
mathlib: Lean’s mathematical library

Johannes Hölzl

EUTypes 2018



Introduction

I (classical) mathematical library for Lean
with computable exceptions, e.g. N, Z, lists, . . .

I Formerly distributed with Lean itself
Leo wanted more flexibility

I Some (current) topics:
Basic Datatypes, Analysis, Linear Algebra, Set Theory, . . .



Introduction

I (classical) mathematical library for Lean
with computable exceptions, e.g. N, Z, lists, . . .

I Formerly distributed with Lean itself
Leo wanted more flexibility

I Some (current) topics:
Basic Datatypes, Analysis, Linear Algebra, Set Theory, . . .



Introduction

I (classical) mathematical library for Lean
with computable exceptions, e.g. N, Z, lists, . . .

I Formerly distributed with Lean itself
Leo wanted more flexibility

I Some (current) topics:
Basic Datatypes, Analysis, Linear Algebra, Set Theory, . . .



Lean



Lean DTT

I Quotient types (implies funext)

I Proof irrelevance is a definitional equality

I Mark constants noncomputable,
i.e. functions using choice:

axiom choice : Π(α : Sort u), nonempty α→ α

I Non-commulative universes Prop : Type 0 : Type 1 : · · ·
I Basic inductives in the kernel

I Mutual and nested inductives are constructed
I No general fixpoint operator, no general match operator

these are derived from recursors



Lean DTT

I Quotient types (implies funext)

I Proof irrelevance is a definitional equality

I Mark constants noncomputable,
i.e. functions using choice:

axiom choice : Π(α : Sort u), nonempty α→ α

I Non-commulative universes Prop : Type 0 : Type 1 : · · ·
I Basic inductives in the kernel

I Mutual and nested inductives are constructed
I No general fixpoint operator, no general match operator

these are derived from recursors



Lean DTT

I Quotient types (implies funext)

I Proof irrelevance is a definitional equality

I Mark constants noncomputable,
i.e. functions using choice:

axiom choice : Π(α : Sort u), nonempty α→ α

I Non-commulative universes Prop : Type 0 : Type 1 : · · ·
I Basic inductives in the kernel

I Mutual and nested inductives are constructed
I No general fixpoint operator, no general match operator

these are derived from recursors



Lean DTT

I Quotient types (implies funext)

I Proof irrelevance is a definitional equality

I Mark constants noncomputable,
i.e. functions using choice:

axiom choice : Π(α : Sort u), nonempty α→ α

I Non-commulative universes Prop : Type 0 : Type 1 : · · ·

I Basic inductives in the kernel

I Mutual and nested inductives are constructed
I No general fixpoint operator, no general match operator

these are derived from recursors



Lean DTT

I Quotient types (implies funext)

I Proof irrelevance is a definitional equality

I Mark constants noncomputable,
i.e. functions using choice:

axiom choice : Π(α : Sort u), nonempty α→ α

I Non-commulative universes Prop : Type 0 : Type 1 : · · ·
I Basic inductives in the kernel

I Mutual and nested inductives are constructed
I No general fixpoint operator, no general match operator

these are derived from recursors



Lean DTT

I Quotient types (implies funext)

I Proof irrelevance is a definitional equality

I Mark constants noncomputable,
i.e. functions using choice:

axiom choice : Π(α : Sort u), nonempty α→ α

I Non-commulative universes Prop : Type 0 : Type 1 : · · ·
I Basic inductives in the kernel

I Mutual and nested inductives are constructed

I No general fixpoint operator, no general match operator
these are derived from recursors



Lean DTT

I Quotient types (implies funext)

I Proof irrelevance is a definitional equality

I Mark constants noncomputable,
i.e. functions using choice:

axiom choice : Π(α : Sort u), nonempty α→ α

I Non-commulative universes Prop : Type 0 : Type 1 : · · ·
I Basic inductives in the kernel

