
Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Certified Graph Query Processing

Stefania Dumbrava1

IRISA - ENS Rennes - Inria Rennes

EUTypes WG @LambdaDays

February 23rd, 2019

1Joint with A. Bonifati (Lyon 1/LIRIS) & E.J.G. Arias (PSL/Mines ParisTech)
1 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Graph Databases

Graphs Topologies are pervasive in numerous domains:

• Knowledge Representation and the Semantic Web

• Linked Open Data

• Scientific Repositories (medicine, biology, chemistry)

2 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Graph Databases

Graph Datasets are readily available and continously growing

• DBPedia: multi-domain ontology derived from Wikipedia

• WikiData: Wikipedia’s openly curated knowledge graph

• BioRDF: linked data for the life sciences

2 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Graph Databases

Graph Databases are tailored to store graph-shaped data

• explicit graph model structure

• support massive, connected data

• better performance w.r.t RDBMSs & NoSQL aggregate stores

Figure: (Part of the) Graph Database Ecosystem

2 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Graph Database Models

Basic Model – edge-labeled graph

• nodes: abstract entities

• edges: relationships between them

3 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Graph Database Models

Basic Model – edge-labeled graph
• nodes: abstract entities
• edges: relationships between them

Enhanced Models:
• directionality : ordered edges – directed graph
• heterogeneity : multiple edges & labels – multi-graph
• expressivity : multiple node & edge properties – property graph

Figure: Graph Model Example
3 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Graph Database Models

Basic Model – edge-labeled graph
• nodes: abstract entities
• edges: relationships between them

Enhanced Models:
• directionality : ordered edges – directed graph
• heterogeneity : multiple edges & labels – multi-graph
• expressivity : multiple node & edge properties – property graph

Figure: Graph Model Example
3 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Graph Query Languages

• graph queries: navigation & label-constrained reachability

• multiple implementations, various levels of expressivity

• no standard → raises development & interoperability issues

G-CORE Manifesto: [Angles et. al, 2017]

Find suitable counterpart to SQL in the graph database setting.

4 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Graph Query Languages

• graph queries: navigation & label-constrained reachability

• multiple implementations, various levels of expressivity

• no standard → raises development & interoperability issues

G-CORE Manifesto: [Angles et. al, 2017]

Find suitable counterpart to SQL in the graph database setting.

Challenge: expressivity vs. tractability trade-off

• recursion: needed to model graph properties

...bottleneck for graph query engines [Bagan et al., 2017]

• query containment decidability: desirable for optimization

...generally undecidable

4 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Graph Query Languages

• graph queries: navigation & label-constrained reachability

• multiple implementations, various levels of expressivity

• no standard → raises development & interoperability issues

G-CORE Manifesto: [Angles et. al, 2017]

Find suitable counterpart to SQL in the graph database setting.

Foundational Commonality

• all are subsumed by the Datalog language

• zoom-in on a desirable fragment (Regular Datalog)

4 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Datalog Language

Datalog Language

Function-free, range-restricted (decidable) Horn logic fragment

5 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Datalog Language

Datalog Language

Function-free, range-restricted (decidable) Horn logic fragment

Main Features

• terminating (safety → guaranteed for finite set queries)

• declarative (efficient evaluation)

• uniform (relations, views, queries, data dependencies)

5 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Datalog Language

Datalog Language

Function-free, range-restricted (decidable) Horn logic fragment

Example: Transitive Closure Computation

e(1, 3).
e(2, 1).
e(4, 2).
e(2, 4).

tc(X, Y) ← e(X ,Y).
tc(X ,Y)← tc(X ,Z), tc(Z ,Y).

1 3

2 4

5 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Datalog Language

Resurge of Interest in 2010

Datalog 2.0 Manifesto: http://www.datalog20.org/

• powerful abstraction for querying recursive structures

→ renewed academic interest in emerging domains:

data integration and exchange, security, program analysis, etc.

• modular, scalable and extensible programming language

→ successful industrial applications:

DLV, Exeura, Neotide, Lixto, Dedalus, Clingo, etc.
...even full enterprise software stack powered by Datalog:

6 / 33

http://www.datalog20.org/

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Ensuring Reliability of Datalog Engines

Desideratum

• Formal specification of Datalog languages.
Blueprint for ongoing standardisation efforts.

