LLVM IR 00 00000000 Properties of LAV

Conclusions and further work 0 00

A calculus for a LLVM-based software verification tool LAV

Milena Vujošević Janičić

Faculty of Mathematics University of Belgrade Serbia

EUTypes meeting, Nijmegen, Netherlands, January 22-24, 2018.

Milena Vujošević Janičić (University of Belgrade)

Propreties of software verification tool LAV EUTypes 0 / 30

Motivation	
•	

LLVM IR 00 000000000 Properties of LAV 000 0000000000 Conclusions and further work 0 00

Verified software verification?

Correctness of software is critical in many domains

- Automated software verification tools are getting more and more accepted and involved in software development process
- But, are these tools themselves correct?

Motivation	
•0	

LLVM IR 00 000000000 Properties of LAV

Conclusions and further work 0 00

Ongoing work

LAV

- Deals with code in widely used LLVM IR
- Uses SMT solvers for checking verification conditions

Goals

- Define a suitable LLVM IR semantics
- Model LAV's correctness conditions construction
- Prove properties of LAV such as soundness and completeness (for some classes of programs)

Ultimate goal

Formalization within a proof assistant and extraction of a verified software verifier for LLVM ${\sf IR}$

Milena Vujošević Janičić (University of Belgrade) Propreties of software verification tool LAV EUTypes Motivation ○ ○● LLVM IR 00 000000000 Properties of LAV

Conclusions and further work

Restrictions and extensions

Start with a subset of LLVM IR and a subset of LAV

- Consider programs without loops and recursive function calls (a wider class of programs reduces to this one by unrolling)
- Cover integer manipulations, simple memory model (no pointers) and only functions with available definitions
- We will denote the set of functions that satisfy these restrictions as $\mathcal{F}_{\mathcal{R}}$ and programs consisting of such functions as $\mathcal{P}_{\mathcal{F}_{\mathcal{R}}}$
- Cover LAV without optimizations LAV_R

Spiral development instead of waterfall development

• Models and proofs should be easily extensible going from very restricted to the full power of both LLVM IR and LAV

- An LLVM-based compiler is structured as a translation from a high-level source language to the LLVM IR
- It is SSA-based IR, originally developed as a research tool for studying optimizations and modern compilation techniques, but nowadays is much more than that.
- It is a real world IR (not a toy language): big and complex, spanning a big number of possible language constructs
- It is challenging to formally reason about it

Motivation	LLVM IR	Properties of LAV	Conclusions and further work
	•0 0000000		

LLVM IR syntax (picture taken from VeLLVM paper popl'12)