I Mutual and nested inductives are constructed
I No general fixpoint operator, no general match operator

these are derived from recursors



Type classes in Lean

I Type classes are used to fill in implicit values:

add : Π{α : Type}[i : has add α], α→ α→ α

a + b ≡ @add N nat.add a b

I Instances can depend on other instances:

ring.to group : Π(α : Type)[i : ring α] : group α

I Output parameters:

has mem : Type→ out Type→ Type

set.has mem : Πα, has mem (set α) α

fset.has mem : Πα [i : decidable eq α], has mem (fset α) α

I Default values



Type classes in Lean

I Type classes are used to fill in implicit values:

add : Π{α : Type}[i : has add α], α→ α→ α

a + b ≡ @add N nat.add a b

I Instances can depend on other instances:

ring.to group : Π(α : Type)[i : ring α] : group α

I Output parameters:

has mem : Type→ out Type→ Type

set.has mem : Πα, has mem (set α) α

fset.has mem : Πα [i : decidable eq α], has mem (fset α) α

I Default values



Type classes in Lean

I Type classes are used to fill in implicit values:

add : Π{α : Type}[i : has add α], α→ α→ α

a + b ≡ @add N nat.add a b

I Instances can depend on other instances:

ring.to group : Π(α : Type)[i : ring α] : group α

I Output parameters:

has mem : Type→ out Type→ Type

set.has mem : Πα, has mem (set α) α

fset.has mem : Πα [i : decidable eq α], has mem (fset α) α

I Default values



Type classes in Lean

I Type classes are used to fill in implicit values:

add : Π{α : Type}[i : has add α], α→ α→ α

a + b ≡ @add N nat.add a b

I Instances can depend on other instances:

ring.to group : Π(α : Type)[i : ring α] : group α

I Output parameters:

has mem : Type→ out Type→ Type

set.has mem : Πα, has mem (set α) α

fset.has mem : Πα [i : decidable eq α], has mem (fset α) α

I Default values



Library



Library

I Basic (computable) data

I Type class hierarchies:

Orders orders, lattices
Algebraic (commutative) groups, rings, fields

Spaces measurable, topological, uniform, metric

I Set theory (cardinals & ordinals)

I Analysis

I Linear algebra



Basic (computable) data

I Numbers: N, Z (as datatype, not quotient), Q, Fin n

I Lists, set α := α→ Prop

I multiset α := list α/perm

I finset α := {m : multiset α | nodup m}
I Big operators for list, multiset and finset



Basic (computable) data

I Numbers: N, Z (as datatype, not quotient), Q, Fin n

I Lists, set α := α→ Prop

I multiset α := list α/perm

I finset α := {m : multiset α | nodup m}
I Big operators for list, multiset and finset



Basic (computable) data

I Numbers: N, Z (as datatype, not quotient), Q, Fin n

I Lists, set α := α→ Prop

I multiset α := list α/perm

I finset α := {m : multiset α | nodup m}
I Big operators for list, multiset and finset



Basic (computable) data

I Numbers: N, Z (as datatype, not quotient), Q, Fin n

I Lists, set α := α→ Prop

I multiset α := list α/perm

I finset α := {m : multiset α | nodup m}

I Big operators for list, multiset and finset



Basic (computable) data

I Numbers: N, Z (as datatype, not quotient), Q, Fin n

I Lists, set α := α→ Prop

I multiset α := list α/perm

I finset α := {m : multiset α | nodup m}
I Big operators for list, multiset and finset



Set theory: Cardinals and Ordinals (Mario Carneiro)

I Zorn’s lemma, Schröder-Bernstein, . . .

I Isomorphism:
structure α ' β :=
(f : α→ β)(g : β → α)(f g : f ◦ g = id)(g f : g ◦ f = id)

I Cardinals & ordinals are well-order

cardinalu : Typeu+1 := Typeu/nonempty '
ordinalu : Typeu+1 := Well orderu/nonempty 'ord

I Semiring structure of cardinal is proved using '
constructions

I κ+ κ = κ = κ ∗ κ (for κ ≥ ω)

I Existence of inaccessible cardinals (i.e. in the next universe)



Set theory: Cardinals and Ordinals (Mario Carneiro)

I Zorn’s lemma, Schröder-Bernstein, . . .

