### Efficient Mendler-Style Lambda-Encodings in Cedille

#### Denis Firsov, Richard Blair, and Aaron Stump

Department of Computer Science The University of Iowa

February 23, 2019



• It is **possible** to encode inductive datatypes in pure type theory.

- It is possible to encode inductive datatypes in pure type theory.
- Church-style encoding of natural numbers

cNat  $\blacktriangleleft \star = \forall X : \star$ .  $(X \to X) \to X \to X$ .

cZ ◀ cNat = 
$$\Lambda$$
 X.  $\lambda$  s.  $\lambda$  z. z.  
cS ◀ cNat → cNat =  $\lambda$  n.  $\Lambda$  X.  $\lambda$  s.  $\lambda$  z. s (n s z).

- It is possible to encode inductive datatypes in pure type theory.
- Church-style encoding of natural numbers

cNat  $\blacktriangleleft \star = \forall X : \star$ .  $(X \to X) \to X \to X$ .

$$cZ \blacktriangleleft cNat = \Lambda X. \lambda s. \lambda z. z.$$

- cS < cNat  $\rightarrow$  cNat =  $\lambda$  n.  $\Lambda$  X.  $\lambda$  s.  $\lambda$  z. s (n s z).
- Essentially, we identify each natural number n with its iterator  $\lambda$  s.  $\lambda$  z. s<sup>n</sup> z.

two := cS (cS cZ) = 
$$\lambda$$
 s.  $\lambda$  z. s (s z).

• At the same time, it is provably **impossible** to derive induction principle in the second-order dependent type theory (Geuvers, 2001).

- At the same time, it is provably **impossible** to derive induction principle in the second-order dependent type theory (Geuvers, 2001).
- Moreover, it is provably **impossible** to implement a constant-time predecessor function for cNat (Parigot, 1989).

two := cS (cS Z) :=  $\lambda$  s.  $\lambda$  z. s (s z).

three := cS (cS (cS Z)) :=  $\lambda$  s.  $\lambda$  z. s (s (s z)).

- At the same time, it is provably **impossible** to derive induction principle in the second-order dependent type theory (Geuvers, 2001).
- Moreover, it is provably **impossible** to implement a constant-time predecessor function for cNat (Parigot, 1989).

two := cS (cS Z) :=  $\lambda$  s.  $\lambda$  z. s (s z). three := cS (cS (cS Z)) :=  $\lambda$  s.  $\lambda$  z. s (s (s z)).

• As a consequence, most languages come with built-in infrastructure for defining inductive datatypes (data definition, pattern-matching, termination checker, negativity and strictness check, etc.).

| data Nat : Set where       | pred : Nat -> Nat |
|----------------------------|-------------------|
| zero : Nat                 | pred zero = zero  |
| suc : Nat $ ightarrow$ Nat | pred (suc n) = n  |

- At the same time, it is provably **impossible** to derive induction principle in the second-order dependent type theory (Geuvers, 2001).
- Moreover, it is provably **impossible** to implement a constant-time predecessor function for cNat (Parigot, 1989).

two := cS (cS Z) :=  $\lambda$  s.  $\lambda$  z. s (s z). three := cS (cS (cS Z)) :=  $\lambda$  s.  $\lambda$  z. s (s (s z)).

• As a consequence, most languages come with built-in infrastructure for defining inductive datatypes (data definition, pattern-matching, termination checker, negativity and strictness check, etc.).

| data Nat : Set where       | pred : Nat -> Nat  |
|----------------------------|--------------------|
| zero : Nat                 | pred zero = zero   |
| suc : Nat $ ightarrow$ Nat | pred (suc n) = $n$ |

• In Agda, induction principle can be derived by pattern matching and explicit structural recursion.

• Is it possible to extend CC with some **typing constructs** to derive induction and implement constant-time predecessor (destructor) function for some linear-space encoding of natural numbers (inductive datatypes)?

- Is it possible to extend CC with some <u>typing constructs</u> to derive induction and implement constant-time predecessor (destructor) function for some linear-space encoding of natural numbers (inductive datatypes)?
- The solution is provided by Mendler-style encoding and *The Calculus* of *Dependent Lambda Eliminations (CDLE)* (A. Stump, JFP 2017).

