mathlib: Lean's mathematical library

Johannes Hölzl
$\mathbf{V U}=$

EUTypes 2018

Introduction

- (classical) mathematical library for Lean with computable exceptions, e.g. \mathbb{N}, \mathbb{Z}, lists, ...

Introduction

- (classical) mathematical library for Lean with computable exceptions, e.g. \mathbb{N}, \mathbb{Z}, lists, ...
- Formerly distributed with Lean itself Leo wanted more flexibility

Introduction

- (classical) mathematical library for Lean with computable exceptions, e.g. \mathbb{N}, \mathbb{Z}, lists, ...
- Formerly distributed with Lean itself

Leo wanted more flexibility

- Some (current) topics:

Basic Datatypes, Analysis, Linear Algebra, Set Theory, ...

Lean

Lean DTT

- Quotient types (implies funext)

Lean DTT

- Quotient types (implies funext)
- Proof irrelevance is a definitional equality

Lean DTT

- Quotient types (implies funext)
- Proof irrelevance is a definitional equality
- Mark constants noncomputable, i.e. functions using choice:

$$
\text { axiom choice : } \Pi(\alpha: \text { Sort } u) \text {, nonempty } \alpha \rightarrow \alpha
$$

Lean DTT

- Quotient types (implies funext)
- Proof irrelevance is a definitional equality
- Mark constants noncomputable, i.e. functions using choice:

$$
\text { axiom choice : } \Pi(\alpha: \text { Sort } u) \text {, nonempty } \alpha \rightarrow \alpha
$$

- Non-commulative universes Prop: Type 0 : Type 1:...

Lean DTT

- Quotient types (implies funext)
- Proof irrelevance is a definitional equality
- Mark constants noncomputable, i.e. functions using choice:

$$
\text { axiom choice : } \Pi(\alpha: \text { Sort } u) \text {, nonempty } \alpha \rightarrow \alpha
$$

- Non-commulative universes Prop: Type 0 : Type 1:...
- Basic inductives in the kernel

Lean DTT

- Quotient types (implies funext)
- Proof irrelevance is a definitional equality
- Mark constants noncomputable, i.e. functions using choice:

$$
\text { axiom choice : } \Pi(\alpha: \text { Sort } u) \text {, nonempty } \alpha \rightarrow \alpha
$$

- Non-commulative universes Prop: Type 0 : Type 1:...
- Basic inductives in the kernel
- Mutual and nested inductives are constructed

Lean DTT

- Quotient types (implies funext)
- Proof irrelevance is a definitional equality
- Mark constants noncomputable, i.e. functions using choice:

$$
\text { axiom choice : } \Pi(\alpha: \text { Sort } u) \text {, nonempty } \alpha \rightarrow \alpha
$$

- Non-commulative universes Prop: Type 0 : Type 1:...
- Basic inductives in the kernel
- Mutual and nested inductives are constructed
- No general fixpoint operator, no general match operator these are derived from recursors

Type classes in Lean

- Type classes are used to fill in implicit values:

$$
\begin{aligned}
& \text { add }: \Pi\{\alpha: \text { Type }\}[i: \text { has_add } \alpha], \alpha \rightarrow \alpha \rightarrow \alpha \\
& a+b \equiv \text { @add } \mathbb{N} \text { nat.add a } b
\end{aligned}
$$

Type classes in Lean

- Type classes are used to fill in implicit values:

$$
\begin{aligned}
& \text { add }: \Pi\{\alpha: \text { Type }\}[i: \text { has_add } \alpha], \alpha \rightarrow \alpha \rightarrow \alpha \\
& a+b \equiv \text { @add } \mathbb{N} \text { nat.add a } b
\end{aligned}
$$

- Instances can depend on other instances:

$$
\text { ring.to_group : } \Pi(\alpha: \text { Type })[i: \text { ring } \alpha] \text { : group } \alpha
$$

Type classes in Lean

- Type classes are used to fill in implicit values:

$$
\begin{aligned}
& \text { add }: \Pi\{\alpha: \text { Type }\}[i: \text { has_add } \alpha], \alpha \rightarrow \alpha \rightarrow \alpha \\
& a+b \equiv \text { @add } \mathbb{N} \text { nat.add a } b
\end{aligned}
$$

- Instances can depend on other instances:

$$
\text { ring.to_group : } \Pi(\alpha: \text { Type })[i: \text { ring } \alpha] \text { : group } \alpha
$$