I Isomorphism:
structure α ' β :=
(f : α→ β)(g : β → α)(f g : f ◦ g = id)(g f : g ◦ f = id)

I Cardinals & ordinals are well-order

cardinalu : Typeu+1 := Typeu/nonempty '
ordinalu : Typeu+1 := Well orderu/nonempty 'ord

I Semiring structure of cardinal is proved using '
constructions

I κ+ κ = κ = κ ∗ κ (for κ ≥ ω)

I Existence of inaccessible cardinals (i.e. in the next universe)



Set theory: Cardinals and Ordinals (Mario Carneiro)

I Zorn’s lemma, Schröder-Bernstein, . . .

I Isomorphism:
structure α ' β :=
(f : α→ β)(g : β → α)(f g : f ◦ g = id)(g f : g ◦ f = id)

I Cardinals & ordinals are well-order

cardinalu : Typeu+1 := Typeu/nonempty '
ordinalu : Typeu+1 := Well orderu/nonempty 'ord

I Semiring structure of cardinal is proved using '
constructions

I κ+ κ = κ = κ ∗ κ (for κ ≥ ω)

I Existence of inaccessible cardinals (i.e. in the next universe)



Set theory: Cardinals and Ordinals (Mario Carneiro)

I Zorn’s lemma, Schröder-Bernstein, . . .

I Isomorphism:
structure α ' β :=
(f : α→ β)(g : β → α)(f g : f ◦ g = id)(g f : g ◦ f = id)

I Cardinals & ordinals are well-order

cardinalu : Typeu+1 := Typeu/nonempty '
ordinalu : Typeu+1 := Well orderu/nonempty 'ord

I Semiring structure of cardinal is proved using '
constructions

I κ+ κ = κ = κ ∗ κ (for κ ≥ ω)

I Existence of inaccessible cardinals (i.e. in the next universe)



Set theory: Cardinals and Ordinals (Mario Carneiro)

I Zorn’s lemma, Schröder-Bernstein, . . .

I Isomorphism:
structure α ' β :=
(f : α→ β)(g : β → α)(f g : f ◦ g = id)(g f : g ◦ f = id)

I Cardinals & ordinals are well-order

cardinalu : Typeu+1 := Typeu/nonempty '
ordinalu : Typeu+1 := Well orderu/nonempty 'ord

I Semiring structure of cardinal is proved using '
constructions

I κ+ κ = κ = κ ∗ κ (for κ ≥ ω)

I Existence of inaccessible cardinals (i.e. in the next universe)



Set theory: Cardinals and Ordinals (Mario Carneiro)

I Zorn’s lemma, Schröder-Bernstein, . . .

I Isomorphism:
structure α ' β :=
(f : α→ β)(g : β → α)(f g : f ◦ g = id)(g f : g ◦ f = id)

I Cardinals & ordinals are well-order

cardinalu : Typeu+1 := Typeu/nonempty '
ordinalu : Typeu+1 := Well orderu/nonempty 'ord

I Semiring structure of cardinal is proved using '
constructions

I κ+ κ = κ = κ ∗ κ (for κ ≥ ω)

I Existence of inaccessible cardinals (i.e. in the next universe)



Analysis

I Derived from Isabelle’s analysis (Filters to generalize limits)

I Topology: open; nhds filter, closed, compact, interior, closure

I Uniformity: complete, totally bounded
(compact ↔ complete and totally bounded)

I Metric spaces are only rudimentary

I Measurable spaces, Measures & Lebesgue measure

I Infinite sum on topological monoids α:
Σ : ∀ι, (ι→ α)→ α



Analysis

I Derived from Isabelle’s analysis (Filters to generalize limits)

