Milena Vujosevi¢ Janici¢

Faculty of Mathematics
University of Belgrade
Serbia

EUTypes meeting, Nijmegen, Netherlands, January 22-24, 2018.

Milena Vujosevi¢ Janici¢
(University of Belgrade) Propreties of software verification tool LAV EUTypes 0/ 30

Motivation
[]

Correctness of software is critical in many domains

Automated software verification tools are getting more and
more accepted and involved in software development process

But, are these tools themselves correct?

Milena Vujosevi¢ Janici¢
(University of Belgrade) Propreties of software verification tool LAV EUTypes

1/30

Motivation

[1o}

LAV
Deals with code in widely used LLVM IR

Uses SMT solvers for checking verification conditions

Goals
Define a suitable LLVM IR semantics
Model LAV's correctness conditions construction

Prove properties of LAV such as soundness and completeness
(for some classes of programs)

Ultimate goal

Formalization within a proof assistant and extraction of a verified
software verifier for LLVM IR

Propreties of software verification tool LAV

Motivation

oe

Start with a subset of LL\VM IR and a subset of LAV

Consider programs without loops and recursive function calls
(a wider class of programs reduces to this one by unrolling)
Cover integer manipulations, simple memory model (no
pointers) and only functions with available definitions

We will denote the set of functions that satisfy these
restrictions as Fr and programs consisting of such functions
as Pr,

Cover LAV without optimizations LAV

Spiral development instead of waterfall development

Models and proofs should be easily extensible going from very
restricted to the full power of both LLVM IR and LAV

Propreties of software verification tool LAV

LLVM IR

Optimizations/
Transformations

C, C++, Haskell, Alpha, ARM,

ObjC, ObjC-++, TR Gei;’i‘;m |, PowerPC, Spare,
Scheme, Scala... 1T X86, Mips, ***

Program analysis

An LLVM-based compiler is structured as a translation from a
high-level source language to the LLVM IR

It is SSA-based IR, originally developed as a research tool for
studying optimizations and modern compilation techniques,
but nowadays is much more than that.

It is a real world IR (not a toy language): big and complex,
spanning a big number of possible language constructs

It is challenging to formally reason about it

Propreties of software verification tool LAV

LLVM IR

[]}

LLVM IR syntax (picture taken from VeLLVM paper popl'12)

Modules
Layouts

Products
Floats
Types
Values
Binops
Float ops
Extension
Cast op
Trunc op
Constants

Blocks

@ nodes
Tmns
Commands

mod, P

layout

prod
id
typ
val
bop
foop

layout namedt prod

bigendian | littleendian | ptrsz aligng aligny | int sz aligng align,

float sz aligng align, | aggr sz aligng align, | stack sz aligng aligny

id = global typ const align | define typ id(ag){b} | declare typ id (arg)

float | double

isz | fp | void | typx | [sz x typ] | {Twp;”"} | tuptypy” | id

id | cnst

add | sub | mul | udiv | sdiv | urem | srem | shl | Ishr | ashr | and | or | xor
fadd | fsub | fmul | fdiv | frem

zext | sext | fpext

fptoui | ptrtoint | inttoptr | bitcast

trunc;,; | truncy,

isz Int | fp Float | typ*id | (typx)null | typ zeroinitializer | typ[cnst;’| | {cnst;” }
typundef | bop cnst1 cnsta | fbop cnsty cnsta | tropensttotyp | eop cnstto typ
copensttotyp | getelementptr cnstcst;” | select ensty cnsty ensts | iemp cond ensty cnsts
femp feond cnsty ensta

loTtmn

id = phi typ [val;,]’

bruvalhlz | brl | rettypval | retvoid | unreachable

id = bop(int sz)valy valy | id = fbop fp valy valy | id = load (typ+*)val, align

store typ vali valz align | id = malloc typval align | free (typ =)val

id = alloca typ val align | id = trop typyvaltotyp; | id = eop typi val totyp,

id = cop typ, val to typ, | id = icmp cond typ val, valy | id = select valy typ valy valy

id = femp feond fp valivaly | optionid = call typy valo param

id = getelementptr (typ %) val val;’

Milena Vujosevié Janiéié

(University of Belgrade)

Propreties of software verification tool LAV EUTypes

5 /30

LLVM IR
oe

define i32 @add(i32 %x,

entry:

int add(int x, int y) {
return x + y;

}

}

%x.addr = alloca 132, align 4
%y.addr = alloca i32, align 4

store i32 %x, i32% Yx.addr, align 4
store i32 %y, i32* }y.addr, align 4

%0 = load i32% %x.addr, align 4
%1 = load i32% Jy.addr, align 4
%add = add i32 %0, %1

ret i32 %add

define i32 @main() #0 {

int main()