- Output parameters:
has_mem $\quad:$ Type \rightarrow out Type \rightarrow Type
set.has_mem : $\Pi \alpha$, has_mem ($\operatorname{set} \alpha$) α
fset.has_mem : $\Pi \alpha[i:$ decidable_eq $\alpha]$, has_mem (fset α) α

Type classes in Lean

- Type classes are used to fill in implicit values:

$$
\begin{aligned}
& \text { add }: \Pi\{\alpha: \text { Type }\}[i: \text { has_add } \alpha], \alpha \rightarrow \alpha \rightarrow \alpha \\
& a+b \equiv \text { @add } \mathbb{N} \text { nat.add a } b
\end{aligned}
$$

- Instances can depend on other instances:

$$
\text { ring.to_group : } \Pi(\alpha: \text { Type })[i: \text { ring } \alpha] \text { : group } \alpha
$$

- Output parameters:
has_mem $\quad:$ Type \rightarrow out Type \rightarrow Type
set.has_mem : $\Pi \alpha$, has_mem (set α) α
fset.has_mem : $\Pi \alpha[i:$ decidable_eq $\alpha]$, has_mem (fset α) α
- Default values

Library

Library

- Basic (computable) data
- Type class hierarchies:

Orders orders, lattices
Algebraic (commutative) groups, rings, fields Spaces measurable, topological, uniform, metric

- Set theory (cardinals \& ordinals)
- Analysis
- Linear algebra

Basic (computable) data

- Numbers: \mathbb{N}, \mathbb{Z} (as datatype, not quotient), \mathbb{Q}, Fin n

Basic (computable) data

- Numbers: \mathbb{N}, \mathbb{Z} (as datatype, not quotient), \mathbb{Q}, Fin n
- Lists, set $\alpha:=\alpha \rightarrow$ Prop

Basic (computable) data

- Numbers: \mathbb{N}, \mathbb{Z} (as datatype, not quotient), \mathbb{Q}, Fin n
- Lists, set $\alpha:=\alpha \rightarrow$ Prop
- multiset $\alpha:=$ list $\alpha /$ perm

Basic (computable) data

- Numbers: \mathbb{N}, \mathbb{Z} (as datatype, not quotient), \mathbb{Q}, Fin n
- Lists, set $\alpha:=\alpha \rightarrow$ Prop
- multiset $\alpha:=$ list $\alpha /$ perm
- finset $\alpha:=\{m$: multiset $\alpha \mid$ nodup $m\}$

Basic (computable) data

- Numbers: \mathbb{N}, \mathbb{Z} (as datatype, not quotient), \mathbb{Q}, Fin n
- Lists, set $\alpha:=\alpha \rightarrow$ Prop
- multiset $\alpha:=$ list $\alpha /$ perm
- finset $\alpha:=\{m$: multiset $\alpha \mid$ nodup $m\}$
- Big operators for list, multiset and finset

Set theory: Cardinals and Ordinals (Mario Carneiro)

- Zorn's lemma, Schröder-Bernstein, ...

Set theory: Cardinals and Ordinals (Mario Carneiro)

- Zorn's lemma, Schröder-Bernstein, ...
- Isomorphism:

structure $\alpha \simeq \beta:=$

$(f: \alpha \rightarrow \beta)(g: \beta \rightarrow \alpha)\left(f_{-} g: f \circ g=i d\right)\left(g_{-} f: g \circ f=i d\right)$

Set theory: Cardinals and Ordinals (Mario Carneiro)

- Zorn's lemma, Schröder-Bernstein, ...
- Isomorphism:

$$
\text { structure } \alpha \simeq \beta:=
$$

$$
(f: \alpha \rightarrow \beta)(g: \beta \rightarrow \alpha)\left(f_{-} g: f \circ g=i d\right)\left(g _f: g \circ f=i d\right)
$$

- Cardinals \& ordinals are well-order

$$
\begin{aligned}
& \operatorname{cardinal}_{u}: \operatorname{Type}_{u+1}:=\operatorname{Type}_{u} / \text { nonempty }_{\simeq} \\
& \text { ordinal }_{u}: \operatorname{Type}_{u+1}:=\text { Well_order } \\
& u / \text { nonempty } \simeq_{\text {ord }}
\end{aligned}
$$

Set theory: Cardinals and Ordinals (Mario Carneiro)