- Is it possible to extend CC with some **typing constructs** to derive induction and implement constant-time predecessor (destructor) function for some linear-space encoding of natural numbers (inductive datatypes)?
- The solution is provided by Mendler-style encoding and *The Calculus* of *Dependent Lambda Eliminations (CDLE)* (A. Stump, JFP 2017).
- CDLE adds three typing constructs to the Curry-style Calculus of Constructions:

- Is it possible to extend CC with some **typing constructs** to derive induction and implement constant-time predecessor (destructor) function for some linear-space encoding of natural numbers (inductive datatypes)?
- The solution is provided by Mendler-style encoding and *The Calculus* of *Dependent Lambda Eliminations (CDLE)* (A. Stump, JFP 2017).
- CDLE adds three typing constructs to the Curry-style Calculus of Constructions:
  - dependent intersection types,

- Is it possible to extend CC with some **typing constructs** to derive induction and implement constant-time predecessor (destructor) function for some linear-space encoding of natural numbers (inductive datatypes)?
- The solution is provided by Mendler-style encoding and *The Calculus* of *Dependent Lambda Eliminations (CDLE)* (A. Stump, JFP 2017).
- CDLE adds three typing constructs to the Curry-style Calculus of Constructions:
  - dependent intersection types,
  - implicit products,

- Is it possible to extend CC with some **typing constructs** to derive induction and implement constant-time predecessor (destructor) function for some linear-space encoding of natural numbers (inductive datatypes)?
- The solution is provided by Mendler-style encoding and *The Calculus* of *Dependent Lambda Eliminations (CDLE)* (A. Stump, JFP 2017).
- CDLE adds three typing constructs to the Curry-style Calculus of Constructions:
  - dependent intersection types,
  - implicit products,
  - oprimitive heterogeneous equality.

- Is it possible to extend CC with some **typing constructs** to derive induction and implement constant-time predecessor (destructor) function for some linear-space encoding of natural numbers (inductive datatypes)?
- The solution is provided by Mendler-style encoding and *The Calculus* of *Dependent Lambda Eliminations (CDLE)* (A. Stump, JFP 2017).
- CDLE adds three typing constructs to the Curry-style Calculus of Constructions:
  - dependent intersection types,
  - implicit products,
  - oprimitive heterogeneous equality.
- Cedille is an implementation of CDLE type theory (in Agda!).

### Extension: Dependent intersection types

 $\frac{\Gamma \vdash T : \star \quad \Gamma, x : T \vdash T' : \star}{\Gamma \vdash \iota x : T . T' : \star}$ 

Introduction

Formation

$$\frac{\Gamma \vdash t_1 : T \quad \Gamma \vdash t_2 : [t_1/x]T' \quad \Gamma \vdash p : t_1 \simeq t_2}{\Gamma \vdash [t_1, t_2\{p\}] : \iota x : T . T'}$$

Elimination

$$\frac{\Gamma \vdash t : \iota x : T. T'}{\Gamma \vdash t.1 : T} \text{ first view} \qquad \frac{\Gamma \vdash t : \iota x : T. T'}{\Gamma \vdash t.2 : [t.1/x]T'} \text{ second view}$$

### Extension: Dependent intersection types

 $\frac{\Gamma \vdash T : \star \quad \Gamma, x : T \vdash T' : \star}{\Gamma \vdash \iota x : T . T' : \star}$ 

Introduction

Formation

$$\frac{\Gamma \vdash t_1 : T \quad \Gamma \vdash t_2 : [t_1/x]T' \quad \Gamma \vdash p : t_1 \simeq t_2}{\Gamma \vdash [t_1, t_2\{p\}] : \iota x : T . T'}$$

Elimination

$$\begin{array}{ll} \frac{\Gamma \vdash t : \iota x : T. T'}{\Gamma \vdash t.1 : T} \text{ first view} & \frac{\Gamma \vdash t : \iota x : T. T'}{\Gamma \vdash t.2 : [t.1/x]T'} \text{ second view} \\ \bullet \text{ Erasure} & \begin{aligned} |[t_1, t_2\{p\}]| &= |t_1| \\ |t.1| &= |t| \\ |t.2| &= |t| \end{aligned}$$

### Extension: Implicit products

• Formation

$$\frac{\Gamma, x: T' \vdash T: \star}{\Gamma \vdash \forall x: T'. T: \star}$$

Introduction

$$\frac{\Gamma, x: T' \vdash t: T \quad x \notin FV(|t|)}{\Gamma \vdash \Lambda x: T'. t: \forall x: T'. T}$$