{
int a = add(3,5);
return O;

}

Milena Vujosevi¢ Janici¢
(University of Belgrade)

Propreties of software verification tool LAV

entry:

%retval = alloca i32, align 4
%a = alloca i32, align 4
store i32 0, i32%* Y%retval

%call = call i32 @add(i32 3, i32 5)
store i32 Ycall, i32* %a, align 4

ret i32 0

i32 %y) #0 {

EUTypes

6 /30

LLVM IR

®0000000

Different ways for modelling LLVM IR semantics

Some recent projects give some concrete definitions of
semantics

It is almost necessary to ignore (or abstract) a number of
details

Milena Vujosevi¢ Janici¢
(University of Belgrade) Propreties of software verification tool LAV EUTypes 7/ 30

LLVM IR

0O®@000000

Application in cryptography
Corin and Manzano. Efficient Symbolic Execution for Analysing
Cryptographic Protocol Implementations. ESSoS 2011.

LLVM IR semantics for symbolic execution
Concrete and symbolic semantics for LLVM IR

Showed that their approach for analysing cryptographic
protocol implementations is sound (by proving operational
correspondence between the two semantics).

Propreties of software verification tool LAV

LLVM IR

0O0e00000

Application in program transformations and compilation

Zhao, Nagarakatte, Martin, and Zdancewic. Formalizing the LLVM
IR for Verified Program Transformations. POPL '12. 427-440.

Verified LLVM — Vellvm

A framework that includes a formal semantics and associated
tools for mechanized verification of LLVM IR code, IR to IR
transformations, and analyses.

It is built using the Coq interactive theorem prover.

It includes multiple operational semantics and proves relations
among them to facilitate different reasoning styles in the
context of compiler's transformations.

Propreties of software verification tool LAV

LLVM IR

O00e0000

Transition system
Instructions change memory Mg

The semantics is described in terms of a transition system with
states (f : by, : ¢k, Mc) and with transitions corresponding to
executions of individual instructions

Our semantic must cover runtime and other errors)

Milena Vujosevi¢ Janici¢
(University of Belgrade) Propreties of software verification tool LAV EUTypes 10 / 30

LLVM IR

O000@000

Error conditions

Runtime errors or unexpected program behaviour can be
caused by invalid operands values

Some error conditions:

[bop type op1, op2 [error kind [

error condition

add overflow signed(type) A op1 > 0
Nopa > 0 A opy + opa <0
sub signed(type) A op1 > 0
Nop2 < 0 A op1 + opa <0
sdiv signed(type) A op1 = min_ value(type)
Nopa = —1
mul signed(type) A opz > 0
Aop1 > max_value(type) /op2
udiv, sdiv, division op2 =0
urem, srem by zero

Propreties of software verification tool LAV

LLVM IR

00000800

Some concrete semantics rules

Binary operations
c=(id = bop t op1,0p2) A; ~cond;(err_kind;, bop(t, Mc(op1), Mc(op2)))
(f:bn ek, Me) =p (f :bn : cpg1, Mc{id — (¢, Mc(op1) bop Mc(op2))})

c¢=(id = bop t op1,0p2) cond;(err_kind;, bop(t, Mc (op1), Mc(op2)))

BOPerr;
(f bn < i, Mc) —p ERR o

Branching
c = (brwally l3) c = (brval lj l3)
Mec(val) =T block(l1) = by M (val) = L block(lz) = by

T RF

BR’ Bl
(f:ibn:ick, Mc) —=p (f:bt:c1, Mc) (f:bn e, Mc) =p (f:bf:c1, Mc)

Milena Vujosevié Janiéié
(University of Belgrade) Propreties of software verification tool LAV EUTypes 12 / 30

LLVM IR

O00000e0

Definition (Partial concrete execution)

For a program P, for a function f = (fdcl,by...b, ...by,) and a
command ¢;, of a block b, a partial concrete execution
CEP:Jibnick) i 3 sequence of states s15s...s; such that

* bn:ck_1>

S1 = <f : bl : Cl’Mc[al,...ai]> —Pp <f : bn : ClmMc
—p (f:b: C,MZ":C’“) =g

(Intuitively, ¢ is the last executed instruction.)