- Zorn's lemma, Schröder-Bernstein, ...
- Isomorphism:

$$
\begin{aligned}
& \text { structure } \alpha \simeq \beta:= \\
& (f: \alpha \rightarrow \beta)(g: \beta \rightarrow \alpha)\left(f_{-} g: f \circ g=i d\right)\left(g_{-} f: g \circ f=i d\right)
\end{aligned}
$$

- Cardinals \& ordinals are well-order

$$
\begin{aligned}
& \text { cardinal }_{u}: \operatorname{Type}_{u+1}:=\text { Type }_{u} / \text { nonempty }_{\simeq} \\
& \text { ordinal }_{u}: \operatorname{Type}_{u+1}:=\text { Well_order } \\
& u / \text { nonempty } \simeq_{\text {ord }}
\end{aligned}
$$

- Semiring structure of cardinal is proved using \simeq constructions

Set theory: Cardinals and Ordinals (Mario Carneiro)

- Zorn's lemma, Schröder-Bernstein, ...
- Isomorphism:

$$
\text { structure } \alpha \simeq \beta:=
$$

$$
(f: \alpha \rightarrow \beta)(g: \beta \rightarrow \alpha)\left(f_{-} g: f \circ g=i d\right)\left(g_{-} f: g \circ f=i d\right)
$$

- Cardinals \& ordinals are well-order

$$
\begin{aligned}
& \text { cardinal }_{u}: \text { Type }_{u+1}:=\operatorname{Type}_{u} / \text { nonempty }_{\simeq} \\
& \text { ordinal }_{u}: \operatorname{Type}_{u+1}:=\text { Well_order }_{u} / \text { nonempty } \simeq_{\text {ord }}
\end{aligned}
$$

- Semiring structure of cardinal is proved using \simeq constructions
- $\kappa+\kappa=\kappa=\kappa * \kappa$ (for $\kappa \geq \omega$)

Set theory: Cardinals and Ordinals (Mario Carneiro)

- Zorn's lemma, Schröder-Bernstein, ...
- Isomorphism:

$$
\text { structure } \alpha \simeq \beta:=
$$

$$
(f: \alpha \rightarrow \beta)(g: \beta \rightarrow \alpha)\left(f_{-} g: f \circ g=i d\right)\left(g_{-} f: g \circ f=i d\right)
$$

- Cardinals \& ordinals are well-order

$$
\begin{aligned}
& \text { cardinal }_{u}: \text { Type }_{u+1}:=\text { Type }_{u} / \text { nonempty }_{\simeq} \\
& \text { ordinal }_{u}: \text { Type }_{u+1}:=\text { Well_order }_{u} / \text { nonempty } \simeq_{\text {ord }}
\end{aligned}
$$

- Semiring structure of cardinal is proved using \simeq constructions
- $\kappa+\kappa=\kappa=\kappa * \kappa$ (for $\kappa \geq \omega$)
- Existence of inaccessible cardinals (i.e. in the next universe)

Analysis

- Derived from Isabelle's analysis (Filters to generalize limits)

Analysis

- Derived from Isabelle's analysis (Filters to generalize limits)
- Topology: open; nhds filter, closed, compact, interior, closure

Analysis

- Derived from Isabelle's analysis (Filters to generalize limits)
- Topology: open; nhds filter, closed, compact, interior, closure
- Uniformity: complete, totally bounded (compact \leftrightarrow complete and totally bounded)

Analysis

- Derived from Isabelle's analysis (Filters to generalize limits)
- Topology: open; nhds filter, closed, compact, interior, closure
- Uniformity: complete, totally bounded (compact \leftrightarrow complete and totally bounded)
- Metric spaces are only rudimentary

Analysis

- Derived from Isabelle's analysis (Filters to generalize limits)
- Topology: open; nhds filter, closed, compact, interior, closure
- Uniformity: complete, totally bounded (compact \leftrightarrow complete and totally bounded)
- Metric spaces are only rudimentary
- Measurable spaces, Measures \& Lebesgue measure

