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Graph Databases

Graphs Topologies are pervasive in numerous domains:
e Knowledge Representation and the Semantic Web
e Linked Open Data

e Scientific Repositories (medicine, biology, chemistry)
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Graph Databases

Graph Datasets are readily available and continously growing
e DBPedia: multi-domain ontology derived from Wikipedia
e WikiData: Wikipedia's openly curated knowledge graph
e BioRDF: linked data for the life sciences
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Graph Databases

Graph Databases are tailored to store graph-shaped data
e explicit graph model structure
e support massive, connected data

e better performance w.r.t RDBMSs & NoSQL aggregate stores
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Graph Database Models

Basic Model — edge-labeled graph
e nodes: abstract entities

e edges: relationships between them
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Graph Database Models

Basic Model — edge-labeled graph
e nodes: abstract entities
e edges: relationships between them

Enhanced Models:
e directionality: ordered edges — directed graph
e heterogeneity: multiple edges & labels — multi-graph
e expressivity: multiple node & edge properties — property graph

o
L 1o,
Lty 102

ince: S-Meny,
2005, /7475,8'

Type: Group
Name: Chess

Figure: Graph Model Example
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Graph Database Models

Basic Model — edge-labeled graph

e nodes: abstract entities

e edges: relationships between them
Enhanced Models:

e directionality: ordered edges — directed graph

e heterogeneity: multiple edges & labels — multi-graph
e expressivity: multiple node & edge properties — property graph

Id: 1
Name: Alice
Age: 18

Figure: Graph Model Example
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Graph Query Languages

e graph queries: navigation & label-constrained reachability

e multiple implementations, various levels of expressivity

a
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SPARQL

e no standard — raises development & interoperability issues

G-CORE Manifesto: [Angles et. al, 2017]

Find suitable counterpart to SQL in the graph database setting.
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Graph Query Languages

e graph queries: navigation & label-constrained reachability

e multiple implementations, various levels of expressivity

@
g
Sowo Bt

e no standard — raises development & interoperability issues

G-CORE Manifesto: [Angles et. al, 2017]

Find suitable counterpart to SQL in the graph database setting.

Challenge: expressivity vs. tractability trade-off

e recursion: needed to model graph properties
m ...bottleneck for graph query engines [Bagan et al., 2017]

e query containment decidability: desirable for optimization
m ...generally undecidable
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Graph Query Languages

e graph queries: navigation & label-constrained reachability

e multiple implementations, various levels of expressivity

a3
g o4
@ GraphQL g%gre%ﬁ% ‘{9 openCypher

e no standard — raises development & interoperability issues

G-CORE Manifesto: [Angles et. al, 2017]

Find suitable counterpart to SQL in the graph database setting.

Foundational Commonality

e all are subsumed by the Datalog language

e zoom-in on a desirable fragment (Regular Datalog)
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Datalog Language

Datalog Language

Function-free, range-restricted (decidable) Horn logic fragment
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Datalog Language

Datalog Language

Function-free, range-restricted (decidable) Horn logic fragment

Main Features

e terminating (safety — guaranteed for finite set queries)
e declarative (efficient evaluation)

e uniform (relations, views, queries, data dependencies)
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Datalog Language

Datalog Language
Function-free, range-restricted (decidable) Horn logic fragment

Example: Transitive Closure Computation

e(1, 3).
1 — 3
e( ) s i
e(4,2). W
e(2,4). Y
2 T4
~_ —

- =

\

te(X, Y) < (X, Y).

te(X,

Y) « te(X, Z), te(Z, Y).
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Datalog Language

Resurge of Interest in 2010
Datalog 2.0 Manifesto: http://www.datalog20.org/

e powerful abstraction for querying recursive structures
— renewed academic interest in emerging domains:

m data integration and exchange, security, program analysis, etc.

e modular, scalable and extensible programming language
— successful industrial applications:

m DLV, Exeura, Neotide, Lixto, Dedalus, Clingo, etc.
m ...even full enterprise software stack powered by Datalog:

LogicBlox
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Ensuring Reliability of Datalog Engines

Desideratum

e Formal specification of Datalog languages.
Blueprint for ongoing standardisation efforts.

e Strong safety guarantees for real-world Datalog-based engines.
Blueprint for principled (graph) database development.

