
Type Theory Based Tools, 2017

Modelling Program Behaviour within
Software Verification Tool LAV

Milena Vujošević Janičić
Faculty of Mathematics, University of Belgrade

milena@matf.bg.ac.rs

Abstract
Describing program behaviour is one of the most important issues
in automated software verification and there is a number of ap-
proaches for this task. We describe how the program behaviour is
modelled within our software verification tool LAV in order to pro-
duce correctness conditions in terms of logical formulae. We also
discuss our ongoing and future work concerning regression verifi-
cation and parallelisation of verification tasks.
Keywords software verification, automated bug finding, SMT
solving, modelling program behaviour

1. Introduction
In order to use logical reasoning for software verification, one of the
first steps is to model program behaviour. We describe the model
used and the way the program semantics is treated in our software
verification tool LAV. LAV uses the LLVM intermediate represen-
tation (IR) of programs and combines bounded model checking,
symbolic execution, and SAT encoding of program’s control-flow
to construct correctness conditions in form of first order logical for-
mulae (by correctness conditions we mean conditions for absence
of bugs such as division by zero or buffer overflows). These cor-
rectness conditions are then checked by external SMT solvers like
Boolector, MathSAT, Yices, and Z3. The tool LAV is implemented
in C++ and is publicly available and open-source.1 Since it uses
LLVM infrastructure, it supports several programming languages
that compile into LLVM, but is primarily aimed at programs writ-
ten in the C programming language. LAV was successfully applied
on different benchmarks (Janičić and Kuncak 2012) and also used
in automated evaluation of student’s programs (Janičić et al. 2013;
Janičić and Marić 2016).

2. Modelling
LLVM IR of programs consists of blocks of code. Single blocks
of code are modelled by first-order logic formulae constructed by
symbolic execution, while relationship between blocks is mod-
elled by propositional formulae. Formulae that describe blocks’
behaviour are combined with correctness conditions for individual
commands to produce correctness conditions of the program.
Store and Blocks A store of a program is a mapping from vari-
ables to values from their domains. Each instruction transforms

1 http://argo.matf.bg.ac.rs/?content=lav

[Copyright notice will appear here once ’preprint’ option is removed.]

the store and may add some constraints over variables. In our ap-
proach, symbolic execution is used to compute a FOL formula
Transformation(b) that describes the transformation of an in-
dividual block b (i.e., a block summary):

Transformation(b) =
∧

v∈V

(e(b, v) = ev)
∧

AdditionalConstraints(b)

where V is a set of variables and ev is the value of v at the
end of the block, e(b, v), expressed in terms of initial values,
s(b, v). The formulae AdditionalConstraints(b) are introduced
for modelling some sorts of operations and constraints not dis-
cussed here in more detail. A formula Transformation(b, i), a
block context for the (i+1)th command, is defined by analogy, but
only considering the first i instructions of the block b.
Buffers, Structures and Unions Buffers are sequences of mem-
ory locations allocated statically or dynamically and accessible by
a pointer and an offset. While these pointers are treated as any
other simple variables, they are also associated with sizes of cor-
responding buffers which are captured via introduced functions:
left(p) and right(p) for numbers of bytes reserved for the pointer
p on its left and its right hand side. Note that it always holds
left(p+n) = left(p)−n and right(p+n) = right(p)−n. These
equalities can be considered as axioms, but, instead of introducing
an universally quantified formula into the generated formula, we
can only add all of its relevant instances to the set of additional
constraints attached to the block.
Memory Contents The memory can be treated as an array mem
of memory locations, that may get updated during the symbolic
execution, just as any other variable. For modelling commands that
access the memory via pointers, we use the theory of arrays. The
theory of arrays provides functions for storing a value at a certain
index in the array (store) and for reading a value at a certain index in
the array (select). If there is a reference operator on a local variable
within a function, then this variable is not tracked through its slot
in the store, as other variables, but through the memory content.
Global Variables Global variables are accessible in all functions
(and, hence, in all blocks), but instead of representing them individ-
ually within all functions, they are modelled by the variable mod-
elling memory.
Function Calls Function calls are modelled according to the
available information about the function. If a contract of a func-
tion is available, then the current store is updated and additional
constraints are added according to the contract of the function.
If a contract of the function is not available, but the definition of
function is, then interprocedural analysis is required. If neither a
contract nor the definition of function are available, then the mem-
ory contents (i.e. the current array mem) is set to a new (fresh)
variable as an effect of the function call.
Intraprocedural Loop-free Control Flow Relationship between
blocks can be encoded by propositional variables and SAT formu-
lae. Generally, a block can be reached from several blocks and, also,
it can lead (subject to certain conditions) to several blocks.

Modelling Program Behaviour within Software Verification Tool LAV 1 2017/1/24



Suppose, for a moment, that the program has no loops in the
control-flow graph. A path in this graph is then determined by the
sequence of nodes (representing blocks) and edges (representing
transitions from one block to another). We introduce active(b)
(that can be represented by a propositional variable) to denote that
a node b is in the path (or, intuitively, that the block b was reached),
and introduce transition(bi, bj) (that can be again represented by
a propositional variable) to denote that the edge from bi to bj is in
the graph (i.e., that the block j was reached from the block i). Given
such a path, we can consider all program executions that follow this
path, by composing formulae for each basic block.

Let us suppose that a block b is reachable from blocks P =
{pred1, pred2, . . ., predn} and let blocks S = {succ1, succ2,
. . ., succm} be reachable from the block b (it can be assumed that
all succi are different and that all predi are different) . We define
several formulae describing control flow involving the block b.

