
Motivation LLVM IR Properties of LAV Conclusions and further work

A calculus for a LLVM-based software verification
tool LAV

Milena Vujošević Janičić

Faculty of Mathematics
University of Belgrade

Serbia

EUTypes meeting, Nijmegen, Netherlands, January 22-24, 2018.

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 0 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Verified software verification?

Correctness of software is critical in many domains
• Automated software verification tools are getting more and
more accepted and involved in software development process

• But, are these tools themselves correct?

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 1 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Ongoing work

LAV
• Deals with code in widely used LLVM IR
• Uses SMT solvers for checking verification conditions

Goals
• Define a suitable LLVM IR semantics
• Model LAV’s correctness conditions construction
• Prove properties of LAV such as soundness and completeness
(for some classes of programs)

Ultimate goal
Formalization within a proof assistant and extraction of a verified
software verifier for LLVM IR

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 2 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Restrictions and extensions

Start with a subset of LLVM IR and a subset of LAV
• Consider programs without loops and recursive function calls
(a wider class of programs reduces to this one by unrolling)

• Cover integer manipulations, simple memory model (no
pointers) and only functions with available definitions

• We will denote the set of functions that satisfy these
restrictions as FR and programs consisting of such functions
as PFR

• Cover LAV without optimizations LAVR

Spiral development instead of waterfall development
• Models and proofs should be easily extensible going from very
restricted to the full power of both LLVM IR and LAV

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 3 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

LLVM IR characteristics

• An LLVM-based compiler is structured as a translation from a
high-level source language to the LLVM IR

• It is SSA-based IR, originally developed as a research tool for
studying optimizations and modern compilation techniques,
but nowadays is much more than that.

• It is a real world IR (not a toy language): big and complex,
spanning a big number of possible language constructs

• It is challenging to formally reason about it
Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 4 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

LLVM IR syntax (picture taken from VeLLVM paper popl’12)

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 5 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

LLVM IR example

int add(int x, int y) {
return x + y;

}

int main()
{

int a = add(3,5);
return 0;

}

define i32 @add(i32 %x, i32 %y) #0 {
entry:

%x.addr = alloca i32, align 4
%y.addr = alloca i32, align 4
store i32 %x, i32* %x.addr, align 4
store i32 %y, i32* %y.addr, align 4
%0 = load i32* %x.addr, align 4
%1 = load i32* %y.addr, align 4
%add = add i32 %0, %1
ret i32 %add

}

define i32 @main() #0 {
entry:

%retval = alloca i32, align 4
%a = alloca i32, align 4
store i32 0, i32* %retval
%call = call i32 @add(i32 3, i32 5)
store i32 %call, i32* %a, align 4
ret i32 0

}

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 6 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Defining LLVM IR semantics

Different ways for modelling LLVM IR semantics
• Some recent projects give some concrete definitions of
semantics

• It is almost necessary to ignore (or abstract) a number of
details

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 7 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Examples of definitons of LLVM IR semantics (1)

Application in cryptography
Corin and Manzano. Efficient Symbolic Execution for Analysing
Cryptographic Protocol Implementations. ESSoS 2011.

LLVM IR semantics for symbolic execution
• Concrete and symbolic semantics for LLVM IR
• Showed that their approach for analysing cryptographic
protocol implementations is sound (by proving operational
correspondence between the two semantics).

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 8 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Examples of definitons of LLVM IR semantics (2)

Application in program transformations and compilation
Zhao, Nagarakatte, Martin, and Zdancewic. Formalizing the LLVM
IR for Verified Program Transformations. POPL ’12. 427-440.

Verified LLVM — Vellvm
• A framework that includes a formal semantics and associated
tools for mechanized verification of LLVM IR code, IR to IR
transformations, and analyses.

• It is built using the Coq interactive theorem prover.
• It includes multiple operational semantics and proves relations
among them to facilitate different reasoning styles in the
context of compiler’s transformations.

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 9 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Our LLVM IR semantics

Transition system
• Instructions change memoryMC
• The semantics is described in terms of a transition system with
states 〈f : bn : ck,MC〉 and with transitions corresponding to
executions of individual instructions

• Our semantic must cover runtime and other errors

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 10 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Our LLVM IR semantics

Error conditions
• Runtime errors or unexpected program behaviour can be
caused by invalid operands values

• Some error conditions:

bop type op1, op2 error kind error condition
add overflow signed(type) ∧ op1 > 0

∧op2 > 0 ∧ op1 + op2 < 0
sub signed(type) ∧ op1 > 0

∧op2 < 0 ∧ op1 + op2 < 0
sdiv signed(type) ∧ op1 = min_value(type)

∧op2 = −1
mul signed(type) ∧ op2 > 0

∧op1 > max_value(type)/op2
udiv, sdiv, division op2 = 0
urem, srem by zero

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 11 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Some concrete semantics rules

Binary operations
c = (id = bop t op1, op2) ∧i ¬condi(err_kindi, bop(t,MC(op1),MC(op2)))
〈f : bn : ck,MC〉 →P 〈f : bn : ck+1,MC{id 7→ (t,MC(op1) bopMC(op2))}〉