• Strong safety guarantees for real-world Datalog-based engines.
Blueprint for principled (graph) database development.

Mechanical Certification

• specification: rigorous definition of expected behavior

• verification: observed behavior preserves invariants

e.g., termination, soundness, completeness

⇒ correct-by-construction implementation

7 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Towards Certifying Commercial Datalog Engines

Long-Term Goal: A Refinement Based Methodology

• high-level formalization suitable for proof development

• mechanization of an efficient implementation

• refinement proofs of their extensional equivalence

8 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Towards Certifying Commercial Datalog Engines

Long-Term Goal: A Refinement Based Methodology

• high-level formalization suitable for proof development

key ingredient: finite model theory

• mechanization of an efficient implementation

• refinement proofs of their extensional equivalence

8 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Towards Certifying Commercial Datalog Engines

Long-Term Goal: A Refinement Based Methodology

• high-level formalization suitable for proof development

key ingredient: finite model theory
I central to Datalog semantics

I support: Mathematical Components Library (MathComp)

• mechanization of an efficient implementation

• refinement proofs of their extensional equivalence

8 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Towards Certifying Commercial Datalog Engines

Mathematical Components Library

• multi-purpose mathematical theories
relevant libraries for reasoning over finite types

finite group theory (Feit-Thompson classification theorem)

finite set theory and big operators

9 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Towards Certifying Commercial Datalog Engines

Mathematical Components Library

• multi-purpose mathematical theories
relevant libraries for reasoning over finite types

finite group theory (Feit-Thompson classification theorem)

finite set theory and big operators

• SSReflect tactic language

generic reflection mechanism

succinct proof scripts

compositional proof development

9 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Certified Database Components

• Similar to Mathematical Components (MathComp)

• Database Components (DBComp):
bridge DB Foundations & Interactive Theorem Proving (ITP)

Mathematics MathComp ITP (Coq)

Databases DBComp ITP (Coq)

10 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Outline

1 Introduction

2 Regular Datalog

3 Regular Datalog Engine

4 Soundness

5 Conclusions

10 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

From Graph Databases to Regular Datalog

How to leverage Datalog to query graph-shaped data ?

Figure: DBpedia Snapshot

11 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

From Graph Databases to Regular Datalog

Graph Databases

V: finite set of constants (nodes).
Σ: finite set of symbols (edge labels).

Graph Instance G over Σ:
set of directed labeled edges, E, where E ⊆ V × Σ× V.

Graph Database D(G) over G:
G can be seen as a database D(G) = {s(n1, n2) | (n1, s, n2) ∈ E}

Path ρ of length k in G: sequence n1
s1−→ n2 . . . nk−1

sk−→ nk

Path Label: λ(ρ) = s1 . . . sk ∈ Σ∗

11 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

From Graph Databases to Regular Datalog

Regular Datalog ([Reutter et al., 2017])

• binary Datalog limiting recursion to transitive closure

specify complex, regular expression patterns

• efficient query processsing

highly parallelizable
optimizable (decidable query containment)

11 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Regular Datalog : Language Syntax

Regular Datalog (RD) Expressions

Terms (Node IDs) t ::= x | n where x ∈ V, n ∈ V

Atoms A ::= s(t1, t2) where s ∈ Σ

Literals L ::= A | A+

Conjunctive Body B ::= L1 ∧ . . . ∧ Ln where n ∈ N
Disjunctive Body D ::= B1 ∨ . . . ∨ Bn where n ∈ N

Clauses C ::= (t1, t2)← D

Programs Π ::= Σ→ {C1, . . . ,Cn} where n ∈ N

Regular Queries (RQ) over G
• RD-program Π and a distinguished query clause Ω with:

head – top-level view (V)
body – disjunctive conjunction of Π literals

12 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Example: Fraud Detection Patterns

X Y

pstransfer+

pstransfer+

(a) Potential Fraud
suspect(X ,Y)

X Y

Z

c c c c

m
+

m
+

m
+

m
+

a

a

t

(b) Secured Transfer
stransfer(X ,Y)

