mathlib: Lean's mathematical library

Johannes Holzl

VRIJE
UNIVERSITEIT
fN° AMSTERDAM

EUTypes 2018

Introduction

» (classical) mathematical library for Lean

with computable exceptions, e.g. N, Z, lists, ...

Introduction

» (classical) mathematical library for Lean

with computable exceptions, e.g. N, Z, lists, ...

» Formerly distributed with Lean itself
Leo wanted more flexibility

Introduction

» (classical) mathematical library for Lean
with computable exceptions, e.g. N, Z, lists, ...

» Formerly distributed with Lean itself
Leo wanted more flexibility
» Some (current) topics:
Basic Datatypes, Analysis, Linear Algebra, Set Theory, ...

| ean

Lean DTT

» Quotient types (implies funext)

Lean DTT

» Quotient types (implies funext)
> Proof irrelevance is a definitional equality

Lean DTT

» Quotient types (implies funext)
> Proof irrelevance is a definitional equality

» Mark constants noncomputable,
i.e. functions using choice:

axiom choice : [(« : Sort u),nonempty o — «

Lean DTT

v

Quotient types (implies funext)

v

Proof irrelevance is a definitional equality

v

Mark constants noncomputable,
i.e. functions using choice:

axiom choice : [(« : Sort u),nonempty o — «

» Non-commulative universes Prop : Type 0 : Type 1: ---

Lean DTT

v

Quotient types (implies funext)

v

Proof irrelevance is a definitional equality

v

Mark constants noncomputable,
i.e. functions using choice:

axiom choice : [(« : Sort u),nonempty o — «

v

Non-commulative universes Prop : Type 0 : Type 1: ---
Basic inductives in the kernel

v

Lean DTT

v

Quotient types (implies funext)

v

Proof irrelevance is a definitional equality

v

Mark constants noncomputable,
i.e. functions using choice:

axiom choice : [(« : Sort u),nonempty o — «

v

Non-commulative universes Prop : Type 0 : Type 1: ---
Basic inductives in the kernel
» Mutual and nested inductives are constructed

v

Lean DTT

v

Quotient types (implies funext)

v

Proof irrelevance is a definitional equality

v

Mark constants noncomputable,
i.e. functions using choice:

axiom choice : [(« : Sort u),nonempty o — «

v

Non-commulative universes Prop : Type 0 : Type 1: ---

v

Basic inductives in the kernel

» Mutual and nested inductives are constructed
> No general fixpoint operator, no general match operator
these are derived from recursors

Type classes in Lean

» Type classes are used to fill in implicit values:

add : N{a : Type}[i : has_add], @ = o — «
a+ b= 0add N nat.add a b

Type classes in Lean

» Type classes are used to fill in implicit values:

add : N{a : Type}[i : has_add], @ = o — «
a+ b= 0add N nat.add a b

» Instances can depend on other instances:

ring.to_group : [(« : Type)[i : ring «] : group «

Type classes in Lean

» Type classes are used to fill in implicit values:

add : N{a : Type}[i : has_add], @ = o — «
a+ b= 0add N nat.add a b

» Instances can depend on other instances:
ring.to_group : [(« : Type)[i : ring «] : group «
» Qutput parameters:

has_mem : Type — out Type — Type
set.hasmem : o, has men (set a) «

fset.has mem: N« [/ : decidable_eq af, has mem (fset a) «

Type classes in Lean

» Type classes are used to fill in implicit values:

add : N{a : Type}[i : has_add], @ = o — «
a+ b= 0add N nat.add a b

» Instances can depend on other instances:
ring.to_group : [(« : Type)[i : ring «] : group «
» Qutput parameters:

has_mem : Type — out Type — Type
set.hasmem : o, has men (set a) «

fset.has mem: N« [/ : decidable_eq af, has mem (fset a) «

» Default values

Library

Library

v

Basic (computable) data

v

Type class hierarchies:
Orders orders, lattices
Algebraic (commutative) groups, rings, fields
Spaces measurable, topological, uniform, metric

v

Set theory (cardinals & ordinals)

