
Semi-Automated Reasoning
About Non-Determinism in C Expressions

Léon Gondelman

joint work with Dan Frumin and Robbert Krebbers

Radboud University Nijmegen

23 February, 2019 @ EUTypes, Krakow, Poland
(in relation with Lambda Days 2019)

Lon Gondelman

1/1



C quiz

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("%d, %d\n", x, y);

}

What is the expected outcome of this program ?

2/1



C quiz

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("%d, %d\n", x, y);

}

a small experiment with existing compilers gives

compiler outcome warnings

compcert 4, 7 no

clang 4, 7 yes

gcc-4.9 4, 8 no

2/1



C quiz

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("%d, %d\n", x, y);

}

according to C standard, the program is allowed do... anything,
it is even allowed to crash

this program violates the sequence point restriction:

- the order of evaluation in C expressions is unspecified

- concurrent memory access is allowed

- multiple unsequenced modifications result in undefined behavior

2/1



this talk

the problem: sequence point violations may cause a C program
to crash or to have arbitrary results

the goal: guarantee the absence of undefined behavior
in a given C program for any evaluation order

in this talk:

(1) use concurrent separation logic to reason about C
(previous work, Krebbers POPL’14)

(2) turn it into a semi-automated reasoning procedure
(our contributions)

3/1



(Krebbers POPL’14)

observation: view non-determinism through concurrency
idea: use the concurrent separation logic

{P1} e1 {Ψ1} {P2} e2 {Ψ2} ∀v1 v2.Ψ1 v1 ∗Ψ2 v2 ` Φ(w1 J}K w2)

{P1 ∗ P2} e1 } e2 {Φ}

using the rules of this logic we can

- split the memory resources into two disjoint parts

- independently prove that each subexpression executes safely

4/1



(Krebbers POPL’14)

observation: view non-determinism through concurrency
idea: use the concurrent separation logic

{P1} e1 {Ψ1} {P2} e2 {Ψ2} ∀v1 v2.Ψ1 v1 ∗Ψ2 v2 ` Φ(w1 J}K w2)

{P1 ∗ P2} e1 } e2 {Φ}

limitations:

- no support for automation

- difficult to conduct even a manual proof in Coq

4/1



weakest preconditions

instead of Hoare triples, we model our program logic
using weakest precondition calculus

wp e {Φ}

- e is safe (has defined behavior),

- if e terminates with a value v, then v satisfies the predicate Φ

the non-determinism is reflected in a similar but more concise way:

wp e1 {Ψ1} wp e2 {Ψ2} (∀w1w2.Ψ1 w1 ∗Ψ2 w2 −∗ Φ(w1 J}K w2))

wp (e1 } e2) {Φ}

5/1



dereferencing

a possible candidate for the load operation:

wp e {l. ∃w. l 7→ w ∗ (l 7→ w −∗ Φ w)}
wp (*e) {Φ}

too weak: does not allow sharing e.g., *l + *l

6/1



dereferencing

a possible candidate for the load operation:

wp e {l. ∃w. l 7→ w ∗ (l 7→ w −∗ Φ w)}
wp (*e) {Φ}

too weak: does not allow sharing e.g., *l + *l

6/1



sharing resources

fractional permissions enable sharing of resources:

l
q1+q27−−−−→ v a` l q17−→ v ∗ l q27−→ v

so multiple subexpressions can safely read from the same location

the rule for load becomes

wp e
{
l. ∃w q. l q7−→ w ∗ (l

q7−→ w −∗ Φ w)
}

wp (*e) {Φ}

so we can now prove programs like *l + *l

7/1



assignment

a possible candidate for the assignment operation:

wp e1 {Ψ1} wp e2 {Ψ2} (∀l w.Ψ1 l ∗Ψ2 w −∗ ∃v. l
17−→ v ∗ (l

17−→ w −∗ Φ w))

wp (e1 = e2) {Φ}

unsound: does not account for sequence point violations

for example, we could verify programs like l= (l= 3)

8/1



assignment

a possible candidate for the assignment operation:

wp e1 {Ψ1} wp e2 {Ψ2} (∀l w.Ψ1 l ∗Ψ2 w −∗ ∃v. l
17−→ v ∗ (l

17−→ w −∗ Φ w))

wp (e1 = e2) {Φ}

unsound: does not account for sequence point violations

for example, we could verify programs like l= (l= 3)