Modules	mod, P	::=	layout namedt prod
Layouts	layout	::=	bigendian littleendian ptr sz $align_0$ $align_1$ int sz $align_0$ $align_1$
			float $sz \ align_0 \ align_1 \ \ \mathbf{aggr} \ sz \ align_0 \ align_1 \ \ \mathbf{stack} \ sz \ align_0 \ align_1$
Products	prod	::=	$id = $ global $typ \ const \ align \mid $ define $typ \ id(\overline{arg})\{\overline{b}\} \mid $ declare $typ \ id(\overline{arg})$
Floats	fp	::=	float double
Types	typ	::=	isz fp void $typ*$ [$sz \times typ$] { $\overline{typ_j}^j$ } $typ \overline{typ_j}^j$ id
Values	val	::=	$id \mid cnst$
Binops	bop	::=	$add \mid sub \mid mul \mid udiv \mid sdiv \mid urem \mid srem \mid shl \mid lshr \mid ashr \mid and \mid or \mid xor$
Float ops	fbop	::=	fadd fsub fmul fdiv frem
Extension	eop	::=	zext sext fpext
Cast op	cop	::=	fptoui ptrtoint inttoptr bitcast
Trunc op	trop	::=	$\mathbf{trunc}_{int} \mid \mathbf{trunc}_{fp}$
Constants	cnst	::=	is z Int fp Float $typ * id$ $(typ*)$ null typ zeroinitializer $typ \lceil \overline{cnst_j}^j \rceil \mid \{ \overline{cnst_j}^j \}$
			typ undef $ bop cnst_1 cnst_2 fbop cnst_1 cnst_2 trop cnst to typ eop cnst to typ$
			$cop cnst to typ \mid getelementptr cnst \overline{cst_j}^j \mid select cnst_0 cnst_1 cnst_2 \mid icmp cond cnst_1 cnst_2$
		Í	fcmp fcond $cnst_1 cnst_2$
Blocks	b	::=	$l \overline{\phi} \overline{c} tmn$
ϕ nodes	ϕ	::=	$id = \mathbf{phi} typ \overline{[val_i, b]}^j$
Tmns	tmn	::=	br $val_{l_1 l_2}$ br $l = ret typ val = ret void = unreachable$
Commands	s c	::=	$id = bop(int sz)val_1val_2$ $id = fbop fp val_1val_2$ $id = load(typ*)val_1 align$
			store $typ val_1 val_2 align \mid id = $ malloc $typ val align \mid $ free $(typ *) val$
		i	$id = $ alloca $typ val align \mid id = trop typ_1 val to typ_2 \mid id = eop typ_1 val to typ_2$
		i	$id = cop typ_1 val to typ_2 \mid id = icmp cond typ val_1 val_2 \mid id = select val_0 typ val_1 val_2$
		- i -	$id = \mathbf{fcmp} f_{cond} f_{n,val}, val_{n-1} = ontion id_{n-1} = coll time val_{n-1} narram$
			$a = \operatorname{remp}_{fond} for a f four f four f four f f four f f four f four$

Motivation	LLVM IR	Properties of LAV	Conclusions and further work
	0000000		
LLVM IR	example		
int add(: return }	int x, int y) { x + y;	<pre>define i32 @add(i32 entry:</pre>	<pre>%x, i32 %y) #0 { i32, align 4 i32, align 4 * %x.addr, align 4 * %y.addr, align 4 addr, align 4 addr, align 4 , %1</pre>
int main { int a = return }	() = add(3,5); 0;	<pre>define i32 @main() # entry: %retval = alloca i32, a store i32 0, i32* %call = call i32 0 store i32 %call, i ret i32 0 }</pre>	#0 { i32, align 4 align 4 %retval Dadd(i32 3, i32 5) i32* %a, align 4

LLVM IR 00 00000000 P<mark>roperties of LAV</mark> 000 0000000000 Conclusions and further work 0 00

Defining LLVM IR semantics

Different ways for modelling LLVM IR semantics

- Some recent projects give some concrete definitions of semantics
- It is almost necessary to ignore (or abstract) a number of details

LLVM IR 00 00000000 Properties of LAV

Conclusions and further work

Examples of definitons of LLVM IR semantics (1)

Application in cryptography

Corin and Manzano. Efficient Symbolic Execution for Analysing Cryptographic Protocol Implementations. ESSoS 2011.

LLVM IR semantics for symbolic execution

- Concrete and symbolic semantics for LLVM IR
- Showed that their approach for analysing cryptographic protocol implementations is sound (by proving operational correspondence between the two semantics).

LLVM IR 00 00000000 Properties of LAV

Conclusions and further work

Examples of definitons of LLVM IR semantics (2)

Application in program transformations and compilation

Zhao, Nagarakatte, Martin, and Zdancewic. Formalizing the LLVM IR for Verified Program Transformations. POPL '12. 427-440.

Verified LLVM - Vellvm

- A framework that includes a formal semantics and associated tools for mechanized verification of LLVM IR code, IR to IR transformations, and analyses.
- It is built using the Coq interactive theorem prover.
- It includes multiple operational semantics and proves relations among them to facilitate different reasoning styles in the context of compiler's transformations.