Milena Vujosevi¢ Janici¢

(University of Belgrade) EUTypes

Propreties of software verification tool LAV

13 / 30

LLVM IR

O000000e

Definition (Concrete block execution and transition)
Let CE° be a partial concrete execution s153...5;.
If there exists 7 such that
ie{l,...,(l—1)}and s;=(f :b:¢c, M) is in
CE°, we say that a block b gets executed in CE° and
we write CE° » b.
If there exists v such that
vedl,...,(l—1)} and
Sy = <f 5 bi 5 Cj,./\/lc>—>7><f 5 bi+1 5 Cl,./\/llc> = Sp+1
are in CE°, we say that there is transition from block
b; to block b¢+1 and we write CE° » t?“(bi, bi+1).

Propreties of software verification tool LAV

Properties of LAV
@00

Execution paths

Intuitively, LAV constructs a formula that describes all possible
executions through a function (or through a part of a function)
A model of such formula should correspond to some concrete
(partial) execution

We need to sort functions and blocks (instructions inside one
block are naturally sorted)

Propreties of software verification tool LAV

Properties of LAV
oeo

Partial ordering </

For a recursion-free program P and its set of functions F, we
define relation <¢:<¢C F x F in the following way: fi <¢ fo
if f1 is called within fo and <y is transitivity closed.

< is a strict partial ordering over F

A sequence of functions f1, fo, ... fn is sorted if there are no
indices ¢ and j such that ¢ < j and f; <¢ f; (Intuitively, such
an ordering of the functions corresponds to one of bottom-up
traversals of the control-flow graph for P.)

Propreties of software verification tool LAV

Properties of LAV
ooe

Partial ordering <,
For a loop free function f and its blocks b;, we define relation
<pC B x B in the following way: by < bs if by has by as an
immediate successor and <, is transitivity closed.
<} is a strict partial ordering over B

A sequence of blocks by, bo, ... b, sorted if there are no
indices 7 and j such that i < j and b; <3 b; (Intuitively, such
an ordering of the blocks corresponds to one of top-down
traversals of the control-flow graph for the function f.)

Propreties of software verification tool LAV

Properties of LAV

9000000000

Annotating states (F' (fdcl, B (C ¢ C')B) F, M%,C%)
Annotating instructions, blocks and functions (Fr)
F (fdcl, B (C ¢ C) B) F is a sequence of functions f.
fi = (fdel, B (C ¢ C) B) is partly annotated.
/\/lf’S corresponds to a symbolic memory

Cg set of constraints which are necessary for modelling
concepts like pointers and function calls

Propreties of software verification tool LAV

Properties of LAV

0@00000000

Some transition rules

Binary operations

¢ = (id = bop t op1, op2) ec = V;cond(err_kind, bop(t, Mbs(opl), Mg(opg)))
btr = A;qezp (Final(b,id) = MY (id)) Acona;ech, condi
pftr = active(by) /\Vbe§ ann(b) A\ entry(b) A active(d)

SBOP
(F (fdcl, B (E cc) B F, M%,Cl) ~p

(F (fdel, B (Celeebtrpftr)) B) F, My {id v (t, M% (op1) sbop M (0p2))}, CE)

Branching instruction

c = (brval l1 l3) ec= 1
btr = N;qezp (Final(b,id) = MY%(id)) Acona;ech, condi
pftr = active(by) Ay, ann(b) A entry(b) A active(b)
desc = entry(b) A btr A exit(b,val,ly,l3)

SBR
(F (fdel, B (Te) B, M%,C8) wp (F (fdel, B (Teleerbtrpftn))19 g rg o)

Milena Vujosevié Janicié
(University of Belgrade) Propreties of software verification tool LAV EUTypes

19 / 30

Properties of LAV

00e0000000

Modelling links between blocks

entry(b) = activating(b) A initialize(b)
exit(b,val,ly,la) = jump(b, {(block(l1),val =5 T), (block(lz),val =5 L)})
Aleaving(b, {block(l1), block(l2)})

(Vpredepreds(b) transition(pred, b)) < active(b), if |preds(b)| > 1
activating(b) = transition(pred, b) < active(b), if preds(b) = {pred}
T if preds(b) = 0
/\predepreds(b)(transition(pred, b) =
Nidgezp final(pred, id) = init(b,id)), if [preds(b)| > 1
initialize(b) = transition(pred, b) =
Niaezp final(pred, id) = init(b, id), if preds(b) = {pred}
T if preds(b) =0
N(suce,cyes ((active(b) A ¢) & transition(b, succ)), if [S| > 1
jump(b,S) = active(b) < transition(b, succ), if S = {suce, T}
T, ifS=10

active(b) & Vg cees transition(b, suce), if [S| > 1
active(b) < transition(b, succ), if S = {succ}
T, ifsS=0

leaving(b, S)

Milena Vujosevié Janiéié

(Upiversity of Belorade) Propreties of software verification tool LAV EUTvpes 20 / 30