• Elimination

$$\frac{\Gamma \vdash t : \forall x : T'. T \quad \Gamma \vdash t' : T'}{\Gamma \vdash t \quad -t' : [t'/x]T}$$

### Extension: Implicit products

• Formation

 $\frac{\Gamma, x: T' \vdash T: \star}{\Gamma \vdash \forall x: T'. T: \star}$ 

Introduction

$$\frac{\Gamma, x: T' \vdash t: T \quad x \notin FV(|t|)}{\Gamma \vdash \Lambda x: T'. t: \forall x: T'. T}$$

Elimination

Erasure

$$\frac{\Gamma \vdash t : \forall x : T'. T \quad \Gamma \vdash t' : T'}{\Gamma \vdash t \quad -t' : [t'/x]T}$$

$$|\Lambda x: T. t| = |t|$$
$$|t - t'| = |t|$$

### Extension: Equality

• Formation rule • Formation rule • Introduction • Elimination  $\frac{\Gamma \vdash t : T}{\Gamma \vdash \beta : t \simeq t}$ • Elimination  $\frac{\Gamma \vdash t' : t_1 \simeq t_2 \ \Gamma \vdash t : [t_1/x]T}{\Gamma \vdash \rho \ t' - t : [t_2/x]T}$ 

## Extension: Equality

| • Formation rule                 | $rac{{\displaystyle \Gammadash t:T}  {\displaystyle \Gammadash t':T'}}{{\displaystyle \Gammadash t\simeq t':\star}}$ |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Introduction</li> </ul> | $\frac{\Gamma \vdash t : T}{\Gamma \vdash \beta : t \simeq t}$                                                        |
| <ul> <li>Elimination</li> </ul>  | $\frac{\Gamma \vdash t': t_1 \simeq t_2 \ \Gamma \vdash t: [t_1/x]T}{\Gamma \vdash \rho \ t' \ - \ t: [t_2/x]T}$      |
| • Erasure                        | $\begin{aligned}  \beta  &= \lambda x. x \\  \rho t' - t  &=  t  \end{aligned}$                                       |

• Categorically, inductive datatypes are modelled as initial F-algebras.

- Categorically, inductive datatypes are modelled as initial F-algebras.
- Mendler-style F-algebra is a pair of object (*carrier*) X and a natural transformation  $\mathcal{C}(-, X) \rightarrow \mathcal{C}(F -, X)$ .

- Categorically, inductive datatypes are modelled as initial F-algebras.
- Mendler-style F-algebra is a pair of object (*carrier*) X and a natural transformation  $\mathcal{C}(-, X) \rightarrow \mathcal{C}(F -, X)$ .
- In Cedille, objects are types and natural transformations are polymorphic functions:

 $AlgM \blacktriangleleft \star \to \star = \lambda X : \star. \forall R : \star. (R \to X) \to F R \to X.$ 

- Categorically, inductive datatypes are modelled as initial F-algebras.
- Mendler-style F-algebra is a pair of object (*carrier*) X and a natural transformation  $\mathcal{C}(-, X) \rightarrow \mathcal{C}(F -, X)$ .
- In Cedille, objects are types and natural transformations are polymorphic functions:

 $\texttt{AlgM} \blacktriangleleft \star \to \star = \lambda \texttt{ X } : \star. \ \forall \texttt{ R } : \star. \ (\texttt{R} \to \texttt{X}) \to \texttt{ F } \texttt{ R } \to \texttt{ X }.$ 

• The object (a type) of initial Mendler-style F-algebra is a least fixed point of F:

FixM  $\blacktriangleleft \star = \forall X : \star$ . AlgM X  $\rightarrow$  X.

- Categorically, inductive datatypes are modelled as initial F-algebras.
- Mendler-style F-algebra is a pair of object (*carrier*) X and a natural transformation  $\mathcal{C}(-, X) \rightarrow \mathcal{C}(F -, X)$ .
- In Cedille, objects are types and natural transformations are polymorphic functions:

 $Alg M \blacktriangleleft \star \to \star = \lambda X : \star. \ \forall R : \star. (R \to X) \to F R \to X.$ 

• The object (a type) of initial Mendler-style F-algebra is a least fixed point of F:

 $\texttt{FixM} \blacktriangleleft \star = \forall \texttt{X} : \star. \texttt{AlgM} \texttt{X} \to \texttt{X}.$ 