A formula EntryCond(b) is defined as activating(b)∧initialize(b).

activating(b): The formula activating(b) says that there was a
transition from a predecessor block to the block b iff the block
b was active. It is defined as follows: ∨

pred∈P
transition(pred, b)

 ⇔ active(b)

If the block does not have predecessors (i.e. it is the entry block
of the function), then activating(b) is defined as active(b).
This way, it is not analyzed whether a function itself is reach-
able. Rather, it is analyzed assuming that it can be reached.

initialize(b): If the block b is reached from the block pred, then
the initial values of variables within the block b will be the
values of the variables at the leaving point of pred. This defines
the initialize(b) formula:

∧
pred∈P

transition(pred, b) ⇒
∧

v∈Vf

e(pred, v) = s(b, v)


If the block b does not have predecessors, then initialize(b)

is defined as >.

The formula ExitCond(b) is defined as jump(b) ∧ leaving(b).

jump(b): If the block b was active and if a leaving condition ci of
the block b was met, then the control was passed to the block
succi, and vice versa. This defines the jump(b) formula:∧

succi∈S
((active(b) ∧ e(b, ci)) ⇔ transition(b, succi))

If the block has only one successor, then jump(b) is defined
as active(b) ⇔ transition(b, succ). If the block does not have
successors, then jump(b) is defined as >.

leaving(b): The formula leaving(b) says that the block b was
active iff it led to some other block (or to exit of the function).
It is defined as follows:

active(b) ⇔
∨

succ∈S
transition(b, succ)

If the block does not have successors, then leaving(b) is
defined as >.
Finally, the formula Description(b) is describing the block b:

EntryCond(b) ∧ Transformation(b) ∧ ExitCond(b)

Note that all of the above formulae are of polynomial size in
the number of predecessors and successors of b, the number of
variables of the function that b belongs to, and the number of
instructions in b. Consequently, the size of the above formula is
bounded polynomially in the size of the function.
Loops Our system supports two techniques for dealing with
loops: underapproximation of loops (like in bounded model check-

ing) and overaproximation of loops (in this case, the unrolled code
simulates the first n and the last m entries to the loop, where n and
m are configurable parameters). In both cases, loops are eliminated
by unrolling. This way, the control flow graph of the function has
no cycles and the basic modelling mechanism can be applied.
Interprocedural Control Flow Starting with block descriptions
as building blocks, and given there are a unique entry and a unique
leaving point of each function (this uniqueness can be ensured, as
in the LLVM code) the description of a function is constructed
as a conjunction of descriptions of the function blocks. Recursive
function calls can be unrolled in the same way as loops.
Safe, Unsafe and Flawed Commands In order to check whether
some command leads to an error we build (two) formulae of the
form C ⇒ (¬)safe(c), where C is a formula describing context
(empty context, block context, function context, wider context) and
(¬)safe(c) is a formula describing (in)correctness condition of
a command (it can be given by a bug definition — division by
zero, buffer overflow, dereferencing null pointers, or it can be given
by an annotation). The main verification goal is to check (for all
commands) whether it holds safe(c). If safe(c) holds, then the
command c is safe, and if ¬safe(c) holds, the command c is
flawed. If neither safe(c) nor ¬safe(c) holds in a general case,
then the command c is considered unsafe. The difference between a
flawed and an unsafe command is that the flawed command always
leads to an error in the program, while unsafe command leads to an
error only in some cases, depending on the context of the command,
i.e., to the path condition leading to the command. Therefore, an
unsafe command may turn safe/flawed if a wider context.
Transforming a Code Model to a SMT Goal The (quantifier-
free) formula that models a program code typically uses: bit-vector
arithmetic (or linear arithmetic), theory of uninterpreted functions
(or, alternatively, Ackermannization), and optionally the theory or
arrays. There are several SMT solvers that provide support for such
combinations of theories.

3. Ongoing and Future Work
Currently, we are working on enriching LAV by regression verifica-
tion techniques (Janičić and Marić 2016). We use these techniques
in context of automated evaluation of students’ programs to auto-
matically prove functional equivalence (partial and k-equivalence)
between student’s and teacher’s solution, in order to gain higher
level of reliability in automated grading. We develop a set of tools
for transformations of programs that are necessary for this purpose
and use LAV for checking equivalence.

We are also working on parallelisation of verification tasks
within LAV, by taking advantage of hardware properties and char-
acteristics of software verification conditions. Different contexts
used in LAV give room for different kind of parallelisations. We
implemented parallel verification of different functions and parallel
checking of correctness conditions within one block. We got very
promising experimental results in both cases, showing that paral-
lelisation may scale well in cases where classical bounded model
checking times out.

In addition, we are looking for ways to build firmer theoretical
grounds for LAV, possibly within the context of type theory, hope-
fully leading to new insights and further improvements of the tool.

References
M. V. Janičić and V. Kuncak. Development and Evaluation of LAV: An

SMT-Based Error Finding Platform. In VSTTE, LNCS, 2012.
M. V. Janičić and F. Marić. Regression Verification for Automated Evalua-

tion of Students Programs, 2016. Submitted.
M. V. Janičić, M. Nikolić, D. Tošić, and V. Kuncak. Software verification

and graph similarity for automated evaluation of students assignments.
Information and Software Technology, 55(6), 2013.

Modelling Program Behaviour within Software Verification Tool LAV 2 2017/1/24


