Semi-Automated Reasoning
About Non-Determinism in C Expressions

Léon Gondelman

joint work with Dan Frumin and Robbert Krebbers

Radboud University Nijmegen

23 February, 2019 ©@ EUTypes, Krakow, Poland
(in relation with Lambda Days 2019)

1/1

C quiz

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("%d, %d\n", x, y);
}

What is the expected outcome of this program ?

2/1

C quiz

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("%d, %d\n", x, y);
}

a small experiment with existing compilers gives

compiler | outcome | warnings
compcert 4,7 no
clang 4,7 yes
gcc-4.9 4,8 no

2/1

C quiz

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("%d, %d\n", x, y);
}

according to C standard, the program is allowed do... anything,
it is even allowed to crash

this program violates the sequence point restriction:

- the order of evaluation in C expressions is unspecified
- concurrent memory access is allowed

- multiple unsequenced modifications result in undefined behavior

2/1

this talk

the problem: sequence point violations may cause a C program
to crash or to have arbitrary results

the goal: guarantee the absence of undefined behavior
in a given C program for any evaluation order

in this talk:

(1) use concurrent separation logic to reason about C
(previous work, Krebbers POPL'14)

(2) turn it into a semi-automated reasoning procedure
(our contributions)

3/1

(Krebbers POPL'14)

observation: view non-determinism through concurrency
idea: use the concurrent separation logic

{Pl} el {\Ul} {PQ} en {\Uz} VVl Vo. \U]_ Vi1 * \Ug ') - @(Wl II@]] W2)
{P1x P2} es @ ex {D}

using the rules of this logic we can

- split the memory resources into two disjoint parts

- independently prove that each subexpression executes safely

4/1

(Krebbers POPL'14)

observation: view non-determinism through concurrency
idea: use the concurrent separation logic

{Pl} el {\Ul} {PQ} en {\Uz} VVl Vo. \U]_ Vi1 * \Ug ') - @(Wl II@]] W2)
{P1x P2} es @ ex {D}

limitations:

- no support for automation

- difficult to conduct even a manual proof in Coq

4/1

weakest preconditions

instead of Hoare triples, we model our program logic
using weakest precondition calculus

wp e {P}
- e is safe (has defined behavior),
- if e terminates with a value v, then v satisfies the predicate @

the non-determinism is reflected in a similar but more concise way:

wpei {Vi} wpex{Wa} (Vwiwp. Wi wp* Wy wp = @(wy [©] wp))
wp (e1 © e2) {P}

5/1

a possible candidate for the load operation:

wpe{l.Jw.l—w*x(l—w—xdw)}

wp (*e) {2}

dereferencing

6/1

a possible candidate for the load operation:

wpe{l.Jw.l—w*x(l—w—xdw)}

wp (*e) {2}

too weak: does not allow sharing e.g., ¥1 + *1

dereferencing

6/1

sharing resources

fractional permissions enable sharing of resources:

+
1852 1 v s 1 By
so multiple subexpressions can safely read from the same location

the rule for load becomes

Wpe{l.ﬂwq.lﬂw*(l&w—*éw)}
wp (*e) {P}

SO we can now prove programs like *¥1 4 *1

7/1

assighment

a possible candidate for the assignment operation:

wpei {Vi} wpex{Vo} (Viw. V¥, 1*\|J2w—*3v.1>i>v*(li>w—*d5w))
wp (e1=e2) {P}

8/1

assighment

a possible candidate for the assignment operation:

wpei {Vi} wpex{Vo} (Viw. V¥, 1*\|J2w—*3v.1¢>v*(1i>w%d5w))
wp (e1=e2) {P}

unsound: does not account for sequence point violations

for example, we could verify programs like 1 = (1 =23)

8/1

assighment

to account for sequence point violations, we decorate
fractional permissions with two access levels :

- permission 1 ni>U v states that the location is unlocked,
so one can read from/write to the location 1