8/1



assignment

to account for sequence point violations, we decorate
fractional permissions with two access levels :

l
q7−→ξ v, ξ ∈ {L,U}

- permission l
q7−→U v states that the location is unlocked,

so one can read from/write to the location l

- permission l
q7−→L v states that the location has been locked,

someone is already writing to it, so reads/writes are forbidden

9/1



assignment

the rule for assignment becomes

wp e1 {Ψ1} wp e2 {Ψ2} (∀l w.Ψ1 l ∗Ψ2 w −∗ ∃v. l
17−→U v ∗ (l

17−→L w −∗ Φ w))

wp (e1 = e2) {Φ}

programs like l= (l= 3) cannot be verified any more

10/1



unlocking modality

remark: we want to access locked pointers later again

l= 4 ; *l

we use the unlocking modality U that unlocks
all locked locations at the sequence point :

wp e1 { .U(wp e2 {Φ})}
wp (e1 ; e2) {Φ}

l
q7−→L v

U(l
q7−→U v)

P −∗ Q
UP −∗ UQ

11/1



reasoning about programs

usually we prove programs assuming some logical context:

P ` wp e {Φ}

we intertwine the application of wp rules with other logical steps (splitting resources,
discharging side-conditions, ...)

manual proof quickly becomes tedious even for small programs
e.g., to reason about binary operators we have to

- infer manually the intermediate postconditions

- subdivide resources all the time

12/1



key idea

turn program logic into an algorithm procedure

using a novel symbolic execution algorithm:

input output

precondition postcondition

program 99K value

frame = resources not used

13/1



example

l 7→ v1 ∗ k 7→ v2 ∗ r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

l= *k + 10

postcondition: >
frame: >

14/1



example

l 7→ v1 ∗((((k 7−→ v2 ∗ r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

l= v2 + 10

postcondition: k
0.57−−→ v2

frame: k
0.57−−→ v2

15/1



example

((((l 7→ v1 ∗((((k 7→ v2 ∗ r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

v2 + 10

postcondition: k
0.57−−→ v2 ∗ l 7−→L (v2 + 10)

frame: k
0.57−−→ v2

16/1



example

((((l 7→ v1 ∗((((k 7→ v2 ∗((((r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

v2 + 10

postcondition: k
0.57−−→ v2 ∗ l 7−→L (v2 + 10)

frame: k
0.57−−→ v2 ∗ r 7→ v3

17/1



example (continued)

l 7→ v1 ∗ k 7→ v2 ∗ r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

(l= *k + 10) + (r= *k + 10)

postcondition: >
frame: >

18/1



after executing the LHS

((((l 7→ v1 ∗((((k 7→ v2 ∗((((r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

(v2 + 10) + (r= *k + 10)

postcondition: k
0.57−−→ v2 ∗ l 7−→L (v2 + 10)

frame: k
0.57−−→ v2 ∗ r 7→ v3

19/1



before executing the RHS

((((l 7→ v1 ∗ k 0.57−−→ v2 ∗ r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

(v2 + 10) + (r= *k + 10)

postcondition: k
0.57−−→ v2 ∗ l 7−→L (v2 + 10)

frame: ���
��

k
0.57−−→ v2 ∗((((r 7→ v3

20/1



executing the RHS

((((l 7→ v1 ∗���
��

k
0.57−−→ v2 ∗ r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

(v2 + 10) + (r= *k + 10)

postcondition: k
3/47−−→ v2 ∗ l 7−→L (v2 + 10)

frame: k
1/47−−→ v2 ∗((((r 7→ v3

21/1



final result

((((l 7→ v1 ∗���
��

k
0.57−−→ v2 ∗((((r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

(v2 + 10) + (v2 + 10)

postcondition: k
3/47−−→ v2 ∗ l 7−→L (v2 + 10) ∗ r 7−→L (v2 + 10)

frame: k
1/47−−→ v2 ∗(((((

((
r 7→ (v2 + 10)

22/1



algorithm

our symbolic execution algorithm is a partial function
restricted to symbolic heaps (m ∈ sheap):

forward : (sheap× expr)→ (val× sheap× sheap)

satisfying the following specification:

forward(m, e) = (w,mo
1 ,m1)

JmK ` wp e {v. v = w ∗ Jmo
1K} ∗ Jm1K

23/1



limitations

symbolic execution helps to make the wp rules algorithmic
but the algorithm itself may fail for several reasons:

- the program is not of the right shape

- the precondition is not a symbolic heap

- needed resource is missing in the precondition

to turn the program logic into an automated procedure
we integrate the symbolic executor algorithm into a
verification condition generator (vcgen)

24/1



key idea

design an interactive verification condition generator

interactive

proof

vcgen

procedure

calls

simplifies the proof goal

vcgen automates the proof as long as forward does not fail,

and when forward fails,

- vcgen returns to the user a partially solved goal

- from which it can be called back after the user helped out

25/1



conclusions

main message:

symbolic execution with frames is a key to enable
a semi-automated about non-determinism in C
in an interactive theorem prover

other contributions:

- a definitional semantics to a fragment of C in Coq

- soundness proof for symbolic executor and vcgen

- development built on top of the Iris framework

26/1



thank you !

27/1