v

Analysis

v

Linear algebra

Basic (computable) data

» Numbers: N, Z (as datatype, not quotient), Q, Fin n

Basic (computable) data

» Numbers: N, Z (as datatype, not quotient), Q, Fin n

> Lists, set ;== o — Prop

Basic (computable) data

» Numbers: N, Z (as datatype, not quotient), Q, Fin n
> Lists, set ;== o — Prop

» multiset o := list a/pern

Basic (computable) data

v

Numbers: N, Z (as datatype, not quotient), Q, Fin n

v

Lists, set & := o — Prop

v

multiset o :=1ist a/pern

v

finset a := {m:multiset « | nodup m}

Basic (computable) data

v

Numbers: N, Z (as datatype, not quotient), Q, Fin n

v

Lists, set & := o — Prop

v

multiset o :=1ist a/pern

v

finset a := {m:multiset « | nodup m}

v

Big operators for 1ist, multiset and finset

Set theory: Cardinals and Ordinals (Mario Carneiro)

» Zorn's lemma, Schroder-Bernstein, ...

Set theory: Cardinals and Ordinals (Mario Carneiro)

» Zorn's lemma, Schroder-Bernstein, ...

> Isomorphism:
structure a ~ 3 :=

(Fra—=0)g:B—a)(fg:fog=id)(gf:gof =id)

Set theory: Cardinals and Ordinals (Mario Carneiro)

» Zorn's lemma, Schroder-Bernstein, ...

> Isomorphism:
structure a ~ 3 :=

(Fia—B)(g:B—a)fg:fog=id)gf: gof=id)
» Cardinals & ordinals are well-order

cardinal, : Typeyy1 = Typeu/nonemptyz
ordinal, : Typey41 := Well order,/nonempty ~oy

Set theory: Cardinals and Ordinals (Mario Carneiro)

» Zorn's lemma, Schroder-Bernstein, ...
> Isomorphism:
structure a ~ 3 :=
(Fia—B)(g:B—a)fg:fog=id)gf: gof=id)
» Cardinals & ordinals are well-order
cardinal, : Typeyy1 = Typeu/nonempty ~
ordinal, : Typey41 := Well order,/nonempty ~oy

v

Semiring structure of cardinal is proved using ~
constructions

Set theory: Cardinals and Ordinals (Mario Carneiro)

» Zorn's lemma, Schroder-Bernstein, ...

> Isomorphism:
structure a ~ 3 :=

(Fia—B)(g:B—a)fg:fog=id)gf: gof=id)
» Cardinals & ordinals are well-order

cardinal, : Typeyy1 = Typeu/nonemptyz
ordinal, : Typey41 := Well order,/nonempty ~oy

» Semiring structure of cardinal is proved using =~
constructions

» k+k=kKk=rx*K (for kK > w)

Set theory: Cardinals and Ordinals (Mario Carneiro)

v

Zorn's lemma, Schroder-Bernstein, ...

Isomorphism:
structure a ~ 3 :=

(Fra—=pB)g:B—a)(fg:fog=id)(g-f:gof =id)

Cardinals & ordinals are well-order

cardinal, : Typeyi1 TyPeu/nonempty ~
ordinal, : Typey41 := Well order,/nonempty ~oy

Semiring structure of cardinal is proved using ~
constructions

k+kKk=kK=kKx*k (for Kk > w)

Existence of inaccessible cardinals (i.e. in the next universe)

Analysis

» Derived from Isabelle’s analysis (Filters to generalize limits)

Analysis

» Derived from Isabelle’s analysis (Filters to generalize limits)

» Topology: open; nhds filter, closed, compact, interior, closure

Analysis

» Derived from Isabelle’s analysis (Filters to generalize limits)
» Topology: open; nhds filter, closed, compact, interior, closure

» Uniformity: complete, totally bounded
(compact <> complete and totally bounded)

Analysis

v

Derived from Isabelle’s analysis (Filters to generalize limits)

v

Topology: open; nhds filter, closed, compact, interior, closure

v

Uniformity: complete, totally bounded
(compact <> complete and totally bounded)

v

Metric spaces are only rudimentary

Analysis

v

Derived from Isabelle’s analysis (Filters to generalize limits)

v

Topology: open; nhds filter, closed, compact, interior, closure

v

Uniformity: complete, totally bounded
(compact <> complete and totally bounded)

v

Metric spaces are only rudimentary

v

Measurable spaces, Measures & Lebesgue measure

Analysis

» Derived from Isabelle’s analysis (Filters to generalize limits)
» Topology: open; nhds filter, closed, compact, interior, closure

» Uniformity: complete, totally bounded
(compact <> complete and totally bounded)