LLVM IR 00 000000000 Properties of LAV

Conclusions and further work 0 00

Our LLVM IR semantics

Transition system

- Instructions change memory $\mathcal{M}_{\mathcal{C}}$
- The semantics is described in terms of a transition system with states $\langle f : b_n : c_k, \mathcal{M}_C \rangle$ and with transitions corresponding to executions of individual instructions
- Our semantic must cover runtime and other errors

LLVM IR 00 000000000 Properties of LAV

Conclusions and further work 0 00

Our LLVM IR semantics

Error conditions

- Runtime errors or unexpected program behaviour can be caused by invalid operands values
- Some error conditions:

bop type op_1 , op_2	error kind	error condition	
add	overflow	$signed(type) \land op_1 > 0$	
		$\wedge op_2 > 0 \wedge op_1 + op_2 < 0$	
sub		$signed(type) \land op_1 > 0$	
		$\wedge op_2 < 0 \wedge op_1 + op_2 < 0$	
sdiv		$signed(type) \land op_1 = min_value(type)$	
		$\wedge op_2 = -1$	
mul		$signed(type) \land op_2 > 0$	
		$\land op_1 > max_value(type)/op_2$	
udiv, sdiv,	division	$op_2 = 0$	
urem, srem	by zero		

Motivation	LLVM IR	Properties of LAV	Conclusions and further work
	00 00000000		

Some concrete semantics rules

$\begin{array}{l} \hline \textbf{Binary operations} \\ \hline c = (\mathsf{id} = \mathsf{bop t} op_1, op_2) & \wedge_i \neg cond_i(err_kind_i, bop(t, \mathcal{M}_{\mathcal{C}}(op_1), \mathcal{M}_{\mathcal{C}}(op_2))) \\ \hline \langle f : b_n : c_k, \mathcal{M}_{\mathcal{C}} \rangle \rightarrow_{\mathcal{P}} \langle f : b_n : c_{k+1}, \mathcal{M}_{\mathcal{C}} \{ id \mapsto (t, \mathcal{M}_{\mathcal{C}}(op_1) \ bop \ \mathcal{M}_{\mathcal{C}}(op_2)) \} \rangle \end{array} \\ \hline \\ \hline c = (\mathsf{id} = \mathsf{bop t} \ op_1, op_2) & cond_i(err_kind_i, bop(t, \mathcal{M}_{\mathcal{C}}(op_1), \mathcal{M}_{\mathcal{C}}(op_2))) \\ \hline \langle f : b_n : c_k, \mathcal{M}_{\mathcal{C}} \rangle \rightarrow_{\mathcal{P}} \mathcal{ERR} \end{array} \\ \begin{array}{c} \texttt{BOPerr}_i \end{array}$

Branching

$$\begin{array}{c} c = (\mathrm{br} \ val \ l_1 \ l_2) \\ \mathcal{M}_{\mathcal{C}}(val) = \top \quad block(l_1) = b_t \\ \overline{\langle f : b_n : c_k, \mathcal{M}_{\mathcal{C}} \rangle \rightarrow_{\mathcal{P}}} \ \langle f : b_t : c_1, \mathcal{M}_{\mathcal{C}} \rangle \end{array} \\ \mathrm{BRF} \quad \begin{array}{c} c = (\mathrm{br} \ val \ l_1 \ l_2) \\ \mathcal{M}_{\mathcal{C}}(val) = \bot \quad block(l_2) = b_f \\ \overline{\langle f : b_n : c_k, \mathcal{M}_{\mathcal{C}} \rangle \rightarrow_{\mathcal{P}}} \ \langle f : b_f : c_1, \mathcal{M}_{\mathcal{C}} \rangle \end{array} \\ \mathrm{BRF} \end{array}$$

lotivation	LLVM IR	Properties of LAV	Conclusions and further work
	00 00000000		

Execution

Definition (Partial concrete execution)

For a program \mathcal{P} , for a function $f = (fdcl, b_1 \dots b_n \dots b_m)$ and a command c_k of a block b_n , a partial concrete execution $\mathcal{CE}^{(\mathcal{P},f:b_n:c_k)}$ is a sequence of states $s_1s_2...s_l$ such that

$$s_1 = \langle f : b_1 : c_1, \mathcal{M}_{\mathcal{C}_{[a_1, \dots a_i]}} \rangle \quad \stackrel{*}{\to}_{\mathcal{P}} \quad \langle f : b_n : c_k, \mathcal{M}_{\mathcal{C}}^{b_n:c_{k-1}} \rangle$$
$$\rightarrow_{\mathcal{P}} \quad \langle f : b : c, \mathcal{M}_{\mathcal{C}}^{b_n:c_k} \rangle = s_l$$

(Intuitively, c_k is the last executed instruction.)