Mechanical Certification

e specification: rigorous definition of expected behavior
o verification: observed behavior preserves invariants
® e.g., termination, soundness, completeness

= correct-by-construction implementation
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Towards Certifying Commercial Datalog Engines

Long-Term Goal: A Refinement Based Methodology

e high-level formalization suitable for proof development
e mechanization of an efficient implementation

e refinement proofs of their extensional equivalence
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Towards Certifying Commercial Datalog Engines

Long-Term Goal: A Refinement Based Methodology

e high-level formalization suitable for proof development
m key ingredient: finite model theory
e mechanization of an efficient implementation

e refinement proofs of their extensional equivalence
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Towards Certifying Commercial Datalog Engines

Long-Term Goal: A Refinement Based Methodology

e high-level formalization suitable for proof development

m key ingredient: finite model theory
> central to Datalog semantics

> support: Mathematical Components Library (MathComp)

e mechanization of an efficient implementation

e refinement proofs of their extensional equivalence
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Towards Certifying Commercial Datalog Engines

Mathematical Components Library
e multi-purpose mathematical theories
m relevant libraries for reasoning over finite types
m finite group theory (Feit-Thompson classification theorem)
m finite set theory and big operators
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Towards Certifying Commercial Datalog Engines

Mathematical Components Library

e multi-purpose mathematical theories
m relevant libraries for reasoning over finite types
m finite group theory (Feit-Thompson classification theorem)
m finite set theory and big operators
e SSReflect tactic language
m generic reflection mechanism

m succinct proof scripts

m compositional proof development
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Certified Database Components

e Similar to Mathematical Components (MathComp)

e Database Components (DBComp):
bridge DB Foundations & Interactive Theorem Proving (ITP)

Mathematics | MathComp = ITP (Coq)

Databases = DBComp | ITP (Coq)

10/33
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Outline

© Regular Datalog
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From Graph Databases to Regular Datalog

How to leverage Datalog to query graph-shaped data ?

rs @ S 018 DD

Figure: DBpedia Snapshot
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From Graph Databases to Regular Datalog

Graph Databases

V: finite set of constants (nodes).
Y: finite set of symbols (edge labels).

Graph Instance G over ¥:
set of directed labeled edges, E, where EC V x ¥ x V.

Graph Database D(G) over G:
G can be seen as a database D(G) = {s(n1, n2) | (m,s, m) € E}

Path p of length k in G: sequence ny 2 ny...ng_q SN Ny
Path Label: A(p) =s1...5k € ¥

11/33
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From Graph Databases to Regular Datalog

Regular Datalog ([Reutter et al., 2017])

e binary Datalog limiting recursion to transitive closure
m specify complex, regular expression patterns

o efficient query processsing

m highly parallelizable
m optimizable (decidable query containment)

11/33
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Regular Datalog : Language Syntax

Regular Datalog (RD) Expressions

Terms (Node IDs) t:=x|n where x €V, ne V
Atoms A= s(t, ) where s € X
Literals L:=A|A"
Conjunctive Body B := L3 A...AL, where n € N
Disjunctive Body D ::=B; V...V B, where n € N
Clauses C :=(t1,tr) « D
Programs M:=X — {G,..., Gy} where n € N

Regular Queries (RQ) over G
e RD-program 1 and a distinguished query clause € with:

m head — top-level view (V)
m body — disjunctive conjunction of I1 literals
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Example: Fraud Detection Patterns

pstransfer™
pstransfer™
(a) Potential Fraud (b) Secured Transfer
suspect(X,Y) stransfer(X,Y)

Figure: Fraud Detection

suspect(X,Y)
pstransfer(X, Y)
stransfer(X,Y)
secures(X,Y)
cmonitor(X,Y)

pstransfert (X, Y), pstransfer ™ (Y, X)

(transfer + stransfer)(X,Y)

accredit(Y, X), secures(X, Y), transfers(X, Y)

(connected - cmonitor™ - connected)(X, Y)

connected(X, Y), monitort(Z, X), monitort(Z,Y),accredit(Z, X)

Tt
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Regular Datalog: Semantics

Interpretations (G)
Modeled as indexed relations (X x {{J,+}) — P(C x C).