Figure: Fraud Detection

suspect(X ,Y) ← pstransfer+(X ,Y), pstransfer+(Y ,X)

pstransfer(X ,Y) ← (transfer + stransfer)(X ,Y)
stransfer(X ,Y) ← accredit(Y ,X), secures(X ,Y), transfers(X ,Y)
secures(X ,Y) ← (connected · cmonitor+ · connected)(X ,Y)
cmonitor(X ,Y) ← connected(X ,Y),monitor+(Z ,X),monitor+(Z ,Y), accredit(Z ,X)

13 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Regular Datalog: Semantics

Interpretations (G)

Modeled as indexed relations (Σ× {�,+})→ P(C× C).

Interpretation Well-Formedness (wfG)

G(s,+) has to correspond to the transitive closure of G(s,�):

wfG(G) ⇐⇒ ∀s, is closure(G(s, ∅),G(s,+))

is closure(gs , gp) ⇐⇒ ∀(n1, n2) ∈ gp, ∃ρ ∈ V+, path(gs , n1, ρ) ∧ last(ρ) = n2

path(g , n1, ρ) ⇐⇒ ∀i ∈ {1 . . . |ρ|}, (ni , ni+1) ∈ g

14 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Minimal Model

Example

Π =


R1(a).
R2(b).
R3(X)← R2(X)

• {R1(a),R2(b),R3(a),R3(b)} - valid (trivial) model

• ∅, {R1(a),R2(b)} - not models

• {R1(a),R2(b),R3(b)} - intended semantics (MM(P))

Intended Model Theoretic Semantics

Datalog programs Π have an unique minimal model MM(Π)

MM(Π) |= Π ∧ (∀M,M |= Π⇒ MM(Π) ⊆ M)

15 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Existence of a Finite Model

Let adom be the (finite) set of constants in Π.
Let BΠ = {p(c1, . . . , cn) | p ∈ Σ, ci ∈ adom, ar(p) = n}

Theorem

If Π is safe (all head variables appear in the body) then

BΠ |= Π

Proof.

Let head← body ∈ Π and ν : V→ C.
Safety ⇒ ν(head) ∈ BΠ ∨ BΠ 6|= ν(body).

Corollary: Finite Model Property

BΠ is a finite set ⇒ minimal models are finite.

16 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Outline

1 Introduction

2 Regular Datalog

3 Regular Datalog Engine

4 Soundness

5 Conclusions

16 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Regular Datalog: Engine Overview

• stratified, single-pass, bottom-up heuristic

• non-recursive (recursion internalized in closure computation)

• supports both base and incremental inference

• core component: clause evaluation

forward-chain clausal consequence operator (fwd or clause)

based on a matching algorithm

corresponds to computing a nested-loop join

17 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Regular Datalog: Base Engine

Base Clause Evaluation: Clausal Consequence Operator

For C , Π(s) ≡ (t1, t2)←
∨

i=1..n Bi ,

TΠ,s(G) ≡ {σ(t1, t2) | σ ∈
⋃

i=1..n M
B
G (Bi)}.

18 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Regular Datalog IVM-Engine

Certify Graph Database Incremental View Maintenance (IVM)

G G :+: ∆

V [G] V ν

∆

V∆[G; ∆]

Π
G

Π
G

:+:∆

V
[G

] :+
: V

∆ [G
; ∆

]

m
ai

nte
nan

ce

V
[G

:+
: ∆

]

re
co

m
puta

tio
n

G , base graph; Π , RD program; V , top-view; ∆ , update.

Soundness

If V [G] |= Π , the IVM-engine outputs an incremental view

update, V∆[G; ∆], such that V [G] :+: V∆[G; ∆] |= Π .

19 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Regular Datalog Updates

Updates

An update ∆ , (∆+,∆−) is a pair of disjoint graphs ∆+,∆−.
∆+ , bulk insertions; ∆+ , bulk deletions.

Update Operations

G :+: ∆ ≡ G \∆− ∪∆+

∆{s → (g+, g−)} ≡ (∆+{s → g+},∆−{s → g− \ g+})

20 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Incremental ∆-Matching

Compute V∆[G; ∆], such that V [G :+: ∆] = V [G] :+: V∆[G; ∆],
via delta programs, distributing deltas over joins and factoring.
(based on [Gupta et al, 1993])

Delta Programs (δ(V))

For a view V , with V ← L1, . . . , Ln, δ(V) , {δi | i ∈ [1, n]}.