I Topology: open; nhds filter, closed, compact, interior, closure

I Uniformity: complete, totally bounded
(compact ↔ complete and totally bounded)

I Metric spaces are only rudimentary

I Measurable spaces, Measures & Lebesgue measure

I Infinite sum on topological monoids α:
Σ : ∀ι, (ι→ α)→ α



Analysis

I Derived from Isabelle’s analysis (Filters to generalize limits)

I Topology: open; nhds filter, closed, compact, interior, closure

I Uniformity: complete, totally bounded
(compact ↔ complete and totally bounded)

I Metric spaces are only rudimentary

I Measurable spaces, Measures & Lebesgue measure

I Infinite sum on topological monoids α:
Σ : ∀ι, (ι→ α)→ α



Analysis

I Derived from Isabelle’s analysis (Filters to generalize limits)

I Topology: open; nhds filter, closed, compact, interior, closure

I Uniformity: complete, totally bounded
(compact ↔ complete and totally bounded)

I Metric spaces are only rudimentary

I Measurable spaces, Measures & Lebesgue measure

I Infinite sum on topological monoids α:
Σ : ∀ι, (ι→ α)→ α



Analysis

I Derived from Isabelle’s analysis (Filters to generalize limits)

I Topology: open; nhds filter, closed, compact, interior, closure

I Uniformity: complete, totally bounded
(compact ↔ complete and totally bounded)

I Metric spaces are only rudimentary

I Measurable spaces, Measures & Lebesgue measure

I Infinite sum on topological monoids α:
Σ : ∀ι, (ι→ α)→ α



Analysis

I Derived from Isabelle’s analysis (Filters to generalize limits)

I Topology: open; nhds filter, closed, compact, interior, closure

I Uniformity: complete, totally bounded
(compact ↔ complete and totally bounded)

I Metric spaces are only rudimentary

I Measurable spaces, Measures & Lebesgue measure

I Infinite sum on topological monoids α:
Σ : ∀ι, (ι→ α)→ α



Analysis: Analytical Structures as Complete Lattices

Complete lattices, map & comap as category theory light

I Filters, topological spaces, uniform spaces, and measurable
spaces form a complete lattices per type

complete lattice (topology α)

I (Co) induced structures allow for easy constructions:

map : Π{αβ}, (α→ β)→ (topology α→ topology β)
comap : Π{αβ}, (α→ β)→ (topology β → topology α)

I Easy constructions:

prod t1 t2 := comap π1 t1 t comap π2 t2
subtype t s := comap (subtype.val s) t

I Straight forward derivation of continuity rules



Analysis: Analytical Structures as Complete Lattices

Complete lattices, map & comap as category theory light

I Filters, topological spaces, uniform spaces, and measurable
spaces form a complete lattices per type

complete lattice (topology α)

I (Co) induced structures allow for easy constructions:

map : Π{αβ}, (α→ β)→ (topology α→ topology β)
comap : Π{αβ}, (α→ β)→ (topology β → topology α)

I Easy constructions:

prod t1 t2 := comap π1 t1 t comap π2 t2
subtype t s := comap (subtype.val s) t

I Straight forward derivation of continuity rules



Analysis: Analytical Structures as Complete Lattices

Complete lattices, map & comap as category theory light

I Filters, topological spaces, uniform spaces, and measurable
spaces form a complete lattices per type

complete lattice (topology α)

I (Co) induced structures allow for easy constructions:

map : Π{αβ}, (α→ β)→ (topology α→ topology β)
comap : Π{αβ}, (α→ β)→ (topology β → topology α)

I Easy constructions:

prod t1 t2 := comap π1 t1 t comap π2 t2
subtype t s := comap (subtype.val s) t

I Straight forward derivation of continuity rules



Analysis: Analytical Structures as Complete Lattices

Complete lattices, map & comap as category theory light

I Filters, topological spaces, uniform spaces, and measurable
spaces form a complete lattices per type

complete lattice (topology α)