Interpretation Well-Formedness (wfG)

G(s,+) has to correspond to the transitive closure of G(s,):
wfG(G) <= Vs, is_closure(G(s, 0),G(s,+))
is_closure(gs, go) <= V(m, m) € g, Ip € VT, path(gs, n1, p) A last(p) = n»
path(g, n1, p) — Vie{l...|p|},(ni,ni;1) €8

14 /33
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Minimal Model

{ Rl(a).
M=1{ Ry(b).
R3(X) = RQ(X)

e {Ri(a), Ra(b), R3(a), R3(b)} - valid (trivial) model
o 0, {R1(a), R2(b)} - not models
e {Ri(a), Ra(b), R3(b)} - intended semantics (MM(P))

v

Intended Model Theoretic Semantics

Datalog programs 1 have an unique minimal model MM(IN)
MM(M) =N A (YM, M =1 = MM(I) C M)

15/33
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Existence of a Finite Model

Let adom be the (finite) set of constants in I1.
Let Bn = {p(c1,...,¢cn) | p€ X, ¢ € adom, ar(p) = n}

If T1 is safe (all head variables appear in the body) then
Bp =N

Let head <~ body € N and v : V — C.
Safety = v(head) € B V B ~ v(body). O

Corollary: Finite Model Property

Bp is a finite set = minimal models are finite.

16 /33
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Outline

© Regular Datalog Engine
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Regular Datalog: Engine Overview

stratified, single-pass, bottom-up heuristic
e non-recursive (recursion internalized in closure computation)

supports both base and incremental inference

core component: clause evaluation
m forward-chain clausal consequence operator (fud_or_clause)
m based on a matching algorithm
m corresponds to computing a nested-loop join

17/33
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Regular Datalog: Base Engine

Base Clause Evaluation: Clausal Consequence Operator
For C £M(s) = (t1, ) + Vi, , Bi,
T(G) = {o(t1. t2) | 0 € Uiy, MG (Bi)}-

18/33
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Regular Datalog IVM-Engine

Certify Graph Database Incremental View Maintenance (IVM)

G £ base graph; I = RD program; V £ top-view; A £ update.

If V[G] =N, the IVM-engine outputs an incremental view
update, VA[G; A, such that V[G] -+ VA[G; Al =N .

19/33
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Regular Datalog Updates

An update A £ (A, A_) is a pair of disjoint graphs A, A_.
A £ bulk insertions; A, £ bulk deletions.

<

Update Operations

G+ A G\A_UA,
Afls — (g+,8-)} (Ap{s > g+}, A {s =g \g+})

\
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Incremental A-Matching

Compute VA[G; A], such that V[G :+: A] = V[G] -+ VA[G; A],
via delta programs, distributing deltas over joins and factoring.
(based on [Gupta et al, 1993])

Delta Programs (6(V))

For a view V, with V < Ly,... L, 6(V) = {6; | i € [L,n]}.
Each delta clause §; & V < L1,...,Li_1, L,-A, LY 1., L5, where:
L £ match L; with G U AG atoms with the same symbol as L;

LJ-A £ match L; with AG atoms with the same symbol as L;.

21/33
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Example: Incremental A-Matching

Let V £ roas, where V(X,Y) « r(X, 2),s(Z,Y), r™ and s*.
VA = (r2 pas)U (ras®) U (r® as?).
VA = (r® bas) U (r¥ as2), where r¥ = rur?.

