CogHammer: A General-Purpose Automated
Reasoning Tool for Coq

Lukasz Czajka
University of Copenhagen

(joint work with Cezary Kaliszyk, University of Innsbruck)

24 January 2018

http://cl-informatik.uibk.ac.at/cek/coghammer/ 1/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Interactive Proof in Type Theory

- Practical problem

http://cl-informatik.uibk.ac.at/cek/coghammer/ 2/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Interactive Proof in Type Theory

- Practical problem
- large parts of proofs are tedious

http://cl-informatik.uibk.ac.at/cek/coghammer/ 2/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Interactive Proof in Type Theory

- Practical problem
- large parts of proofs are tedious

- Automation for Interactive Proof
- Proof search: intuition, firstorder,

- Decision Procedures: congruence, fourier, ring, omega, SMTCog, ...

http://cl-informatik.uibk.ac.at/cek/coghammer/ 2/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Interactive Proof in Type Theory

- Practical problem
- large parts of proofs are tedious

- Automation for Interactive Proof
- Proof search: intuition, firstorder,

- Decision Procedures: congruence, fourier, ring, omega, SMTCog, ...

- AI/ATP techniques: Hammers
- MizAR for Mizar

- Sledgehammer for Isabelle/HOL
- HOL(y)Hammer for HOL Light and HOL4

- CoqHammer for Coq

http://cl-informatik.uibk.ac.at/cek/coghammer/ 2/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Hammers

- Hammer goal: provide efficient automated reasoning using facts
from a large library.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 3/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Hammers

- Hammer goal: provide efficient automated reasoning using facts
from a large library.

- Strong relevance filtering.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 3/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Hammers

- Hammer goal: provide efficient automated reasoning using facts
from a large library.

- Strong relevance filtering.
- Usable library search “modulo simple reasoning”.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 3/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Hammers

- Hammer goal: provide efficient automated reasoning using facts
from a large library.

- Strong relevance filtering.

- Usable library search “modulo simple reasoning”.
- We may not know the name of the lemma we want to apply.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 3/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Hammers

- Hammer goal: provide efficient automated reasoning using facts
from a large library.

- Strong relevance filtering.

- Usable library search “modulo simple reasoning”.

- We may not know the name of the lemma we want to apply.
- There may be many equivalent formulations of the lemma — which one
is used in the library?

http://cl-informatik.uibk.ac.at/cek/coghammer/ 3/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Hammers

- Hammer goal: provide efficient automated reasoning using facts
from a large library.

- Strong relevance filtering.

- Usable library search “modulo simple reasoning”.

- We may not know the name of the lemma we want to apply.

- There may be many equivalent formulations of the lemma — which one
is used in the library?

- The exact lemma may not exist in the library, but it may “trivially”
follow from a few other lemmas in the library.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 3/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Hammer Overview

Current Goal TPTP
o — VAMPIRE
- - 23

ITP Proof ATP Proof
Proof Assistant Hammer ATP

http://cl-informatik.uibk.ac.at/cek/coghammer/

4/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Hammers

Hammers work in three phases.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 5/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Hammers

Hammers work in three phases.

- Using machine-learning and Al techniques perform
premise-selection: select about a few hundred to 1-2 thousand
lemmas that are likely to be needed in the proof of the conjecture.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 5/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Hammers

Hammers work in three phases.

- Using machine-learning and Al techniques perform
premise-selection: select about a few hundred to 1-2 thousand
lemmas that are likely to be needed in the proof of the conjecture.

- Translate the selected lemmas, together with the conjecture, from
the logic of the ITP to a format accepted by powerful external
automated theorem provers (ATPs) — most commonly untyped
first-order logic with equality.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 5/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Hammers

Hammers work in three phases.

- Using machine-learning and Al techniques perform
premise-selection: select about a few hundred to 1-2 thousand
lemmas that are likely to be needed in the proof of the conjecture.

- Translate the selected lemmas, together with the conjecture, from
the logic of the ITP to a format accepted by powerful external
automated theorem provers (ATPs) — most commonly untyped
first-order logic with equality. Run the ATP(s) on the result of the
translation.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 5/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Hammers

Hammers work in three phases.

- Using machine-learning and Al techniques perform
premise-selection: select about a few hundred to 1-2 thousand
lemmas that are likely to be needed in the proof of the conjecture.

- Translate the selected lemmas, together with the conjecture, from
the logic of the ITP to a format accepted by powerful external
automated theorem provers (ATPs) — most commonly untyped
first-order logic with equality. Run the ATP(s) on the result of the
translation.

- Reprove the conjecture in the logic of the ITB using the information
obtained in the ATP runs.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 5/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Hammers

Hammers work in three phases.

- Using machine-learning and Al techniques perform
premise-selection: select about a few hundred to 1-2 thousand
lemmas that are likely to be needed in the proof of the conjecture.

- Translate the selected lemmas, together with the conjecture, from
the logic of the ITP to a format accepted by powerful external
automated theorem provers (ATPs) — most commonly untyped
first-order logic with equality. Run the ATP(s) on the result of the
translation.

