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Introduction

» (classical) mathematical library for Lean
with computable exceptions, e.g. N, Z, lists, ...

» Formerly distributed with Lean itself
Leo wanted more flexibility
» Some (current) topics:
Basic Datatypes, Analysis, Linear Algebra, Set Theory, ...
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Quotient types (implies funext)

v

Proof irrelevance is a definitional equality

v

Mark constants noncomputable,
i.e. functions using choice:

axiom choice : [(« : Sort u),nonempty o — «

v

Non-commulative universes Prop : Type 0 : Type 1: ---

v

Basic inductives in the kernel

» Mutual and nested inductives are constructed
> No general fixpoint operator, no general match operator
these are derived from recursors
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Type classes in Lean

» Type classes are used to fill in implicit values:

add : N{a : Type}[i : has_add ], @ = o — «
a+ b= 0add N nat.add a b

» Instances can depend on other instances:
ring.to_group : [(« : Type)[i : ring «] : group «
» Qutput parameters:

has_mem : Type — out Type — Type
set.hasmem : o, has men (set a) «

fset.has mem: N« [/ : decidable_eq af, has mem (fset a) «

» Default values
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Library

v

Basic (computable) data

v

Type class hierarchies:
Orders orders, lattices
Algebraic (commutative) groups, rings, fields
Spaces measurable, topological, uniform, metric

v

Set theory (cardinals & ordinals)

v

Analysis

v

Linear algebra



Basic (computable) data

» Numbers: N, Z (as datatype, not quotient), Q, Fin n



Basic (computable) data

» Numbers: N, Z (as datatype, not quotient), Q, Fin n

> Lists, set ;== o — Prop



Basic (computable) data

» Numbers: N, Z (as datatype, not quotient), Q, Fin n
> Lists, set ;== o — Prop

» multiset o := list a/pern



Basic (computable) data

v

Numbers: N, Z (as datatype, not quotient), Q, Fin n

v

Lists, set & := o — Prop

v

multiset o :=1ist a/pern

v

finset a := {m:multiset « | nodup m}



Basic (computable) data

v

Numbers: N, Z (as datatype, not quotient), Q, Fin n

v

Lists, set & := o — Prop

v

multiset o :=1ist a/pern

v

finset a := {m:multiset « | nodup m}

v

Big operators for 1ist, multiset and finset
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Set theory: Cardinals and Ordinals (Mario Carneiro)

v

Zorn's lemma, Schroder-Bernstein, ...

Isomorphism:
structure a ~ 3 :=

(Fra—=pB)g:B—a)(fg:fog=id)(g-f:gof =id)

Cardinals & ordinals are well-order

cardinal, : Typeyi1 TyPeu/nonempty ~
ordinal, : Typey41 := Well order,/nonempty ~oy

Semiring structure of cardinal is proved using ~
constructions

k+kKk=kK=kKx*k (for Kk > w)

Existence of inaccessible cardinals (i.e. in the next universe)
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Analysis

» Derived from Isabelle’s analysis (Filters to generalize limits)
» Topology: open; nhds filter, closed, compact, interior, closure

» Uniformity: complete, totally bounded
(compact <> complete and totally bounded)

» Metric spaces are only rudimentary
» Measurable spaces, Measures & Lebesgue measure

> Infinite sum on topological monoids «:
YoV, (t—a) = a
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Complete lattices, map & comap as category theory light

» Filters, topological spaces, uniform spaces, and measurable
spaces form a complete lattices per type

complete_lattice (topology «)

» (Co) induced structures allow for easy constructions:

map : [{afS}, (& — B) — (topology a — topology f3)
comap : [M{af}, (o — B) — (topology f — topology «)

» Easy constructions:

prod t; tp := comap 71 t1 Ll comap mp t>
subtype t s := comap (subtype.val s) t

» Straight forward derivation of continuity rules
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Analysis: Type Class Structure

class metric (a: Type) =...
instance m2t (a : Type) [metric o] : topology a =
{open s :=Vx €s,3¢ >0,ball xeCs,...}

Problem: m2t (my x mp) # (m2t my) x (m2t my)

class metric (a: Type) extends topology « =

(open_iff : Vs,open s <= Vx € s,3¢ > 0,ball x € C s)

Default values give a value for the topology when defining metric
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Analysis: Constructing Reals

Construct R using completion of Q

» For foundational reasons metric completion is not possible
(alt: @ - a — Q — Prop, c.f. Krebbers & Spitters)

v

Formalize uniform spaces (using the filter library!)

v

Use completion on the uniform space Q

Is it worth it?
Mario wants to go back to Cauchy sequences...

v

v

Anyway: R as order & topologically complete field
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Linear Algebra

class module (« : out Type,) (5 : Typey) [out ring o] :=...

v

type class mechanism looks for module _ 5 _

» only one canoncial module per type

v

usually « is fixed per theory anyway

v

Problem: (multivariate) polynomials

Constructions: Subspace, Linear maps, Quotient, Product
Example

Isomorphism laws:

dom(f) _ s sdt
o~ f o~
ker(f) eim(f) - Say e
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Problems with Type Classes

add_group add_comm_group
group comm_group
add_monoid add_comm_monoid
monoid comm_monoid
add_semigroup add_comm_semigroup
semigroup comm_semigroup

> Currently a automated copy from group to add_group
instead: [is_group(*)(/)(071)1] and [is_group(+)(—)(—~0)0]
> Mixin type classes

replace comm monoid, ...by [is_commutative (x)]
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Problem with Universes

Problematic u

class functor (M : Type u — Type v) :=

(map : V(a5 : Type u), (@« = ) = M a— M f)

(map_comp : V(aw B v : Type u) f g hymap f omap g =map (f o g))
(map-id : Vo, map id = id)

If we only work with functor (topology «) our library is too
limited, e.g. topology.map allows mapping between different
universes.



Maintenance

» Currently maintained by Mario Carneiro, me, and Jeremy
Avigad

» Contributors:

Andrew Zipperer, Floris van Doorn, Haitao Zhang, Jeremy
Avigad, Johannes Holzl, Kenny Lau, Kevin Buzzard, Leonardo
de Moura, Mario Carneiro, Minchao Wu, Nathaniel Thomas,

Parikshit Khanna, Robert Y. Lewis, Simon Hudon

> Currently ~ 51.000 lines of Lean code
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