• There is a homomorphism from the carrier of initial algebra to the carrier of any other algebra (gives weak initiality):

foldM  $\triangleleft$   $\forall$  X :  $\star$ . AlgM X  $\rightarrow$  FixM  $\rightarrow$  X = <...>

- Categorically, inductive datatypes are modelled as initial F-algebras.
- Mendler-style F-algebra is a pair of object (*carrier*) X and a natural transformation  $\mathcal{C}(-, X) \rightarrow \mathcal{C}(F -, X)$ .
- In Cedille, objects are types and natural transformations are polymorphic functions:

 $\texttt{AlgM} \blacktriangleleft \star \to \star = \lambda \texttt{ X } : \star. \ \forall \texttt{ R } : \star. \ (\texttt{R} \to \texttt{X}) \to \texttt{ F } \texttt{ R } \to \texttt{ X }.$ 

• The object (a type) of initial Mendler-style F-algebra is a least fixed point of F:

 $\texttt{FixM} \blacktriangleleft \star = \forall \texttt{X} : \star \texttt{. AlgM X} \to \texttt{X}.$ 

• There is a homomorphism from the carrier of initial algebra to the carrier of any other algebra (gives weak initiality):

foldM  $\triangleleft$   $\forall$  X :  $\star$ . AlgM X  $\rightarrow$  FixM  $\rightarrow$  X = <..>

Constructors are expressed as a Church-style algebra:
 inM ◄ F FixM → FixM = λ v. λ alg. alg (foldM alg) v.

• There is no induction principle for FixM.

- There is no induction principle for FixM.
- We define a type FixIndM as an inductive subset of FixM:
   FixIndM < ★ = ℓ x : FixM. Inductive x.</li>

- There is no induction principle for FixM.
- We define a type FixIndM as an inductive subset of FixM:
   FixIndM ◀ ★ = ι x : FixM. Inductive x.
- For FixIndM to be inhabited, we must express an inductivity predicate so that the value x : FixM and the proof p : Inductive x are equal.

 $\texttt{FixM} \blacktriangleleft \star = \forall \texttt{X} : \star. \texttt{AlgM} \texttt{X} \to \texttt{X}.$ 

Inductive  $\blacktriangleleft$  FixM  $\rightarrow \star = \lambda x$  : FixM.

 $\forall$  Q : FixM  $\rightarrow$  \*. PrfAlgM FixM Q inM  $\rightarrow$  Q x.

- There is no induction principle for FixM.
- We define a type FixIndM as an inductive subset of FixM:
   FixIndM ◄ ★ = ι x : FixM. Inductive x.
- For FixIndM to be inhabited, we must express an inductivity predicate so that the value x : FixM and the proof
   p : Inductive x are equal.

 $\texttt{FixM} \blacktriangleleft \star = \forall \texttt{X} : \star \texttt{. AlgM X} \to \texttt{X}.$ 

Inductive  $\blacktriangleleft$  FixM  $\rightarrow \star = \lambda x$  : FixM.

 $\forall$  Q : FixM  $\rightarrow$  \*. PrfAlgM FixM Q inM  $\rightarrow$  Q x.

• Mendler-style proof-algebras

 $\texttt{AlgM} \blacktriangleleft \star \to \star = \lambda \texttt{ X. } \forall \texttt{ R} \texttt{ : } \star \texttt{. } (\texttt{R} \to \texttt{X}) \to \texttt{F} \texttt{ R} \to \texttt{X.}$ 

- There is no induction principle for FixM.
- We define a type FixIndM as an inductive subset of FixM:
   FixIndM ◄ ★ = ι x : FixM. Inductive x.
- For FixIndM to be inhabited, we must express an inductivity predicate so that the value x : FixM and the proof p : Inductive x are equal.

$$\texttt{FixM} \blacktriangleleft \star = \forall \texttt{X} : \star. \texttt{AlgM} \texttt{X} \to \texttt{X}.$$

Inductive  $\blacktriangleleft$  FixM  $\rightarrow \star = \lambda x$  : FixM.