VA = VlA U V2A, where:

61: VB« r2(X,2),s(Z,Y)
621 VR + r'(X,2),s2(Z,Y).
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Regular Datalog: Incremental Engine

Incremental Atom Matching

Mg‘jz(a) = (if m € {B,F} then MZ(a) else 0) U (if m € {D,F} then M2 (a) else 0)
Incremental Body Matching
For a set of body literals B £ [Ly, ..., Ly], generates Bn = body_mask(B)
L°  LF o L4 LT
LB L° oL, F o LF
LB LB Lopeq® g%
i
Incremental Clausal Maintenance Operator
ey [ TG A, (s ¢ supp) V (A— U D) # 0
G,supp Us,es M5 A(Bm), otherwise

A\
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Regular Datalog: Engine Overview

Fixpoint fwd_program [1 G supp A Y. X

: edelta :=
match ¥ with
| [::] => A
| [:: s & ss] =>
let (arg, body) := 11 s in
let A’ := fwd_or_clause G supp A s arg body in

let A’ := compute_closures G A’ s

in
fwd_program I G supp A’ (s U s+ U L) ss

24 /33
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Outline

@ Soundness
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Regular Datalog: Stratification Conditions

Stratified Programs

A program [1 is stratified if: there exists a mapping o : ¥ — [1, n]
such that, for all s in X, the lN(s) clause (t1, tp) < B satisfies:

ma r) < S
rEsym)((B)U( ) U( )

v

Well-Formed Program Slices

A symbol set ¥ is a well-formed slice of I1 if:

for all siin X, sym(M(s)) C X

25 /33
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Regular Datalog: Engine Characterization

Theorem (Soundness)

o [1 — a safe, stratifiable, Regular Datalog program
e X — jts set of symbols
e G — a graph instance
e A — an update
The IVM-engine cumulatively processes symbols in X, such that if:
e the already processed symbols, ¥, are a well-formed [1-slice
e A only modifies X, i.e., sym(A) C X
e G+ ARy
Then, it outputs Ap, such that G +: Ap Ex 1.

26 /33
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Key Lemmas (1/11)

Lemma (Clause Modularity Satisfaction)
Assume s ¢ sym(A) and also sym(C) Nsym(A) = 0. Then:

G+ AR C << G C.

A\

Lemma (Program Modularity Satisfaction)

Assume ¥ a well-formed slice of [l and s ¢ ¥. Let

A= (A, A"), where A, = AL U {s(t1,t2) | (t1,t2) € g} and
A =A_ \ {S(tl, tz) ’ (tl, tz) € g}. Then:

G+ A EgurN <= GHA = NS)AG + As T

<

27 /33
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Key Lemmas (11/11)

Lemma (Clausal Maintenance Soundness)

Assume: T1(s) is a safe clause, G =5 M; X is well-formed wrt
closures; ¥ is a well-formed slice of ;s ¢ ¥.; sym(M(s)) C X,
sym(A) C X, G+ A, N

Then: G +: As FEisyus,, M, where Ag = TE:UPP(A)

Lemma (A-Body Matching Soundness)

Let B a conjunctive body; o a substitution.
Assume sym(B) Nsym(A_) = 0 (no deletions scheduled for B).

Then: for all o € MgA(B), there exists B,s.t o(B) = B.

A\
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Experiments

Goal: confirm extracted engine's IVM runtime < its FVM runtime
Setting:

e gMark synthetic datasets and query workloads:

m WD, the Waterloo SPARQL Diversity Test Suite (Wat-Div)
m SNB, the LDBC Social Network Benchmark

schema size: |supp(G)| = 82 (WD), |supp(G)| = 27 (SNB)

instance & workload sizes: |G| = 1K, | =10 UC2RPQ
supp(A

psupp = S22l € {0.05,0.1,0.15,0.2,0.25)

p= '@,ﬁ' %100

Time Gain = FVM — IVM, Ratio Gain = 100 — 1&¥M

29/33
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Experiments

Psupp P FVM IVM | Time Gain | Ratio Gain
0.05 | 1.4% | 558.7 | 484.75 73.95 13.23%
0.1 | 3.67% | 561.89 | 472.7 89.19 15.87%
0.15 | 17.93% | 562.67 | 475.96 86.71 15.41%
0.2 9.7% | 562.13 | 476.4 85.73 15.25%
0.25 | 18.26% | 563.4 | 482.64 80.76 14.33%