- permission 1 Ly, v states that the location has been locked,
someone is already writing to it, so reads/writes are forbidden

9/1

assighment

the rule for assignment becomes

wpeg {Vi1} wpex {Wo} (Viw. Wy 1xWyw Elv.llimv*(l li>Lw—*Q5w))
wp (e1 =e2) {P}

programs like 1=(1=23) cannot be verified any more

10/1

remark: we want to access locked pointers later again
1=4:%*1

we use the unlocking modality U that unlocks
all locked locations at the sequence point :

wp e1 {. U(wp e {})} 11 v

wp (e ; ep) {B} ULy v)

unlocking modality

P—Q
UP =« UQ

11/1

reasoning about programs

usually we prove programs assuming some logical context:

P wpe{®}
we intertwine the application of wp rules with other logical steps (splitting resources,
discharging side-conditions, ...)
manual proof quickly becomes tedious even for small programs
e.g., to reason about binary operators we have to

- infer manually the intermediate postconditions

- subdivide resources all the time

12/1

key idea

turn program logic into an algorithm procedure

using a novel symbolic execution algorithm:

input output
precondition postcondition
program --> value

frame = resources not used

13/1

example

11— vl xk—vVv2 xr+—v3

1=*k+10

postcondition: T
frame: T

14/1

example

11— vl xk+—v2 xr— v3

postcondition: k 22 o
frame: Kk 22 y2

15/1

example

1+—vT xk+—v2 xr+—> v3

postcondition: k> v2 x 1+ (v2 + 10)
frame: k22 v

16/1

example

postcondition: k 20 v2 %1 g (v2+ 10)

0.5
frame: k—— v2*1— v3

17/1

example (continued)

11— vl xk—vVv2 xr+— v3

(1=*k +10) + (r =*k + 10)

postcondition: T
frame: T

18/1

(v2+4 10) + (r=*k + 10)

postcondition: k 20 v2 %1 g (v2+ 10)
frame: K 22 v2 T > v3

after executing the LHS

19/1

M*kboi)VQ * T — v3

(v2 + 10) + (r =*k + 10)

postcondition: k 22 21 — (v2+ 10)

frame: M*M

before executing the RHS

20/1

executing the RHS

(v2+10) + (r =*k + 10)

. 3/4
postcondition: k+—— v2x 1+ (v2+ 10)

1/4
frame: k —— v2 % T+>73

21/1

final result

(v2 +10) + (v2 + 10)

.. 3/4
postcondition: k —— v2x 1+, (v2+ 10) *r > (v2 + 10)

1/4
frame: k —— v2 % r — (¥2=10)

22/1

algorithm

our symbolic execution algorithm is a partial function
restricted to symbolic heaps (m € sheap):

forward : (sheap x expr) — (val x sheap x sheap)
satisfying the following specification:

forward(m, e) = (w, m7, my)

[m]Fwpe{v.v=mwsx[m{]} * [mi]

23/1

symbolic execution helps to make the wp rules algorithmic
but the algorithm itself may fail for several reasons:

- the program is not of the right shape

- the precondition is not a symbolic heap

- needed resource is missing in the precondition

to turn the program logic into an automated procedure
we integrate the symbolic executor algorithm into a
verification condition generator (vcgen)

limitations

24/1

design an interactive verification condition generator

calls

™

interactive vcgen

proof procedure

‘k_______”,,/’

simplifies the proof goal

vcgen automates the proof as long as forward does not fail,

and when forward fails,

- vcgen returns to the user a partially solved goal

- from which it can be called back after the user helped out

key idea

25/1

conclusions

main message:

symbolic execution with frames is a key to enable
a semi-automated about non-determinism in C
in an interactive theorem prover

other contributions:
- a definitional semantics to a fragment of C in Coq
- soundness proof for symbolic executor and vcgen

- development built on top of the Iris framework

26/1

thank you !

27/1