- $\forall$  Q : FixM  $\rightarrow$  \*. PrfAlgM FixM Q inM  $\rightarrow$  Q x.
- Mendler-style proof-algebras

 $\texttt{AlgM} \blacktriangleleft \star \to \star = \lambda \texttt{ X. } \forall \texttt{ R } : \star. (\texttt{R} \to \texttt{X}) \to \texttt{F} \texttt{ R} \to \texttt{X.}$ 

$$\texttt{PrfAlgM} \blacktriangleleft \Pi \texttt{A} : \star. \texttt{(A} \to \star) \to \texttt{(F A} \to \texttt{A)} \to \star$$

= 
$$\lambda$$
 A.  $\lambda$  Q.  $\lambda$  alg.

$$\forall$$
 R :  $\star$ .  $\forall$  c : R  $\rightarrow$  A.  $\forall$  e : ( $\Pi$  r : R. c r  $\simeq$  r).  
( $\Pi$  r : R. 0 (c r))  $\rightarrow$ 

$$\Pi$$
 fr : F R. Q (alg (fmap c fr)).

### Mendler-style induction principle

• The collection of constructors of type FixIndM is expressed by Church-algebra

inFixIndM  $\triangleleft$  F FixIndM  $\rightarrow$  FixIndM = <..>

### Mendler-style induction principle

• The collection of constructors of type FixIndM is expressed by Church-algebra

inFixIndM  $\triangleleft$  F FixIndM  $\rightarrow$  FixIndM = <..>

• Induction principle

induction  $\triangleleft \forall Q$  : FixIndM  $\rightarrow \star$ . PrfAlgM FixIndM Q inFixIndM  $\rightarrow \Box x$  : FixIndM. Q x = <...>

### Mendler-style induction principle

• The collection of constructors of type FixIndM is expressed by Church-algebra

inFixIndM  $\triangleleft$  F FixIndM  $\rightarrow$  FixIndM = <..>

• Induction principle

induction  $\triangleleft \forall Q$  : FixIndM  $\rightarrow \star$ . PrfAlgM FixIndM Q inFixIndM  $\rightarrow \Box x$  : FixIndM. Q x = <...>

• Cancellation law:

 $\begin{array}{l} \text{indHom} \blacktriangleleft \forall \ \text{Q palg x.} \\ \text{induction palg (inFixInd x)} \simeq \text{palg (induction palg) x} \\ = \Lambda \ \text{Q. } \Lambda \ \text{palg. } \Lambda \ \text{x. } \beta. \end{array}$ 

• Can we define a a proof-algebra which erases to lambda term  $\lambda$  x.  $\lambda$  y. y?

• outAlgM  $\triangleleft$  PrfAlgM FixIndM ( $\lambda$  \_. F FixIndM) inFixIndM =  $\Lambda$  R.  $\Lambda$  c.  $\Lambda$  e.  $\lambda$  x.  $\lambda$  y. [ y , c y { e y } ].2.

### Constant-time destructor

- outAlgM  $\triangleleft$  PrfAlgM FixIndM ( $\lambda$  \_. F FixIndM) inFixIndM =  $\Lambda$  R.  $\Lambda$  c.  $\Lambda$  e.  $\lambda$  x.  $\lambda$  y. [ y , c y { e y } ].2.
- Finally, we arrive at the generic constant-time linear-space destructor of inductive datatypes:

outFixIndM  $\triangleleft$  FixInd  $\rightarrow$  F FixInd = induction outAlgM.

### Constant-time destructor

- outAlgM  $\triangleleft$  PrfAlgM FixIndM ( $\lambda$  \_. F FixIndM) inFixIndM =  $\Lambda$  R.  $\Lambda$  c.  $\Lambda$  e.  $\lambda$  x.  $\lambda$  y. [y, cy { ey } ].2.
- Finally, we arrive at the generic constant-time linear-space destructor of inductive datatypes:

outFixIndM  $\triangleleft$  FixInd  $\rightarrow$  F FixInd = induction outAlgM.

• Since outFixIndM is constant-time then we get Lambek's Lemma as an easy consequence

lambek1  $\blacktriangleleft$   $\Pi$  x: F FixInd. outFixIndM (inFixIndM x)  $\simeq$  x =  $\lambda$  x.  $\beta.$ 

lambek2  $\triangleleft \Pi x$ : FixIndM. inFixIndM (outFixIndM x)  $\simeq x = \lambda x$ . induction ( $\Lambda R. \Lambda c. \Lambda e. \lambda$  ih.  $\lambda$  fr.  $\beta$ ) x.