» Metric spaces are only rudimentary
» Measurable spaces, Measures & Lebesgue measure

> Infinite sum on topological monoids «:
YoV, (t—a) = a

Analysis: Analytical Structures as Complete Lattices

Complete lattices, map & comap as category theory light

» Filters, topological spaces, uniform spaces, and measurable
spaces form a complete lattices per type

complete_lattice (topology «)

Analysis: Analytical Structures as Complete Lattices

Complete lattices, map & comap as category theory light

» Filters, topological spaces, uniform spaces, and measurable
spaces form a complete lattices per type

complete_lattice (topology «)

» (Co) induced structures allow for easy constructions:

map : [{afS}, (& — B) — (topology a — topology f3)
comap : [M{af}, (o — B) — (topology f — topology «)

Analysis: Analytical Structures as Complete Lattices

Complete lattices, map & comap as category theory light

» Filters, topological spaces, uniform spaces, and measurable
spaces form a complete lattices per type

complete_lattice (topology «)

» (Co) induced structures allow for easy constructions:

map : [{afS}, (& — B) — (topology a — topology f3)
comap : [M{af}, (o — B) — (topology f — topology «)

» Easy constructions:

prod t; tp := comap 71 t1 Ll comap mp t>
subtype t s := comap (subtype.val s) t

Analysis: Analytical Structures as Complete Lattices

Complete lattices, map & comap as category theory light

» Filters, topological spaces, uniform spaces, and measurable
spaces form a complete lattices per type

complete_lattice (topology «)

» (Co) induced structures allow for easy constructions:

map : [{afS}, (& — B) — (topology a — topology f3)
comap : [M{af}, (o — B) — (topology f — topology «)

» Easy constructions:

prod t; tp := comap 71 t1 Ll comap mp t>
subtype t s := comap (subtype.val s) t

» Straight forward derivation of continuity rules

Analysis: Type Class Structure

class metric (a: Type) =...
instance m2t (a : Type) [metric o] : topology a =
{open s :=Vx €s,3¢ >0,ball xeCs,...}

Analysis: Type Class Structure

class metric (a: Type) =...
instance m2t (a : Type) [metric o] : topology a =
{open s :=Vx €s,3¢ >0,ball xeCs,...}

Problem: m2t (my x mp) # (m2t my) x (m2t my)

Analysis: Type Class Structure

class metric (a: Type) =...
instance m2t (a : Type) [metric o] : topology a =
{open s :=Vx €s,3¢ >0,ball xeCs,...}

Problem: m2t (my x mp) # (m2t my) x (m2t my)

class metric (a: Type) extends topology « =

(open_iff : Vs,open s <= Vx € s,3¢ > 0,ball x € C s)

Analysis: Type Class Structure

class metric (a: Type) =...
instance m2t (a : Type) [metric o] : topology a =
{open s :=Vx €s,3¢ >0,ball xeCs,...}

Problem: m2t (my x mp) # (m2t my) x (m2t my)

class metric (a: Type) extends topology « =

(open_iff : Vs,open s <= Vx € s,3¢ > 0,ball x € C s)

Default values give a value for the topology when defining metric

Analysis: Constructing Reals

Construct R using completion of Q

» For foundational reasons metric completion is not possible

Analysis: Constructing Reals

Construct R using completion of Q

» For foundational reasons metric completion is not possible
(alt: @ - a — Q — Prop, c.f. Krebbers & Spitters)

Analysis: Constructing Reals

Construct R using completion of Q

» For foundational reasons metric completion is not possible
(alt: @ - a — Q — Prop, c.f. Krebbers & Spitters)

» Formalize uniform spaces (using the filter library!)

Analysis: Constructing Reals

Construct R using completion of Q

» For foundational reasons metric completion is not possible
(alt: @ - a — Q — Prop, c.f. Krebbers & Spitters)

» Formalize uniform spaces (using the filter library!)

» Use completion on the uniform space Q

Analysis: Constructing Reals

Construct R using completion of Q

» For foundational reasons metric completion is not possible
(alt: @ - a — Q — Prop, c.f. Krebbers & Spitters)

» Formalize uniform spaces (using the filter library!)
» Use completion on the uniform space Q
> Is it worth it?

Analysis: Constructing Reals

Construct R using completion of Q

» For foundational reasons metric completion is not possible
(alt: @ - a — Q — Prop, c.f. Krebbers & Spitters)

» Formalize uniform spaces (using the filter library!)
» Use completion on the uniform space Q

> Is it worth it?
Mario wants to go back to Cauchy sequences...