Table: Wwp Runtimes (ms) for Varying Support Update Size (psupp)

Psupp P FVM | IVM | Time Gain | Ratio Gain
0.05 | 10.89% | 18.75 | 10.88 7.87 41.97%
0.1 19.3% | 17.77 | 10.55 7.22 40.63%
0.15 | 10.77% | 17.55 | 11.68 5.82 33.25%
0.2 |26.09% | 17.17 | 11.71 5.46 31.79%
0.25 | 28.34% | 14.71 | 11 3.71 25.22%

Table: Wsng Runtimes (ms) for Varying Support Update Size (psupp)
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Experiments - Insights

e absolute time gain (ms) of running IVM vs. FVM:
always > 0

e relative ratio gain (%) is always better for sparser graphs
SNB runtimes (less dense) << WD runtimes (very dense)

e engine works best on bulk updates with small support size
symbol-level maintenance granularity
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Main Results

e certified graph query evaluation & maintenance engine

m 1062 loc (definitions) + 734 loc (proofs)
m extracted OCaml engine tested on realistic graph databases

e machine-checked proofs of foundational database results

m mathematical representation of core engine components

e promising to certify a graph query language standard

Angela Bonifati, Stefania Dumbrava, Emilio Jesus Gallego Arias
Certified Graph View Maintenance with Regular Datalog.
Th. and Practice of Logic Programming, 18(3-4):372-389, 2018.

https://github.com/VerDlLog/
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Related Work

Incremental Graph Computation for RPQ
[Fan et al. 2017]

Certifying SQL Semantics

[Chu et al. 2017], [Benzaken et al 2019]
Verified Relational Algebra Query Compilers
[Auerbach et al 2017]

Verified Relational Data Model

[Benzaken et al 2014]

Certified Standard and Stratified Datalog Engines
[Dumbrava, 2016], [Benzaken et al 2017]
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Contributions

e Language Formalization
(syntax + finite model-theoretic semantics)
® new parametric, normalized, indexed representation
m new core theory of updates
m first certified graph query language
¢ Inference Engine Mechanization
(evaluation + maintenance)
m among early contributions in graph view maintenance

® most mainstream commercial engines do not provide concepts
for defining graph views/maintenance

e Soundness Certification
(proof that the engine output is correct)

m compact, compositional proofs — limited effort + reusability

m correct-by-construction engine executable on realistic graphs
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CoQ Specification: Syntax (Extra)

Variables (V X : finType).

Inductive L := [0 | +.
Inductive egraph := EGraph of {set V * V}.
Inductive lrel := LRel of {ffun ¥ * L -> egraph}

Record atom Atom { syma : ¥X; arga : T *x T }.

Record lit := Lit { tagl : L; atoml: atom }.

Record cbody CBody { 1itb : seq lit }.

Record clause := Clause { headc : T * T; bodyc : seq cbody }.

Inductive program := Program of {ffun ¥ -> clause T ¥ L}.



Regular Datalog: Semantics (Extra)

Literal Satisfaction

For L2 s'(n;,m), Gl= L < (n1,m) € G(s, ).

Clause Satisfaction
For C £ (t1,t0) < (Lia Ao ALip) VooV (L Ao ALmn),
GEsL —= 0,Vi1.m(Aj=1.09 E1(Liy)) = G F n(s(ty, 22)).

v

Program Satisfaction

ForﬂéZ%{Cl,...,Cn},g):zn — VSGZ,g ):S I'I(s)
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