### Example: Natural numbers

• Natural numbers arise as least fixed point of a scheme NF

```
NF \blacktriangleleft \star \to \star = \lambda X : \star. Unit + X.
```

```
Nat \blacktriangleleft \star = FixIndM NF.
```

Constructors

zero  $\triangleleft$  Nat = inFixIndM (in1 unit). suc  $\triangleleft$  Nat  $\rightarrow$  Nat =  $\lambda$  n. inFixIndM (in2 n).

- Constructor suc has the following underlying lambda-term suc n ~ λ alg. (alg (λ f. (f alg)) (λ i. λ j. (j n))).
- Constant-time predecessor

pred  $\blacktriangleleft$  Nat  $\rightarrow$  Nat =  $\lambda$  n. case (outFixIndM n) ( $\lambda$  \_. zero) ( $\lambda$  m. m).

The described developments are well-justified for any functor
 Functor 
 (★ → ★) → ★ = λ F.
 Σ fmap : ∀ X Y : ★. (X → Y) → F X → F Y.
 IdentityLaw fmap × CompositionLaw fmap.

• The described developments are well-justified for any functor

Functor  $\blacktriangleleft$  (\*  $\rightarrow$  \*)  $\rightarrow$  \* =  $\lambda$  F.  $\Sigma$  fmap :  $\forall$  X Y : \*. (X  $\rightarrow$  Y)  $\rightarrow$  F X  $\rightarrow$  F Y. IdentityLaw fmap  $\times$  CompositionLaw fmap.

• Surprisingly, the construction can be easily generalized to the larger class of schemes we call **identity mappings** 

IdMapping  $\blacktriangleleft$  (\*  $\rightarrow$  \*)  $\rightarrow$  \* =  $\lambda$  F.

 $\forall$  X Y : \*. Id X Y  $\rightarrow$  Id (F X) (F Y).

• The described developments are well-justified for any functor

Functor  $\blacktriangleleft$  ( $\star \rightarrow \star$ )  $\rightarrow \star = \lambda$  F.  $\Sigma$  fmap :  $\forall$  X Y :  $\star$ . (X  $\rightarrow$  Y)  $\rightarrow$  F X  $\rightarrow$  F Y. IdentityLaw fmap  $\times$  CompositionLaw fmap.

Surprisingly, the construction can be easily generalized to the larger class of schemes we call identity mappings
 IdMapping ◄ (\* → \*) → \* = λ F.

 $\forall$  X Y :  $\star$ . Id X Y  $\rightarrow$  Id (F X) (F Y).

Every functor is identity mapping
 fm2im ◀ ∀ F : ★ → ★. Functor F → IdMapping F = <...>

• The described developments are well-justified for any functor

Functor  $\blacktriangleleft$  (\*  $\rightarrow$  \*)  $\rightarrow$  \* =  $\lambda$  F.  $\Sigma$  fmap :  $\forall$  X Y : \*. (X  $\rightarrow$  Y)  $\rightarrow$  F X  $\rightarrow$  F Y. IdentityLaw fmap  $\times$  CompositionLaw fmap.

• Surprisingly, the construction can be easily generalized to the larger class of schemes we call **identity mappings** 

IdMapping  $\blacktriangleleft$  (\*  $\rightarrow$  \*)  $\rightarrow$  \* =  $\lambda$  F.  $\forall$  X Y : \*. Id X Y  $\rightarrow$  Id (F X) (F Y).

- Every functor is identity mapping
   fm2im ◀ ∀ F : ★ → ★. Functor F → IdMapping F = <...>
- Converse is not true

UneqPair  $\blacktriangleleft \star \to \star = \lambda X. \Sigma x_1 x_2 : X. x_1 \neq x_2.$ 

• Identity mappings induce a large class of datatypes (including infinitary and non-strictly positive datatypes).

• We generically define course-of-value datatypes and implement dependent histomorphisms. We do this by defining a least fixed point of a coend of "negative" scheme.

Lift  $\blacktriangleleft$  (\*  $\rightarrow$  \*)  $\rightarrow$  \*  $\rightarrow$  \* =  $\lambda$  F.  $\lambda$  X. F X  $\times$  (X  $\rightarrow$  F X).

FixCoV  $\blacktriangleleft$  (\*  $\rightarrow$  \*)  $\rightarrow$  \* =  $\lambda$  F. FixIndM (Coend (Lift F)).

• In a similar way, we generically derive (small) inductive-recursive datatypes and derive the respective dependent elimination.

# Thank you!