Each delta clause δi , V ← L1, . . . , Li−1, L
∆
i , L

ν
i+1, . . . , L

ν
n, where:

Lνj , match Lj with G ∪∆G atoms with the same symbol as Lj

L∆
j , match Lj with ∆G atoms with the same symbol as Lj .

21 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Example: Incremental ∆-Matching

Let V , r ./ s, where V (X ,Y)← r(X ,Z), s(Z ,Y), r∆ and s∆.

V∆ = (r∆ ./ s) ∪ (r ./ s∆) ∪ (r∆ ./ s∆).

V∆ = (r∆ ./ s) ∪ (rν ./ s∆), where rν = r ∪ r∆.

V∆ = V∆
1 ∪ V∆

2 , where:

δ1 : V∆
1 ← r∆(X ,Z), s(Z ,Y)

δ2 : V∆
2 ← rν(X ,Z), s∆(Z ,Y).

22 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Regular Datalog: Incremental Engine

Incremental Atom Matching

MA,m
G,∆(a) = (if m ∈ {B,F} then MA

G(a) else ∅) ∪ (if m ∈ {D,F} then MA
∆(a) else ∅)

Incremental Body Matching

For a set of body literals B , [L1, . . . , Ln], generates B∆ = body mask(B)


L1

D L2
F . . . Ln−1

F Ln
F

L1
B L2

D . . . Ln−1
F Ln

F

. .

L1
B L2

B . . . Ln−1
B Ln

D



Incremental Clausal Maintenance Operator

TΠ,s
G,supp(∆) =

{
TΠ,s(G :+: ∆), (s /∈ supp) ∨ (∆− ∪ D) 6= ∅⋃

Bm∈B∆
MB
G,∆(Bm), otherwise

23 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Regular Datalog: Engine Overview

Fixpoint fwd_program Π G supp ∆ ΣB ΣC : edelta :=

match ΣC with

| [::] => Δ

| [:: s & ss] =>

let (arg, body) := Π s in

let ∆′ := fwd_or_clause G supp ∆ s arg body in

let ∆′ := compute_closures G ∆′ s in

fwd_program Π G supp ∆′ (s ∪ s+ ∪ ΣB) ss

24 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Outline

1 Introduction

2 Regular Datalog

3 Regular Datalog Engine

4 Soundness

5 Conclusions

24 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Regular Datalog: Stratification Conditions

Stratified Programs

A program Π is stratified if: there exists a mapping σ : Σ→ [1, n]
such that, for all s in Σ, the Π(s) clause (t1, t2)← B satisfies:

max
r∈sym(B)

σ(r) < σ(s)

Well-Formed Program Slices

A symbol set Σ is a well-formed slice of Π if:

for all s in Σ, sym(Π(s)) ⊆ Σ

25 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Regular Datalog: Engine Characterization

Theorem (Soundness)

• Π – a safe, stratifiable, Regular Datalog program

• Σ – its set of symbols

• G – a graph instance

• ∆ – an update

The IVM-engine cumulatively processes symbols in Σ, such that if:

• the already processed symbols, ΣB, are a well-formed Π-slice

• ∆ only modifies ΣB, i.e., sym(∆) ⊆ ΣB

• G :+: ∆ |=ΣB Π

Then, it outputs ∆O , such that G :+: ∆O |=Σ Π .

26 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Key Lemmas (I/II)

Lemma (Clause Modularity Satisfaction)

Assume s /∈ sym(∆) and also sym(C) ∩ sym(∆) = ∅. Then:

G :+: ∆ |=s C ⇐⇒ G |=s C .