Analysis

- Derived from Isabelle's analysis (Filters to generalize limits)
- Topology: open; nhds filter, closed, compact, interior, closure
- Uniformity: complete, totally bounded (compact \leftrightarrow complete and totally bounded)
- Metric spaces are only rudimentary
- Measurable spaces, Measures \& Lebesgue measure
- Infinite sum on topological monoids α :

$$
\Sigma: \forall \iota,(\iota \rightarrow \alpha) \rightarrow \alpha
$$

Analysis: Analytical Structures as Complete Lattices

Complete lattices, map \& comap as category theory light

- Filters, topological spaces, uniform spaces, and measurable spaces form a complete lattices per type

$$
\text { complete_lattice (topology } \alpha \text {) }
$$

Analysis: Analytical Structures as Complete Lattices

Complete lattices, map \& comap as category theory light

- Filters, topological spaces, uniform spaces, and measurable spaces form a complete lattices per type

$$
\text { complete_lattice (topology } \alpha \text {) }
$$

- (Co) induced structures allow for easy constructions:

$$
\begin{aligned}
& \text { map : } \Pi\{\alpha \beta\},(\alpha \rightarrow \beta) \rightarrow \text { (topology } \alpha \rightarrow \text { topology } \beta) \\
& \text { comap : } \Pi\{\alpha \beta\},(\alpha \rightarrow \beta) \rightarrow(\text { topology } \beta \rightarrow \text { topology } \alpha)
\end{aligned}
$$

Analysis: Analytical Structures as Complete Lattices

Complete lattices, map \& comap as category theory light

- Filters, topological spaces, uniform spaces, and measurable spaces form a complete lattices per type

$$
\text { complete_lattice (topology } \alpha \text {) }
$$

- (Co) induced structures allow for easy constructions:

$$
\begin{aligned}
& \text { map : } \Pi\{\alpha \beta\},(\alpha \rightarrow \beta) \rightarrow \text { (topology } \alpha \rightarrow \text { topology } \beta) \\
& \text { comap : } \Pi\{\alpha \beta\},(\alpha \rightarrow \beta) \rightarrow(\text { topology } \beta \rightarrow \text { topology } \alpha)
\end{aligned}
$$

- Easy constructions:

$$
\begin{aligned}
& \text { prod } t_{1} t_{2}:=\operatorname{comap} \pi_{1} t_{1} \sqcup \operatorname{comap} \pi_{2} t_{2} \\
& \text { subtype } t s:=\operatorname{comap}(\text { subtype.val } s) t
\end{aligned}
$$

Analysis: Analytical Structures as Complete Lattices

Complete lattices, map \& comap as category theory light

- Filters, topological spaces, uniform spaces, and measurable spaces form a complete lattices per type

$$
\text { complete_lattice (topology } \alpha \text {) }
$$

- (Co) induced structures allow for easy constructions:

$$
\begin{aligned}
& \text { map : } \Pi\{\alpha \beta\},(\alpha \rightarrow \beta) \rightarrow \text { (topology } \alpha \rightarrow \text { topology } \beta) \\
& \text { comap : } \Pi\{\alpha \beta\},(\alpha \rightarrow \beta) \rightarrow \text { (topology } \beta \rightarrow \text { topology } \alpha)
\end{aligned}
$$

- Easy constructions:

$$
\begin{aligned}
& \text { prod } t_{1} t_{2}:=\operatorname{comap} \pi_{1} t_{1} \sqcup \operatorname{comap} \pi_{2} t_{2} \\
& \text { subtype } t s:=\operatorname{comap}(\text { subtype.val } s) t
\end{aligned}
$$

- Straight forward derivation of continuity rules

Analysis: Type Class Structure

class metric (α : Type) $:=\ldots$
instance m2t (α : Type) [metric α] : topology $\alpha:=$ $\{$ open $s:=\forall x \in s, \exists \epsilon>0$, ball $x \epsilon \subseteq s, \ldots\}$

Analysis: Type Class Structure

class metric (α : Type) $:=\ldots$
instance m2t (α : Type) [metric α] : topology $\alpha:=$
$\{$ open $s:=\forall x \in s, \exists \epsilon>0$, ball $x \epsilon \subseteq s, \ldots\}$
Problem: $\mathrm{m} 2 \mathrm{t}\left(m_{1} \times m_{2}\right) \not \equiv\left(\mathrm{m} 2 \mathrm{t} m_{1}\right) \times\left(\mathrm{m} 2 \mathrm{t} m_{2}\right)$

Analysis: Type Class Structure

class metric (α : Type) $:=\ldots$
instance m2t (α : Type) [metric α] : topology $\alpha:=$ $\{$ open $s:=\forall x \in s, \exists \epsilon>0$, ball $x \epsilon \subseteq s, \ldots\}$