LLVM IR 00 0000000 Properties of LAV 000 0000000000 Conclusions and further work 0 00

Execution and transition — concrete

Definition (Concrete block execution and transition) Let $C\mathcal{E}^{\circ}$ be a partial concrete execution $s_1s_2...s_l$. concrete block execution If there exists i such that $i \in \{1, ..., (l-1)\}$ and $s_i = \langle f : b : c, \mathcal{M}_C \rangle$ is in $C\mathcal{E}^{\circ}$, we say that a block b gets executed in $C\mathcal{E}^{\circ}$ and we write $C\mathcal{E}^{\circ} \triangleright b$.

concrete block transition If there exists v such that

 $v \in \{1, \ldots, (l-1)\}$ and $s_v = \langle f : b_i : c_j, \mathcal{M}_C \rangle \rightarrow_{\mathcal{P}} \langle f : b_{i+1} : c_1, \mathcal{M}'_C \rangle = s_{v+1}$ are in \mathcal{CE}° , we say that there is transition from block b_i to block b_{i+1} and we write $\mathcal{CE}^\circ \triangleright tr(b_i, b_{i+1})$.

LLVM IR 00 00000000 Conclusions and further work 0 00

Introducing orderings

Execution paths

- Intuitively, LAV constructs a formula that describes all possible executions through a function (or through a part of a function)
- A model of such formula should correspond to some concrete (partial) execution
- We need to sort functions and blocks (instructions inside one block are naturally sorted)

LLVM IR 00 00000000 Properties of LAV

Conclusions and further work 0 00

Ordering functions

Partial ordering \prec_f

- For a recursion-free program *P* and its set of functions *F*, we define relation ≺_f:≺_f ⊆ *F* × *F* in the following way: f₁ ≺_f f₂ if f₁ is called within f₂ and ≺_f is transitivity closed.
- \prec_f is a strict partial ordering over ${\mathcal F}$
- A sequence of functions f_1 , f_2 , ... f_n is sorted if there are no indices i and j such that i < j and $f_j \prec_f f_i$ (Intuitively, such an ordering of the functions corresponds to one of bottom-up traversals of the control-flow graph for \mathcal{P} .)

LLVM IR 00 00000000 Properties of LAV

Conclusions and further work 0 00

Ordering blocks

Partial ordering \prec_b

- For a loop free function f and its blocks b_i, we define relation ≺_b⊆ B × B in the following way: b₁ ≺_b b₂ if b₁ has b₂ as an immediate successor and ≺_b is transitivity closed.
- \prec_b is a strict partial ordering over ${\mathcal B}$
- A sequence of blocks b₁, b₂, ... b_n sorted if there are no indices i and j such that i < j and b_j ≺_b b_i (Intuitively, such an ordering of the blocks corresponds to one of top-down traversals of the control-flow graph for the function f.)

LLVM IR 00 00000000 Properties of LAV

Conclusions and further work 0 00

Transition system

Annotating states $\langle \overline{F} (fdcl, \overline{B} (\overline{C} c C)B) F, \mathcal{M}^b_{\mathcal{S}}, \mathcal{C}^b_{\mathcal{S}} \rangle$

- Annotating instructions, blocks and functions $(\mathcal{F}_{\mathcal{R}})$
- $\overline{F} (fdcl, \overline{B} (\overline{C} c C) B) F$ is a sequence of functions f.
- $f_i = (fdcl, \overline{B} \ (\overline{C} \ c \ C) \ B)$ is partly annotated.
- $\mathcal{M}^b_\mathcal{S}$ corresponds to a symbolic memory
- C^b_S set of constraints which are necessary for modelling concepts like pointers and function calls

