE◦ and we write
CE◦ ./ MDE◦ if it holds

(∀b ∈ (b1 . . . bn))(∀id ∈ ID)(
Mb:c1
C (id) = IMDE◦

(
Mb:c1
S (id)

))
∧(

Mb:clast
C (id) = IMDE◦

(
Mb:clast
S (id)

))
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Execution and transition — by model

Definition (Model block execution and transition)
Let DE◦ be a partial function description and MDE◦ be its model
(in the standard BVA interpretation).
model block execution If MDE◦ |= acitve(b), we say that a block b

gets executed in the MDE◦ and we write MDE◦ . b.
model block transition If MDE◦ |= transition(bi, bi+1), we say

that there is transition from block bi to block bi+1 in
MDE◦ and we write MDE◦ . tr(bi, bi+1).
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Concrete and model execution: correspondence

Lemma (Concrete and model execution: correspondence)
Let CE◦ be a partial concrete execution and MDE◦ a model of
partial function description DE◦. If it holds CE◦ ./ MDE◦ then:
(a) CE◦ I b iff MDE◦ . b.
(b) CE◦ I tr(bi, bi+1) iff MDE◦ . tr(bi, bi+1).
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Concrete and model execution: existence

Lemma (Existence of model execution)

For each partial concrete execution CE◦ there exists a model MDE◦
of partial function description DE◦ such that CE◦ ./ MDE◦ .

Lemma (Existence of concrete execution)

For each partial function description DE◦ and for its arbitrary
model MDE◦ there exists a concrete partial execution CE◦ such
that CE◦ ./ MDE◦ .
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SMT solving

Theory for bit-vector arithmetic (BVA) is decidable
There are several SMT solvers for BVA available: Boolector, Z3...

SMT solver for BVA is sound and complete
For any BVA formula φ it holds: there is a model M of φ iff the
SMT solver claims that φ is satisfiable and returns its model.
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Properties of LAV

Theorem

For a function f ∈ FR, LAVR is sound and complete.

Theorem
For a function f ∈ FR, LAVR can reconstruct a concrete error
trace for any erroneous command.
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Conclusions

Ongoing work presented
• Modelling LLVM IR and the basic way LAV works
• Conjectures are given about soundness and completeness of
LAV for a restricted class of programs

Currently working on ...
• Polishing models and proofs to be elegant — proofs are not
surprising but involve many details

• Models and proofs should be easily extensible
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Ongoing and further work

Further work
• Incremental/spiral development: going from very restricted to
the full power of LLVM IR / LAV (a number of optimizations
that should be formally justified, e.g. symbolic execution over
several blocks, different levels of error conditions,
parallelization)

• Ultimate goal: formalization within a proof assistant — it
requires a huge amount of work for full, real world, LLVM IR /
LAV
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Thank you!
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