Properties of LAV

000@000000

Definition (Partial function description)

For a program P € Pz, for a function f = (fdcl,b1bs...by...by,)
and a command ¢, of a block b, if it holds

(F(fdel,byby...by...bym) F, MG, 0)

. — by (k—1
i (F(fdel, b1 p8tee2) oy Cbm) F, Mgt C’“‘l,cgn()y

— — : :k
. <F(fdcl,b§descl>b;desc2>...Ccéec'btr’pftr)CC...bm)F,Ml;n'ckycgn)

a partial function description DEP:F0n:ek) s defined as

pftr A btr

Milena Vujosevi¢ Janici¢
(University of Belgrade) Propreties of software verification tool LAV EUTypes 21 / 30

Properties of LAV

0000@00000

Definition (Correspondence 1<)

We say that partial concrete execution CE® corresponds to a model
Mpgo of partial function description DE° and we write
CE° 1« MDgO if it holds

(Vb € (by...by))(Vid € ID)
(ME (i) = Tagpee (ME(id))) A
(ME (i) = Tatpeo (M (id)))

Milena Vujosevi¢ Janici¢

(University of Belgrade) 22 / 30

Propreties of software verification tool LAV EUTypes

Properties of LAV

00000e0000

Definition (Model block execution and transition)
Let DE® be a partial function description and Mpgo be its model
(in the standard BVA interpretation).
If Mpgo = acitve(b), we say that a block b
gets executed in the Mpgo and we write Mpgo 1> b.
If Mpgo = transition(b;,b;+1), we say
that there is transition from block b; to block b; 11 in
Mpgo and we write Mpgo > tr(b;, biy1).

Propreties of software verification tool LAV

Properties of LAV

000000e000

Lemma (Concrete and model execution: correspondence)

Let CE® be a partial concrete execution and Mpgo a model of
partial function description DE®. If it holds CE® <1 Mpgo then:

CE° » b iff Mpgo > b.
CE° » tT‘(bi, bi—i—l) iffMDgo l>t7‘(bi, bi—i—l)-

Milena Vujosevi¢ Janici¢
(University of Belgrade) Propreties of software verification tool LAV EUTypes

24 / 30

Properties of LAV

0000000800

Lemma (Existence of model execution)

For each partial concrete execution CE® there exists a model Mpgo
of partial function description DE® such that CE° <t Mpgo.

Lemma (Existence of concrete execution)

For each partial function description DE® and for its arbitrary
model Mpgo there exists a concrete partial execution CE® such
that CE° < M'DgO.

Milena Vujosevi¢ Janici¢
(University of Belgrade) Propreties of software verification tool LAV EUTypes 25 / 30

Properties of LAV

0000000080

Theory for bit-vector arithmetic (BVA) is decidable

There are several SMT solvers for BVA available: Boolector, Z3...

SMT solver for BVA is sound and complete

For any BVA formula ¢ it holds: there is a model M of ¢ iff the
SMT solver claims that ¢ is satisfiable and returns its model.

Milena Vujosevi¢ Janici¢ .
(University of Belgrade) Propreties of software verification tool LAV EUTypes

26 / 30

Properties of LAV

000000000e

Properties of LAV

Theorem

For a function f € Fr, LAVg is sound and complete.

Theorem

For a function f € Fr, LAVR can reconstruct a concrete error
trace for any erroneous command.

Milena Vujosevié Janicié
(University of Belgrade) Propreties of software verification tool LAV EUTypes 27 / 30

Conclusions and further work
°

Ongoing work presented
Modelling LLVM IR and the basic way LAV works

Conjectures are given about soundness and completeness of
LAV for a restricted class of programs

Currently working on ...

Polishing models and proofs to be elegant — proofs are not
surprising but involve many details

Models and proofs should be easily extensible

Milena Vujosevi¢ Janici¢
(University of Belgrade) Propreties of software verification tool LAV EUTypes 28 / 30

Conclusions and further work

@0

Further work

Incremental /spiral development: going from very restricted to
the full power of LLVM IR / LAV (a number of optimizations
that should be formally justified, e.g. symbolic execution over
several blocks, different levels of error conditions,
parallelization)

Ultimate goal: formalization within a proof assistant — it

requires a huge amount of work for full, real world, LLVM IR /
LAV

Propreties of software verification tool LAV

Motivation LLVM IR Properties of LAV Conclusions and further work

[e] (e]e} 000 o
(e} 00000000 0000000000 oce

Thank youl |

Milena Vujosevi¢ Janici¢
(University of Belgrade) Propreties of software verification tool LAV EUTypes 30/ 30