Motivation	LLVM IR	Properties of LAV	Conclusions and
		000000000	

Some transition rules

Binary operations

$$\begin{split} c &= (\mathsf{id} = \mathsf{bop} \mathsf{t} \ op_1, op_2) \qquad ec = \lor_i cond(err_kind, bop(t, \mathcal{M}^b_{\mathcal{S}}(op_1), \mathcal{M}^b_{\mathcal{S}}(op_2))) \\ btr &= \bigwedge_{id \in \mathcal{ID}} (final(b, id) = \mathcal{M}^b_{\mathcal{S}}(id)) \bigwedge_{cond_i \in \mathcal{C}^b_{\mathcal{S}}} cond_i \\ pftr &= active(b_1) \bigwedge_{\forall b \in \overline{B}} ann(b) \bigwedge entry(b) \land active(b) \\ \hline & \langle \overline{F} \ (fdcl, \overline{B} \ \left(\overline{C} \ cC \right) \ B \ F, \mathcal{M}^b_{\mathcal{S}}, \mathcal{C}^b_{\mathcal{S}} \rangle \rightsquigarrow_{\mathcal{P}} \\ \langle \overline{F} \ (fdcl, \overline{B} \ \left(\overline{C} c^{(ec,btr,pftr)} C \right) \ B) \ F, \mathcal{M}^b_{\mathcal{S}} \{id \mapsto (t, \mathcal{M}^b_{\mathcal{S}}(op_1) \ sbop \ \mathcal{M}^b_{\mathcal{S}}(op_2))\}, \mathcal{C}^b_{\mathcal{S}} \rangle \end{split}$$

Branching instruction

$$\begin{array}{c} c = (\text{br } val \ l_1 \ l_2) & ec = \bot \\ btr = \bigwedge_{id \in \mathcal{ID}}(final(b, id) = \mathcal{M}^b_{\mathcal{S}}(id)) \bigwedge_{cond_i \in \mathcal{C}^b_{\mathcal{S}}} cond_i \\ pftr = active(b_1) \bigwedge_{\forall b \in \overline{B}} ann(b) \bigwedge entry(b) \land active(b) \\ desc = entry(b) \land btr \land exit(b, val, l_1, l_2) \\ \hline \langle \overline{F} \left(fdcl, \overline{B} \ \left(\overline{C}c \right) B, \mathcal{M}^b_{\mathcal{S}}, \mathcal{C}^b_{\mathcal{S}} \right) \rightsquigarrow_{\mathcal{P}} \langle \overline{F} \left(fdcl, \overline{B} \ \left(\overline{C}c^{\langle ec, btr, pftr \rangle} \right)^{\langle desc \rangle} B, \mathcal{M}^\epsilon_{\mathcal{S}}, \emptyset \rangle \end{array} \right) } \\ \end{array} \right.$$

Motivation	LLVM IR	Properties of LAV	Conclusions and further work
		000 000000000	

Modelling links between blocks

	entr	$y(b) = activating(b) \land initialize(b)$	
exit(b, u)	val, l_1	$(l_2) = jump(b, \{(block(l_1), val =_s \top), (block(l_2), val =_s \top)\}$	$val =_s \perp)\})$
		$\land leaving(b, \{block(l_1), block(l_2)\})$	
		5()((1))	
		$(() \rightarrow () \text{ transition}(\text{pred } h)) \Leftrightarrow active(h)$	if $ pred_{S}(h) > 1$
activatina(b)	_	$\left(\bigvee_{pred \in preds(b)} transition(pred, b)\right) \Leftrightarrow uetree(b),$	p = cus(b) > 1
activating(0)		$ransition(prea, b) \Leftrightarrow active(b),$	if $preas(b) = \{prea\}$
			$\prod_{i=1}^{n} preas(0) = \psi$
		$(\bigwedge_{pred \in preds(b)}(transition(pred, b) \Rightarrow$	
		$\bigwedge_{id \in \mathcal{ID}} final(pred, id) = init(b, id)), \text{if } preds(b) $	> 1
initialize(b)	=	$transition(pred, b) \Rightarrow$	
		$\bigwedge_{id \in \mathcal{ID}} final(pred, id) = init(b, id), \text{ if } preds(b) = init(b, id),$	$= \{pred\}$
		$(\top$ if $preds(b)$:	= Ø
		$(\land (active(b) \land c) \Leftrightarrow transition(b, succ))$	S > 1
jump(b, S)	=	$active(b) \Leftrightarrow transition(b, succ)$	if $S = \{succ \top\}$
5			if $S = \emptyset$
		$active(b) \Leftrightarrow \bigvee_{succ \in S} transition(b, succ), \text{ if } S > 1$	1
leaving(b, S)	=	$\begin{cases} active(b) \Leftrightarrow transition(b, succ), & \text{if } S = \{s\} \end{cases}$	succ}
		$(\bot, \qquad \qquad \text{if } \mathcal{S} = \emptyset$	
Milena Vuioše	ević Ja	ničić	
(University of	Belgr	ade) Propreties of software verification tool LAV	EUTypes 20