BOP

c = (id = bop t op1, op2) condi(err_kindi, bop(t,MC(op1),MC(op2)))
〈f : bn : ck,MC〉 →P ERR

BOPerri

Branching
c = (br val l1 l2)

MC(val) = > block(l1) = bt

〈f : bn : ck,MC〉 →P 〈f : bt : c1,MC〉
BRT

c = (br val l1 l2)
MC(val) = ⊥ block(l2) = bf

〈f : bn : ck,MC〉 →P 〈f : bf : c1,MC〉
BRF

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 12 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Execution

Definition (Partial concrete execution)
For a program P, for a function f = (fdcl, b1 . . . bn . . . bm) and a
command ck of a block bn, a partial concrete execution
CE(P,f :bn:ck) is a sequence of states s1s2...sl such that

s1 = 〈f : b1 : c1,MC[a1,...ai]〉
∗→P 〈f : bn : ck,M

bn:ck−1

C 〉

→P 〈f : b : c,Mbn:ck
C 〉 = sl

(Intuitively, ck is the last executed instruction.)

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 13 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Execution and transition — concrete

Definition (Concrete block execution and transition)
Let CE◦ be a partial concrete execution s1s2...sl.
concrete block execution If there exists i such that

i ∈ {1, . . . , (l − 1)} and si = 〈f : b : c,MC〉 is in
CE◦, we say that a block b gets executed in CE◦ and
we write CE◦ I b.

concrete block transition If there exists v such that
v ∈ {1, . . . , (l − 1)} and
sv = 〈f : bi : cj ,MC〉→P〈f : bi+1 : c1,M′C〉 = sv+1

are in CE◦, we say that there is transition from block
bi to block bi+1 and we write CE◦ I tr(bi, bi+1).

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 14 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Introducing orderings

Execution paths
• Intuitively, LAV constructs a formula that describes all possible
executions through a function (or through a part of a function)

• A model of such formula should correspond to some concrete
(partial) execution

• We need to sort functions and blocks (instructions inside one
block are naturally sorted)

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 15 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Ordering functions

Partial ordering ≺f

• For a recursion-free program P and its set of functions F , we
define relation ≺f :≺f⊆ F × F in the following way: f1 ≺f f2
if f1 is called within f2 and ≺f is transitivity closed.

• ≺f is a strict partial ordering over F
• A sequence of functions f1, f2, ... fn is sorted if there are no
indices i and j such that i < j and fj ≺f fi (Intuitively, such
an ordering of the functions corresponds to one of bottom-up
traversals of the control-flow graph for P.)

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 16 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Ordering blocks

Partial ordering ≺b

• For a loop free function f and its blocks bi, we define relation
≺b⊆ B × B in the following way: b1 ≺b b2 if b1 has b2 as an
immediate successor and ≺b is transitivity closed.

• ≺b is a strict partial ordering over B
• A sequence of blocks b1, b2, ... bn sorted if there are no
indices i and j such that i < j and bj ≺b bi (Intuitively, such
an ordering of the blocks corresponds to one of top-down
traversals of the control-flow graph for the function f .)

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 17 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Transition system

Annotating states 〈F (fdcl, B (C c C)B) F,Mb
S , CbS〉

• Annotating instructions, blocks and functions (FR)
• F (fdcl, B (C c C) B) F is a sequence of functions f .
• fi = (fdcl, B (C c C) B) is partly annotated.
• Mb

S corresponds to a symbolic memory
• CbS set of constraints which are necessary for modelling
concepts like pointers and function calls

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 18 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Some transition rules

Binary operations
c = (id = bop t op1, op2) ec = ∨icond(err_kind, bop(t,Mb

S(op1),M
b
S(op2)))

btr =
∧
id∈ID(final(b, id) =Mb

S(id))
∧
condi∈CbS

condi

pftr = active(b1)
∧
∀b∈B ann(b)

∧
entry(b) ∧ active(b)

〈F (fdcl, B
(
C cC

)
B F,Mb

S , C
b
S〉 P

〈F (fdcl, B
(
Cc〈ec,btr,pftr〉C

)
B) F,Mb

S{id 7→ (t,Mb
S(op1) sbopMb

S(op2))}, C
b
S〉

SBOP

Branching instruction
c = (br val l1 l2) ec = ⊥

btr =
∧
id∈ID(final(b, id) =Mb

S(id))
∧
condi∈CbS

condi

pftr = active(b1)
∧
∀b∈B ann(b)

∧
entry(b) ∧ active(b)

desc = entry(b) ∧ btr ∧ exit(b, val, l1, l2)

〈F (fdcl, B
(
Cc
)