I (Co) induced structures allow for easy constructions:

map : Π{αβ}, (α→ β)→ (topology α→ topology β)
comap : Π{αβ}, (α→ β)→ (topology β → topology α)

I Easy constructions:

prod t1 t2 := comap π1 t1 t comap π2 t2
subtype t s := comap (subtype.val s) t

I Straight forward derivation of continuity rules



Analysis: Type Class Structure

class metric (α : Type) := . . .
instance m2t (α : Type) [metric α] : topology α :=
{open s := ∀x ∈ s,∃ε > 0, ball x ε ⊆ s, . . .}

Problem: m2t (m1 ×m2) 6≡ (m2t m1)× (m2t m2)

class metric (α : Type) extends topology α :=
. . .
(open iff : ∀s, open s ⇐⇒ ∀x ∈ s,∃ε > 0, ball x ε ⊆ s)

Default values give a value for the topology when defining metric



Analysis: Type Class Structure

class metric (α : Type) := . . .
instance m2t (α : Type) [metric α] : topology α :=
{open s := ∀x ∈ s,∃ε > 0, ball x ε ⊆ s, . . .}

Problem: m2t (m1 ×m2) 6≡ (m2t m1)× (m2t m2)

class metric (α : Type) extends topology α :=
. . .
(open iff : ∀s, open s ⇐⇒ ∀x ∈ s,∃ε > 0, ball x ε ⊆ s)

Default values give a value for the topology when defining metric



Analysis: Type Class Structure

class metric (α : Type) := . . .
instance m2t (α : Type) [metric α] : topology α :=
{open s := ∀x ∈ s,∃ε > 0, ball x ε ⊆ s, . . .}

Problem: m2t (m1 ×m2) 6≡ (m2t m1)× (m2t m2)

class metric (α : Type) extends topology α :=
. . .
(open iff : ∀s, open s ⇐⇒ ∀x ∈ s,∃ε > 0, ball x ε ⊆ s)

Default values give a value for the topology when defining metric



Analysis: Type Class Structure

class metric (α : Type) := . . .
instance m2t (α : Type) [metric α] : topology α :=
{open s := ∀x ∈ s,∃ε > 0, ball x ε ⊆ s, . . .}

Problem: m2t (m1 ×m2) 6≡ (m2t m1)× (m2t m2)

class metric (α : Type) extends topology α :=
. . .
(open iff : ∀s, open s ⇐⇒ ∀x ∈ s,∃ε > 0, ball x ε ⊆ s)

Default values give a value for the topology when defining metric



Analysis: Constructing Reals

Construct R using completion of Q
I For foundational reasons metric completion is not possible

(alt: α→ α→ Q→ Prop, c.f. Krebbers & Spitters)

I Formalize uniform spaces (using the filter library!)

I Use completion on the uniform space Q
I Is it worth it?

Mario wants to go back to Cauchy sequences...

I Anyway: R as order & topologically complete field



Analysis: Constructing Reals

Construct R using completion of Q
I For foundational reasons metric completion is not possible

(alt: α→ α→ Q→ Prop, c.f. Krebbers & Spitters)

I Formalize uniform spaces (using the filter library!)

I Use completion on the uniform space Q
I Is it worth it?

Mario wants to go back to Cauchy sequences...

I Anyway: R as order & topologically complete field



Analysis: Constructing Reals

Construct R using completion of Q
I For foundational reasons metric completion is not possible

(alt: α→ α→ Q→ Prop, c.f. Krebbers & Spitters)

I Formalize uniform spaces (using the filter library!)

I Use completion on the uniform space Q
I Is it worth it?

Mario wants to go back to Cauchy sequences...

I Anyway: R as order & topologically complete field



Analysis: Constructing Reals

Construct R using completion of Q
I For foundational reasons metric completion is not possible

(alt: α→ α→ Q→ Prop, c.f. Krebbers & Spitters)

I Formalize uniform spaces (using the filter library!)