Analysis: Constructing Reals

Construct R using completion of Q

» For foundational reasons metric completion is not possible
(alt: @ - a — Q — Prop, c.f. Krebbers & Spitters)

v

Formalize uniform spaces (using the filter library!)

v

Use completion on the uniform space Q

Is it worth it?
Mario wants to go back to Cauchy sequences...

v

v

Anyway: R as order & topologically complete field

Linear Algebra

class module (« : out Type,) (5 : Typey) [out ring o] :=...

Linear Algebra

class module (« : out Type,) (5 : Typey) [out ring o] :=...

> type class mechanism looks for module _ 3 _

Linear Algebra

class module (« : out Type,) (5 : Typey) [out ring o] :=...

> type class mechanism looks for module _ 3 _

» only one canoncial module per type

Linear Algebra

class module (« : out Type,) (5 : Typey) [out ring o] :=...

> type class mechanism looks for module _ 3 _
» only one canoncial module per type

» usually « is fixed per theory anyway

Linear Algebra

class module (« : out Type,) (5 : Typey) [out ring o] :=...

v

type class mechanism looks for module _ 5 _

» only one canoncial module per type

v

usually « is fixed per theory anyway

v

Problem: (multivariate) polynomials

Linear Algebra

class module (« : out Type,) (5 : Typey) [out ring o] :=...

v

type class mechanism looks for module _ 5 _

» only one canoncial module per type

v

usually « is fixed per theory anyway

v

Problem: (multivariate) polynomials

Constructions: Subspace, Linear maps, Quotient, Product

Linear Algebra

class module (« : out Type,) (5 : Typey) [out ring o] :=...

v

type class mechanism looks for module _ 5 _

» only one canoncial module per type

v

usually « is fixed per theory anyway

v

Problem: (multivariate) polynomials

Constructions: Subspace, Linear maps, Quotient, Product
Example

Isomorphism laws:

dom(f) _ s sdt
o~ f o~
ker(f) eim(f) - Say e

Discussion

Problems with Type Classes

group

monoid

semigroup

Problems with Type Classes

group comm_group

monoid comm_monoid

semigroup comm_semigroup

Problems with Type Classes

add_group add_comm_group
group comm_group
add_monoid add_comm_monoid
monoid comm_monoid
add_semigroup add_comm_semigroup

semigroup comm_semigroup

Problems with Type Classes

add_group add_comm_group
group comm_group
add_monoid add_comm_monoid
monoid comm_monoid
add_semigroup add_comm_semigroup
semigroup comm_semigroup

> Currently a automated copy from group to add_group
instead: [is_group(*)(/)(071)1] and [is_group(+)(—)(—~0)0]
> Mixin type classes

replace comm monoid, ...by [is_commutative (x)]

Problem with Universes

class functor (M : Type u — Type v) :=

(map : V(o 5 : Type u),(a« =) = M a— M f)

(map-comp : V(« 87y : Type u) f g hymap f omap g = map (f o g))
(map-id : Vo, map id = id)

Problem with Universes

Problematic u

class functor (M : Type u — Type v) :=

(map : V(a5 : Type u), (@« =) = M a— M f)

(map-comp : V(87 : Type u) f g hymap f omap g = map (f o g))
(map-id : Vo, map id = id)

Problem with Universes

Problematic u

class functor (M : Type u — Type v) :=

(map : V(a5 : Type u), (@« =) = M a— M f)

(map_comp : V(aw B v : Type u) f g hymap f omap g =map (f o g))
(map-id : Vo, map id = id)

If we only work with functor (topology «) our library is too
limited, e.g. topology.map allows mapping between different
universes.

Maintenance

» Currently maintained by Mario Carneiro, me, and Jeremy
Avigad

» Contributors:

Andrew Zipperer, Floris van Doorn, Haitao Zhang, Jeremy
Avigad, Johannes Holzl, Kenny Lau, Kevin Buzzard, Leonardo
de Moura, Mario Carneiro, Minchao Wu, Nathaniel Thomas,

Parikshit Khanna, Robert Y. Lewis, Simon Hudon

> Currently ~ 51.000 lines of Lean code

mathlib

A (classical) mathematical library for Lean

https://github.com/leanprover/mathlib

https://github.com/leanprover/mathlib