/ 30

LLVM IR 00 00000000 Properties of LAV

Conclusions and further work 0 00

Description

Definition (Partial function description)

For a program $\mathcal{P} \in \mathcal{P}_{\mathcal{F}_{\mathcal{R}}}$, for a function $f = (fdcl, b_1b_2...b_n...b_m)$ and a command c_k of a block b_n , if it holds

$$\langle \overline{F}(fdcl, b_1b_2...b_n...b_m)F, \mathcal{M}_{\mathcal{S}}^{\epsilon}, \emptyset \rangle$$

$$\stackrel{*}{\xrightarrow{}}_{\mathcal{P}} \quad \langle \overline{F}(fdcl, b_1^{\langle desc_1 \rangle} b_2^{\langle desc_2 \rangle} ... \overline{C} c_k C... b_m) F, \mathcal{M}_{\mathcal{S}}^{b_n:c_{k-1}}, \mathcal{C}_{\mathcal{S}}^{b_n:(k-1)} \rangle$$

$$\stackrel{\to}{\xrightarrow{}}_{\mathcal{P}} \quad \langle \overline{F}(fdcl, b_1^{\langle desc_1 \rangle} b_2^{\langle desc_2 \rangle} ... \overline{C} c_k^{\langle ec, btr, pftr \rangle} cC... b_m) F, \mathcal{M}_{\mathcal{S}}^{b_n:c_k}, \mathcal{C}_{\mathcal{S}}^{b^{n:k}} \rangle$$

a partial function description $\mathcal{DE}^{(\mathcal{P},f:b_n:c_k)}$ is defined as

$pftr \wedge btr$

LLVM IR 00 00000000 Properties of LAV

Conclusions and further work 0 00

Correspondence

Definition (Correspondence ⋈)

We say that partial concrete execution \mathcal{CE}° corresponds to a model $M_{\mathcal{DE}^{\circ}}$ of partial function description \mathcal{DE}° and we write $\mathcal{CE}^{\circ} \bowtie M_{\mathcal{DE}^{\circ}}$ if it holds

$$(\forall b \in (b_1 \dots b_n)) (\forall id \in \mathcal{ID}) \left(\mathcal{M}_{\mathcal{C}}^{b:c_1}(id) = I_{M_{\mathcal{DE}^\circ}} \left(\mathcal{M}_{\mathcal{S}}^{b:c_1}(id) \right) \right) \land \left(\mathcal{M}_{\mathcal{C}}^{b:c_{last}}(id) = I_{M_{\mathcal{DE}^\circ}} \left(\mathcal{M}_{\mathcal{S}}^{b:c_{last}}(id) \right) \right)$$

LLVM IR 00 00000000 Properties of LAV

Conclusions and further work 0 00

Execution and transition — by model

Definition (Model block execution and transition)

Let \mathcal{DE}° be a partial function description and $M_{\mathcal{DE}^{\circ}}$ be its model (in the standard BVA interpretation).

model block execution If $M_{\mathcal{DE}^\circ} \models acitve(b)$, we say that a block b gets executed in the $M_{\mathcal{DE}^\circ}$ and we write $M_{\mathcal{DE}^\circ} \triangleright b$.

model block transition If $M_{\mathcal{DE}^{\circ}} \models transition(b_i, b_{i+1})$, we say that there is transition from block b_i to block b_{i+1} in $M_{\mathcal{DE}^{\circ}}$ and we write $M_{\mathcal{DE}^{\circ}} \triangleright tr(b_i, b_{i+1})$.