Problem: $\mathrm{m} 2 \mathrm{t}\left(m_{1} \times m_{2}\right) \not \equiv\left(\mathrm{m} 2 \mathrm{t} m_{1}\right) \times\left(\mathrm{m} 2 \mathrm{t} m_{2}\right)$
class metric (α : Type) extends topology $\alpha:=$
(open_iff: $\forall s$, open $s \Longleftrightarrow \forall x \in s, \exists \epsilon>0$, ball $x \epsilon \subseteq s$)

Analysis: Type Class Structure

class metric (α : Type) $:=\ldots$
instance m2t (α : Type) [metric α] : topology $\alpha:=$ $\{$ open $s:=\forall x \in s, \exists \epsilon>0$, ball $x \epsilon \subseteq s, \ldots\}$

Problem: m2t $\left(m_{1} \times m_{2}\right) \not \equiv\left(\mathrm{m} 2 \mathrm{t} m_{1}\right) \times\left(\mathrm{m} 2 \mathrm{t} m_{2}\right)$

$$
\begin{aligned}
& \text { class metric }(\alpha: \text { Type }) \text { extends topology } \alpha:= \\
& \ldots \\
& \text { (open_iff }: \forall s, \text { open } s \Longleftrightarrow \forall x \in s, \exists \epsilon>0 \text {, ball } x \epsilon \subseteq s \text {) }
\end{aligned}
$$

Default values give a value for the topology when defining metric

Analysis: Constructing Reals

Construct \mathbb{R} using completion of \mathbb{Q}

- For foundational reasons metric completion is not possible

Analysis: Constructing Reals

Construct \mathbb{R} using completion of \mathbb{Q}

- For foundational reasons metric completion is not possible (alt: $\alpha \rightarrow \alpha \rightarrow \mathbb{Q} \rightarrow$ Prop, c.f. Krebbers \& Spitters)

Analysis: Constructing Reals

Construct \mathbb{R} using completion of \mathbb{Q}

- For foundational reasons metric completion is not possible (alt: $\alpha \rightarrow \alpha \rightarrow \mathbb{Q} \rightarrow$ Prop, c.f. Krebbers \& Spitters)
- Formalize uniform spaces (using the filter library!)

Analysis: Constructing Reals

Construct \mathbb{R} using completion of \mathbb{Q}

- For foundational reasons metric completion is not possible (alt: $\alpha \rightarrow \alpha \rightarrow \mathbb{Q} \rightarrow$ Prop, c.f. Krebbers \& Spitters)
- Formalize uniform spaces (using the filter library!)
- Use completion on the uniform space \mathbb{Q}

Analysis: Constructing Reals

Construct \mathbb{R} using completion of \mathbb{Q}

- For foundational reasons metric completion is not possible (alt: $\alpha \rightarrow \alpha \rightarrow \mathbb{Q} \rightarrow$ Prop, c.f. Krebbers \& Spitters)
- Formalize uniform spaces (using the filter library!)
- Use completion on the uniform space \mathbb{Q}
- Is it worth it?

Analysis: Constructing Reals

Construct \mathbb{R} using completion of \mathbb{Q}

- For foundational reasons metric completion is not possible (alt: $\alpha \rightarrow \alpha \rightarrow \mathbb{Q} \rightarrow$ Prop, c.f. Krebbers \& Spitters)
- Formalize uniform spaces (using the filter library!)
- Use completion on the uniform space \mathbb{Q}
- Is it worth it?

Mario wants to go back to Cauchy sequences...

Analysis: Constructing Reals

Construct \mathbb{R} using completion of \mathbb{Q}

- For foundational reasons metric completion is not possible (alt: $\alpha \rightarrow \alpha \rightarrow \mathbb{Q} \rightarrow$ Prop, c.f. Krebbers \& Spitters)
- Formalize uniform spaces (using the filter library!)
- Use completion on the uniform space \mathbb{Q}
- Is it worth it?

Mario wants to go back to Cauchy sequences...