I Use completion on the uniform space Q

I Is it worth it?
Mario wants to go back to Cauchy sequences...

I Anyway: R as order & topologically complete field



Analysis: Constructing Reals

Construct R using completion of Q
I For foundational reasons metric completion is not possible

(alt: α→ α→ Q→ Prop, c.f. Krebbers & Spitters)

I Formalize uniform spaces (using the filter library!)

I Use completion on the uniform space Q
I Is it worth it?

Mario wants to go back to Cauchy sequences...

I Anyway: R as order & topologically complete field



Analysis: Constructing Reals

Construct R using completion of Q
I For foundational reasons metric completion is not possible

(alt: α→ α→ Q→ Prop, c.f. Krebbers & Spitters)

I Formalize uniform spaces (using the filter library!)

I Use completion on the uniform space Q
I Is it worth it?

Mario wants to go back to Cauchy sequences...

I Anyway: R as order & topologically complete field



Analysis: Constructing Reals

Construct R using completion of Q
I For foundational reasons metric completion is not possible

(alt: α→ α→ Q→ Prop, c.f. Krebbers & Spitters)

I Formalize uniform spaces (using the filter library!)

I Use completion on the uniform space Q
I Is it worth it?

Mario wants to go back to Cauchy sequences...

I Anyway: R as order & topologically complete field



Linear Algebra

class module (α : out Typeu) (β : Typev ) [out ring α] := . . .

I type class mechanism looks for module β

I only one canoncial module per type

I usually α is fixed per theory anyway

I Problem: (multivariate) polynomials

Constructions: Subspace, Linear maps, Quotient, Product

Example

Isomorphism laws:

dom(f )

ker(f )
'` im(f )

s

s ∩ t
'`

s ⊕ t

t



Linear Algebra

class module (α : out Typeu) (β : Typev ) [out ring α] := . . .

I type class mechanism looks for module β

I only one canoncial module per type

I usually α is fixed per theory anyway

I Problem: (multivariate) polynomials

Constructions: Subspace, Linear maps, Quotient, Product

Example

Isomorphism laws:

dom(f )

ker(f )
'` im(f )

s

s ∩ t
'`

s ⊕ t

t



Linear Algebra

class module (α : out Typeu) (β : Typev ) [out ring α] := . . .

I type class mechanism looks for module β

I only one canoncial module per type

I usually α is fixed per theory anyway

I Problem: (multivariate) polynomials

Constructions: Subspace, Linear maps, Quotient, Product

Example

Isomorphism laws:

dom(f )

ker(f )
'` im(f )

s

s ∩ t
'`

s ⊕ t

t



Linear Algebra

class module (α : out Typeu) (β : Typev ) [out ring α] := . . .

I type class mechanism looks for module β

I only one canoncial module per type

I usually α is fixed per theory anyway

I Problem: (multivariate) polynomials

Constructions: Subspace, Linear maps, Quotient, Product

Example

Isomorphism laws:

dom(f )

ker(f )
'` im(f )

s

s ∩ t
'`

s ⊕ t

t



Linear Algebra

class module (α : out Typeu) (β : Typev ) [out ring α] := . . .

I type class mechanism looks for module β

I only one canoncial module per type

I usually α is fixed per theory anyway

I Problem: (multivariate) polynomials

Constructions: Subspace, Linear maps, Quotient, Product

Example

Isomorphism laws:

dom(f )

ker(f )
'` im(f )

s

s ∩ t
'`

s ⊕ t

t



Linear Algebra

class module (α : out Typeu) (β : Typev ) [out ring α] := . . .

I type class mechanism looks for module β

I only one canoncial module per type

I usually α is fixed per theory anyway

I Problem: (multivariate) polynomials

Constructions: Subspace, Linear maps, Quotient, Product

Example

Isomorphism laws:

dom(f )

ker(f )
'` im(f )

s

s ∩ t
'`

s ⊕ t

t



Linear Algebra

class module (α : out Typeu) (β : Typev ) [out ring α] := . . .