Lemma (Program Modularity Satisfaction)

Assume Σ a well-formed slice of Π and s /∈ Σ. Let
∆′ = (∆′+,∆

′
−), where ∆′+ = ∆+ ∪ {s(t1, t2) | (t1, t2) ∈ g} and

∆′− = ∆− \ {s(t1, t2) | (t1, t2) ∈ g}. Then:

G :+: ∆′ |={s}∪Σ Π ⇐⇒ G :+: ∆′ |=s Π(s) ∧ G :+: ∆ |=Σ Π

27 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Key Lemmas (II/II)

Lemma (Clausal Maintenance Soundness)

Assume: Π(s) is a safe clause, G |=Σ Π; ΣB is well-formed wrt
closures; ΣB is a well-formed slice of Π; s /∈ ΣB; sym(Π(s)) ⊆ ΣB;
sym(∆) ⊆ ΣB; G :+: ∆ |=ΣB Π.

Then: G :+: ∆s |={s}∪ΣB Π,where ∆s = TΠ,s
G,supp(∆).

Lemma (∆-Body Matching Soundness)

Let B a conjunctive body; σ a substitution.
Assume sym(B) ∩ sym(∆−) = ∅ (no deletions scheduled for B).

Then: for all σ ∈ MB
G,∆(B), there exists B, s.t σ(B) = B.

28 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Experiments

Goal: confirm extracted engine’s IVM runtime < its FVM runtime

Setting:

• gMark synthetic datasets and query workloads:

WD, the Waterloo SPARQL Diversity Test Suite (Wat-Div)
SNB, the LDBC Social Network Benchmark

• schema size: |supp(G)| = 82 (WD), |supp(G)| = 27 (SNB)

• instance & workload sizes: |G| = 1K , |W| = 10 UC2RPQ

• ρsupp = |supp(∆+)|
|supp(G)| ∈ {0.05, 0.1, 0.15, 0.2, 0.25}

• ρ = |∆+|
|G′| ∗ 100

• Time Gain = FVM− IVM, Ratio Gain = 100− 100∗IVM
FVM

29 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Experiments

ρsupp ρ FVM IVM Time Gain Ratio Gain
0.05 1.4% 558.7 484.75 73.95 13.23%
0.1 3.67% 561.89 472.7 89.19 15.87%

0.15 17.93% 562.67 475.96 86.71 15.41%
0.2 9.7% 562.13 476.4 85.73 15.25%

0.25 18.26% 563.4 482.64 80.76 14.33%

Table: WWD Runtimes (ms) for Varying Support Update Size (ρsupp)

ρsupp ρ FVM IVM Time Gain Ratio Gain
0.05 10.89% 18.75 10.88 7.87 41.97%
0.1 19.3% 17.77 10.55 7.22 40.63%

0.15 10.77% 17.55 11.68 5.82 33.25%
0.2 26.09% 17.17 11.71 5.46 31.79%

0.25 28.34% 14.71 11 3.71 25.22%

Table: WSNB Runtimes (ms) for Varying Support Update Size (ρsupp)

30 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Experiments - Insights

• absolute time gain (ms) of running IVM vs. FVM:
always > 0

• relative ratio gain (%) is always better for sparser graphs
SNB runtimes (less dense) << WD runtimes (very dense)

• engine works best on bulk updates with small support size
symbol-level maintenance granularity

31 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Outline

1 Introduction

2 Regular Datalog

3 Regular Datalog Engine

4 Soundness

5 Conclusions

31 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Main Results

• certified graph query evaluation & maintenance engine

1062 loc (definitions) + 734 loc (proofs)

extracted OCaml engine tested on realistic graph databases

• machine-checked proofs of foundational database results

mathematical representation of core engine components

• promising to certify a graph query language standard

Angela Bonifati, Stefania Dumbrava, Emilio Jesus Gallego Arias
Certified Graph View Maintenance with Regular Datalog.