B,Mb
S , C

b
S〉 P 〈F (fdcl, B

(
Cc〈ec,btr,pftr〉

)〈desc〉
B,Mε

S , ∅〉
SBR

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 19 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Modelling links between blocks

entry(b) = activating(b) ∧ initialize(b)

exit(b, val, l1, l2) = jump(b, {(block(l1), val =s >), (block(l2), val =s ⊥)})
∧leaving(b, {block(l1), block(l2)})

activating(b) =

(∨

pred∈preds(b) transition(pred, b)
)
⇔ active(b), if |preds(b)| > 1

transition(pred, b)⇔ active(b), if preds(b) = {pred}
> if preds(b) = ∅

initialize(b) =

∧
pred∈preds(b)(transition(pred, b)⇒∧
id∈ID final(pred, id) = init(b, id)), if |preds(b)| > 1

transition(pred, b)⇒∧
id∈ID final(pred, id) = init(b, id), if preds(b) = {pred}
> if preds(b) = ∅

jump(b,S) =

∧

(succ,c)∈S ((active(b) ∧ c)⇔ transition(b, succ)) , if |S| > 1

active(b)⇔ transition(b, succ), if S = {succ,>}
>, if S = ∅

leaving(b,S) =

active(b)⇔

∨
succ∈S transition(b, succ), if |S| > 1

active(b)⇔ transition(b, succ), if S = {succ}
>, if S = ∅

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 20 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Description

Definition (Partial function description)
For a program P ∈ PFR , for a function f = (fdcl, b1b2...bn...bm)
and a command ck of a block bn, if it holds

〈F (fdcl, b1b2...bn...bm)F,Mε
S , ∅〉

∗
 P 〈F (fdcl, b

〈desc1〉
1 b

〈desc2〉
2 ...CckC...bm)F,M

bn:ck−1
S , Cb

n:(k−1)

S 〉

 P 〈F (fdcl, b
〈desc1〉
1 b

〈desc2〉
2 ...Cc

〈ec,btr,pftr〉
k

cC...bm)F,Mbn:ck
S , Cb

n:k

S 〉

a partial function description DE(P,f :bn:ck) is defined as

pftr ∧ btr

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 21 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Correspondence

Definition (Correspondence ./)
We say that partial concrete execution CE◦ corresponds to a model
MDE◦ of partial function description DE◦ and we write
CE◦ ./ MDE◦ if it holds

(∀b ∈ (b1 . . . bn))(∀id ∈ ID)(
Mb:c1
C (id) = IMDE◦

(
Mb:c1
S (id)

))
∧(

Mb:clast
C (id) = IMDE◦

(
Mb:clast
S (id)

))

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 22 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Execution and transition — by model

Definition (Model block execution and transition)
Let DE◦ be a partial function description and MDE◦ be its model
(in the standard BVA interpretation).
model block execution If MDE◦ |= acitve(b), we say that a block b

gets executed in the MDE◦ and we write MDE◦ . b.
model block transition If MDE◦ |= transition(bi, bi+1), we say

that there is transition from block bi to block bi+1 in
MDE◦ and we write MDE◦ . tr(bi, bi+1).

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 23 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Concrete and model execution: correspondence

Lemma (Concrete and model execution: correspondence)
Let CE◦ be a partial concrete execution and MDE◦ a model of
partial function description DE◦. If it holds CE◦ ./ MDE◦ then:
(a) CE◦ I b iff MDE◦ . b.
(b) CE◦ I tr(bi, bi+1) iff MDE◦ . tr(bi, bi+1).

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 24 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Concrete and model execution: existence

Lemma (Existence of model execution)

For each partial concrete execution CE◦ there exists a model MDE◦
of partial function description DE◦ such that CE◦ ./ MDE◦ .

Lemma (Existence of concrete execution)

For each partial function description DE◦ and for its arbitrary
model MDE◦ there exists a concrete partial execution CE◦ such
that CE◦ ./ MDE◦ .

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 25 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

SMT solving

Theory for bit-vector arithmetic (BVA) is decidable
There are several SMT solvers for BVA available: Boolector, Z3...

SMT solver for BVA is sound and complete
For any BVA formula φ it holds: there is a model M of φ iff the
SMT solver claims that φ is satisfiable and returns its model.

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 26 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Properties of LAV

Theorem

For a function f ∈ FR, LAVR is sound and complete.

Theorem
For a function f ∈ FR, LAVR can reconstruct a concrete error
trace for any erroneous command.

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 27 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Conclusions

Ongoing work presented
• Modelling LLVM IR and the basic way LAV works
• Conjectures are given about soundness and completeness of
LAV for a restricted class of programs

Currently working on ...
• Polishing models and proofs to be elegant — proofs are not
surprising but involve many details

• Models and proofs should be easily extensible

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 28 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Ongoing and further work

Further work
• Incremental/spiral development: going from very restricted to
the full power of LLVM IR / LAV (a number of optimizations
that should be formally justified, e.g. symbolic execution over
several blocks, different levels of error conditions,
parallelization)

• Ultimate goal: formalization within a proof assistant — it
requires a huge amount of work for full, real world, LLVM IR /
LAV

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 29 / 30

Motivation LLVM IR Properties of LAV Conclusions and further work

Thank you!

Milena Vujošević Janičić
(University of Belgrade) Propreties of software verification tool LAV EUTypes 30 / 30