I type class mechanism looks for module β

I only one canoncial module per type

I usually α is fixed per theory anyway

I Problem: (multivariate) polynomials

Constructions: Subspace, Linear maps, Quotient, Product

Example

Isomorphism laws:

dom(f )

ker(f )
'` im(f )

s

s ∩ t
'`

s ⊕ t

t



Discussion



Problems with Type Classes

semigroup

monoid

group

comm semigroup

comm monoid

comm group

add semigroup

add monoid

add group

add comm semigroup

add comm monoid

add comm group

I Currently a automated copy from group to add group

instead: [is group(∗)(/)(�−1)1] and [is group(+)(−)(−�)0]

I Mixin type classes
replace comm monoid, . . . by [is commutative (∗)]



Problems with Type Classes

semigroup

monoid

group

comm semigroup

comm monoid

comm group

add semigroup

add monoid

add group

add comm semigroup

add comm monoid

add comm group

I Currently a automated copy from group to add group

instead: [is group(∗)(/)(�−1)1] and [is group(+)(−)(−�)0]

I Mixin type classes
replace comm monoid, . . . by [is commutative (∗)]



Problems with Type Classes

semigroup

monoid

group

comm semigroup

comm monoid

comm group

add semigroup

add monoid

add group

add comm semigroup

add comm monoid

add comm group

I Currently a automated copy from group to add group

instead: [is group(∗)(/)(�−1)1] and [is group(+)(−)(−�)0]

I Mixin type classes
replace comm monoid, . . . by [is commutative (∗)]



Problems with Type Classes

semigroup

monoid

group

comm semigroup

comm monoid

comm group

add semigroup

add monoid

add group

add comm semigroup

add comm monoid

add comm group

I Currently a automated copy from group to add group

instead: [is group(∗)(/)(�−1)1] and [is group(+)(−)(−�)0]

I Mixin type classes
replace comm monoid, . . . by [is commutative (∗)]



Problem with Universes

class functor (M : Type u → Type v) :=
(map : ∀(α β : Type u), (α→ β)→ M α→ M β)
(map comp : ∀(α β γ : Type u) f g h, map f ◦ map g = map (f ◦ g))
(map id : ∀α, map id = id)

Problematic u

If we only work with functor (topology α) our library is too
limited, e.g. topology.map allows mapping between different
universes.



Problem with Universes

class functor (M : Type u → Type v) :=
(map : ∀(α β : Type u), (α→ β)→ M α→ M β)
(map comp : ∀(α β γ : Type u) f g h, map f ◦ map g = map (f ◦ g))
(map id : ∀α, map id = id)

Problematic u

If we only work with functor (topology α) our library is too
limited, e.g. topology.map allows mapping between different
universes.



Problem with Universes

class functor (M : Type u → Type v) :=
(map : ∀(α β : Type u), (α→ β)→ M α→ M β)
(map comp : ∀(α β γ : Type u) f g h, map f ◦ map g = map (f ◦ g))
(map id : ∀α, map id = id)

Problematic u

If we only work with functor (topology α) our library is too
limited, e.g. topology.map allows mapping between different
universes.



Maintenance

I Currently maintained by Mario Carneiro, me, and Jeremy
Avigad

I Contributors:

Andrew Zipperer, Floris van Doorn, Haitao Zhang, Jeremy
Avigad, Johannes Hölzl, Kenny Lau, Kevin Buzzard, Leonardo
de Moura, Mario Carneiro, Minchao Wu, Nathaniel Thomas,

Parikshit Khanna, Robert Y. Lewis, Simon Hudon

I Currently ∼ 51.000 lines of Lean code



mathlib

A (classical) mathematical library for Lean

https://github.com/leanprover/mathlib

https://github.com/leanprover/mathlib