Th. and Practice of Logic Programming, 18(3-4):372–389, 2018.

https://github.com/VerDILog/

32 / 33

Introduction Regular Datalog Regular Datalog Engine Soundness Conclusions

Related Work

• Incremental Graph Computation for RPQ
[Fan et al. 2017]

• Certifying SQL Semantics
[Chu et al. 2017], [Benzaken et al 2019]

• Verified Relational Algebra Query Compilers
[Auerbach et al 2017]

• Verified Relational Data Model
[Benzaken et al 2014]

• Certified Standard and Stratified Datalog Engines
[Dumbrava, 2016], [Benzaken et al 2017]

33 / 33

Contributions

• Language Formalization
(syntax + finite model-theoretic semantics)

new parametric, normalized, indexed representation

new core theory of updates

first certified graph query language

• Inference Engine Mechanization
(evaluation + maintenance)

among early contributions in graph view maintenance

most mainstream commercial engines do not provide concepts
for defining graph views/maintenance

• Soundness Certification
(proof that the engine output is correct)

compact, compositional proofs → limited effort + reusability

correct-by-construction engine executable on realistic graphs

1 / 0

References

• [Benzaken et al., 2014] Benzaken, V., Contejean, E, Dumbrava, S. 2014.
A Coq Formalization of the Relational Data Model. In ESOP, 189–208.

• [Dumbrava, 2016] Dumbrava, S. 2016. A Coq Formalization of Relational and
Deductive Databases - and Mechanizations of Datalog.
PhD Thesis, University of Paris-Saclay, France

• [Benzaken et al., 2017] Benzaken, V., Contejean, E, Dumbrava, S. 2017.
Certifying Standard and Stratified Datalog Inference Engines in SSReflect.
In ITP, 171–188.

• [Dumbrava al., 2018] Dumbrava, S., Bonifati, A., Nazabal, A., Vuillemont, R.
2018. Approximate Evaluation of Complex Queries on Property Graphs.
(under submission)

• [Bonifati al., 2018] Bonifati, A., Dumbrava, S. 2018.
Graph Queries: From Theory to Practice.

In Sigmod Record 47(4) (to appear)

2 / 0

Additional References

• [Angles et al., 2017] Angles, R., Arenas, M., Barcelo, P., Hogan, A. Reutter,
J.L., and Vrgoc, D. 2017. Foundations of Modern Query Languages for Graph
Databases. In ACM Comput. Surv.. Vol.50. 68:1–68:40.

• [Auerbach et al., 2017] Auerbach, J. S., Hirzel, M., Mandel, L., Shinnar, A., and
Siméon, J. 2017. Handling Environments in a Nested Relational Algebra with
Combinators and an Implementation in a Verified Query Compiler. In SIGMOD.
1555–1569.

• [Bagan et al., 2016] Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L.,
Lemay, A., and Advokaat, N. 2017. gMark: Schema-driven generation of graphs
and queries. IEEE Transactions on Knowledge and Data Engineering 29,
856–869.

• [Gupta et al., 1993] Gupta, A., Mumick, I.S., Subrahmanian, V.S. 1993.
Maintaining Views Incrementally. In Sigmod Rec. 22, 157–166.

• [Reutter et al., 2017] Reutter, J.L., Romero, M., and Vardi, M.Y. 2017.
Regular Queries on Graph Databases. In Theory of Computing Systems 61,
31–83.

3 / 0

Coq Specification: Syntax (Extra)

Variables (V Σ : finType).

Inductive L := � | +.

Inductive egraph := EGraph of {set V * V}.

Inductive lrel := LRel of {ffun Σ * L -> egraph}

Record atom := Atom { syma : Σ; arga : T * T }.

Record lit := Lit { tagl : L; atoml: atom }.

Record cbody := CBody { litb : seq lit }.

Record clause := Clause { headc : T * T; bodyc : seq cbody }.

Inductive program := Program of {ffun Σ -> clause T Σ L}.

4 / 0

Regular Datalog: Semantics (Extra)

Literal Satisfaction

For L , s l(n1, n2), G |= L ⇐⇒ (n1, n2) ∈ G(s, l).

Clause Satisfaction

For C , (t1, t2)← (L1,1 ∧ . . . ∧ L1,n) ∨ . . . ∨ (Lm,1 ∧ . . . ∧ Lm,n),

G |=s L ⇐⇒ ∀η,
∨

i=1..m(
∧

j=1..n G |= η(Li ,j))⇒ G |= η(s(t1, t2)).

Program Satisfaction

For Π , Σ→ {C1, . . . ,Cn}, G |=Σ Π ⇐⇒ ∀ s ∈ Σ,G |=s Π(s).

5 / 0

	Introduction
	Regular Datalog
	Regular Datalog Engine
	Soundness
	Conclusions