LLVM IR 00 00000000 Properties of LAV

Conclusions and further work

Concrete and model execution: correspondence

Lemma (Concrete and model execution: correspondence)

Let $C\mathcal{E}^{\circ}$ be a partial concrete execution and $M_{\mathcal{D}\mathcal{E}^{\circ}}$ a model of partial function description $\mathcal{D}\mathcal{E}^{\circ}$. If it holds $C\mathcal{E}^{\circ} \bowtie M_{\mathcal{D}\mathcal{E}^{\circ}}$ then: (a) $C\mathcal{E}^{\circ} \triangleright b$ iff $M_{\mathcal{D}\mathcal{E}^{\circ}} \triangleright b$.

(b)
$$\mathcal{CE}^{\circ} \blacktriangleright tr(b_i, b_{i+1})$$
 iff $M_{\mathcal{DE}^{\circ}} \triangleright tr(b_i, b_{i+1})$.

LLVM IR 00 00000000 Properties of LAV

Conclusions and further work 0 00

Concrete and model execution: existence

Lemma (Existence of model execution)

For each partial concrete execution $C\mathcal{E}^{\circ}$ there exists a model $M_{\mathcal{D}\mathcal{E}^{\circ}}$ of partial function description $\mathcal{D}\mathcal{E}^{\circ}$ such that $C\mathcal{E}^{\circ} \bowtie M_{\mathcal{D}\mathcal{E}^{\circ}}$.

Lemma (Existence of concrete execution)

For each partial function description \mathcal{DE}° and for its arbitrary model $M_{\mathcal{DE}^{\circ}}$ there exists a concrete partial execution \mathcal{CE}° such that $\mathcal{CE}^{\circ} \bowtie M_{\mathcal{DE}^{\circ}}$.

LLVM IR 00 000000000 Properties of LAV ○○○ ○○○○○○○○●○ Conclusions and further work 0 00

SMT solving

Theory for bit-vector arithmetic (BVA) is decidable

There are several SMT solvers for BVA available: Boolector, Z3...

SMT solver for BVA is sound and complete

For any BVA formula ϕ it holds: there is a model M of ϕ iff the SMT solver claims that ϕ is satisfiable and returns its model.

Mot	ivat	tion

LLVM IR 00 000000000 Properties of LAV

Conclusions and further work 0 00

Properties of LAV

Theorem

For a function $f \in \mathcal{F}_{\mathcal{R}}$, LAV_R is sound and complete.

Theorem

For a function $f \in \mathcal{F}_{\mathcal{R}}$, LAV_R can reconstruct a concrete error trace for any erroneous command.

LLVM IR 00 00000000 Properties of LAV

Conclusions and further work

Conclusions

Ongoing work presented

- Modelling LLVM IR and the basic way LAV works
- Conjectures are given about soundness and completeness of LAV for a restricted class of programs

Currently working on ...

- Polishing models and proofs to be elegant proofs are not surprising but involve many details
- Models and proofs should be easily extensible

LLVM IR 00 000000000 Properties of LAV

Conclusions and further work \circ

Ongoing and further work

Further work

- Incremental/spiral development: going from very restricted to the full power of LLVM IR / LAV (a number of optimizations that should be formally justified, e.g. symbolic execution over several blocks, different levels of error conditions, parallelization)
- Ultimate goal: formalization within a proof assistant it requires a huge amount of work for full, real world, LLVM IR / LAV

Motivation	LLVM IR	Properties of LAV	Conclusions and further work
			0 0•

Thank you!

Milena Vujošević Janičić (University of Belgrade)

Propreties of software verification tool LAV EUTypes 30 / 30