- Anyway: \mathbb{R} as order \& topologically complete field

Linear Algebra

class module $\left(\alpha:\right.$ out Type $\left._{u}\right)\left(\beta:\right.$ Type $\left._{v}\right)$ [out ring $\left.\alpha\right]:=\ldots$

Linear Algebra

class module $\left(\alpha:\right.$ out Type $\left._{u}\right)\left(\beta:\right.$ Type $\left._{v}\right)$ [out ring $\left.\alpha\right]:=\ldots$

- type class mechanism looks for module _ β _

Linear Algebra

class module $\left(\alpha:\right.$ out Type $\left._{u}\right)\left(\beta:\right.$ Type $\left._{v}\right)$ [out ring $\left.\alpha\right]:=\ldots$

- type class mechanism looks for module _ β _
- only one canoncial module per type

Linear Algebra

class module $\left(\alpha:\right.$ out Type $\left._{u}\right)\left(\beta:\right.$ Type $\left._{v}\right)$ [out ring $\left.\alpha\right]:=\ldots$

- type class mechanism looks for module _ β_{-}
- only one canoncial module per type
- usually α is fixed per theory anyway

Linear Algebra

class module $\left(\alpha\right.$: out Type $\left._{u}\right)\left(\beta:\right.$ Type $\left._{v}\right)$ [out ring $\left.\alpha\right]:=\ldots$

- type class mechanism looks for module _ β_{-}
- only one canoncial module per type
- usually α is fixed per theory anyway
- Problem: (multivariate) polynomials

Linear Algebra

class module $\left(\alpha:\right.$ out Type $\left._{u}\right)\left(\beta:\right.$ Type $\left._{v}\right)$ [out ring $\left.\alpha\right]:=\ldots$

- type class mechanism looks for module β_{-}
- only one canoncial module per type
- usually α is fixed per theory anyway
- Problem: (multivariate) polynomials

Constructions: Subspace, Linear maps, Quotient, Product

Linear Algebra

class module $\left(\alpha:\right.$ out Type $\left._{u}\right)\left(\beta:\right.$ Type $\left._{v}\right)$ [out ring $\left.\alpha\right]:=\ldots$

- type class mechanism looks for module β_{-}
- only one canoncial module per type
- usually α is fixed per theory anyway
- Problem: (multivariate) polynomials

Constructions: Subspace, Linear maps, Quotient, Product

Example

Isomorphism laws:

$$
\frac{\operatorname{dom}(f)}{\operatorname{ker}(f)} \simeq_{\ell} \operatorname{im}(f) \quad \frac{s}{s \cap t} \simeq_{\ell} \frac{s \oplus t}{t}
$$

Discussion

Problems with Type Classes

- Currently a automated copy from group to add_group instead: $\left[i s _g r o u p ~(*)(/)\left(\square^{-1}\right) 1\right]$ and $\left[i s _g r o u p(+)(-)(-\square) 0\right]$
- Mixin type classes
replace comm_monoid, ... by [is_commutative $(*)$]

Problem with Universes

class functor (M : Type $u \rightarrow$ Type v) :=
$($ map : $\forall(\alpha \beta:$ Type $u),(\alpha \rightarrow \beta) \rightarrow M \alpha \rightarrow M \beta)$
(map_comp: $\forall(\alpha \beta \gamma:$ Type u) $f g h, \operatorname{map} f \circ \operatorname{map} g=\operatorname{map}(f \circ g))$
(map_id: $\forall \alpha$, map id $=i d$)

Problem with Universes

Problematic u

class functor (M : Type $u \rightarrow$ Type v) :=
$($ map : $\forall(\alpha \beta:$ Type $u),(\alpha \rightarrow \beta) \rightarrow M \alpha \rightarrow M \beta)$
$($ map_comp : $\forall(\alpha \beta \gamma:$ Type $u) f g h$, map $f \circ \operatorname{map} g=\operatorname{map}(f \circ g))$
(map_id: $\forall \alpha$, map id $=i d$)

Problem with Universes

```
Problematic u
class functor (M : Type }u->\mathrm{ Type v) :=
(map: }\forall(\alpha\beta:Type u),(\alpha->\beta)->M\alpha->M \beta
(map_comp: }\forall(\alpha\beta\gamma:Type u)fgh, map f\circ\operatorname{map}g=map (f\circg)
(map_id: }\forall\alpha,map id = id)
```

If we only work with functor (topology α) our library is too limited, e.g. topology.map allows mapping between different universes.

Maintenance

- Currently maintained by Mario Carneiro, me, and Jeremy Avigad
- Contributors:

Andrew Zipperer, Floris van Doorn, Haitao Zhang, Jeremy Avigad, Johannes Hölzl, Kenny Lau, Kevin Buzzard, Leonardo de Moura, Mario Carneiro, Minchao Wu, Nathaniel Thomas,

Parikshit Khanna, Robert Y. Lewis, Simon Hudon

- Currently ~ 51.000 lines of Lean code

mathlib

A (classical) mathematical library for Lean

https://github.com/leanprover/mathlib