- Reprove the conjecture in the logic of the ITB using the information
obtained in the ATP runs. Typically, a list of (usually a few) lemmas
needed by an ATP to prove the conjecture is obtained from an ATP
run, and we try to reprove the goal from these lemmas.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 5/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Evaluations

Top-level goals:

- HOL(y)Hammer
- Flyspeck text formalization: 47%

- Similar results for HOL4

- Slightly weaker for CakeML

http://cl-informatik.uibk.ac.at/cek/coghammer/

6/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Evaluations

Top-level goals:

- HOL(y)Hammer
- Flyspeck text formalization: 47%

- Similar results for HOL4

- Slightly weaker for CakeML
- Sledgehammer

- Probability theory: 40%

- Term rewriting: 44%

- Java threads: 59%

http://cl-informatik.uibk.ac.at/cek/coghammer/

6/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Evaluations

Top-level goals:

- HOL(y)Hammer
- Flyspeck text formalization: 47%

- Similar results for HOL4

- Slightly weaker for CakeML
- Sledgehammer

- Probability theory: 40%

- Term rewriting: 44%

- Java threads: 59%

- MizAR
- Mizar Mathematical Library: 44%

http://cl-informatik.uibk.ac.at/cek/coghammer/

6/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Evaluations

Top-level goals:

- HOL(y)Hammer
- Flyspeck text formalization: 47%

- Similar results for HOL4

- Slightly weaker for CakeML
- Sledgehammer

- Probability theory: 40%

- Term rewriting: 44%

- Java threads: 59%

- MizAR
- Mizar Mathematical Library: 44%

- CogHammer
- Coq standard library: 40%

http://cl-informatik.uibk.ac.at/cek/coghammer/

6/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

CogHammer demo

examples/imp.v

http://cl-informatik.uibk.ac.at/cek/coghammer/ 7/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

CogHammer: premise selection

- Learning done each time the plugin is invoked
(to include all accessible facts).

http://cl-informatik.uibk.ac.at/cek/coghammer/ 8/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

CogHammer: premise selection

- Learning done each time the plugin is invoked
(to include all accessible facts).

- Two machine-learning filters: k-NN and naive Bayes.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 8/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

CogHammer: premise selection

- Learning done each time the plugin is invoked
(to include all accessible facts).

- Two machine-learning filters: k-NN and naive Bayes.

- Re-uses the HOLyHammer efficient implementation
(also adapted by Sledgehammer).

http://cl-informatik.uibk.ac.at/cek/coghammer/ 8/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Translation: target logic

Target logic: untyped FOL with equality.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 9/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Translation

Three functions &, ¥, and 6.

- & : propositions — FOL formulas
used for CIC, terms of type Prop.

- ¢ : types — guards
used for CIC,, terms of type Type.

- € : all CIC, — FOL terms

http://cl-informatik.uibk.ac.at/cek/coghammer/ 10/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Translation

- The function & encodes propositions as FOL formulas and is used
for terms of Coq having type Prop.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 11/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Translation

- The function & encodes propositions as FOL formulas and is used
for terms of Coq having type Prop.
- If Tkt : Prop then Z(Ilx : t.s) = Fr(t) = Fr ., (5).
- T/ t : Prop then Zr(Ilx : t.s) = Vx.%:(t, x) = Fr ... (5).

http://cl-informatik.uibk.ac.at/cek/coghammer/ 11/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Translation

- The function & encodes propositions as FOL formulas and is used
for terms of Coq having type Prop.
- If Tkt : Prop then Z(Ilx : t.s) = Fr(t) = Fr ., (5).
- T/ t : Prop then Zr(Ilx : t.s) = Vx.%:(t, x) = Fr ... (5).
- The function ¢ encodes types as guards and is used for terms of Coq
which have type Type.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 11/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Translation

- The function & encodes propositions as FOL formulas and is used
for terms of Coq having type Prop.
- If Tkt : Prop then Z(Ilx : t.s) = Fr(t) = Fr ., (5).
- T/ t : Prop then Zr(Ilx : t.s) = Vx.%:(t, x) = Fr ... (5).

- The function ¢ encodes types as guards and is used for terms of Coq
which have type Type.
For instance, for a (closed) type T = Ilx : a.(x) we have

Y(7t,f)=Vx.9(a,x) > 94(B(x), fx)

http://cl-informatik.uibk.ac.at/cek/coghammer/ 11/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Translation

- The function & encodes propositions as FOL formulas and is used
for terms of Coq having type Prop.

- If Tkt : Prop then Z(Ilx : t.s) = Fr(t) = Fr ., (5).
- T/ t : Prop then Zr(Ilx : t.s) = Vx.%:(t, x) = Fr ... (5).

- The function ¢ encodes types as guards and is used for terms of Coq
which have type Type.
For instance, for a (closed) type T = Ilx : a.(x) we have

Y(7t,f)=Vx.9(a,x) > 94(B(x), fx)

- The function ¢ encodes Coq terms as FOL terms.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 11/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Translation

- The function & encodes propositions as FOL formulas and is used
for terms of Coq having type Prop.
- If Tkt : Prop then Z(Ilx : t.s) = Fr(t) = Fr ., (5).
- T/ t : Prop then Zr(Ilx : t.s) = Vx.%:(t, x) = Fr ... (5).

- The function ¢ encodes types as guards and is used for terms of Coq
which have type Type.
For instance, for a (closed) type T = Ilx : a.(x) we have

Y(7t,f)=Vx.9(a,x) > 94(B(x), fx)

- The function ¢ encodes Coq terms as FOL terms.
- 6r(ts) is equal to:

http://cl-informatik.uibk.ac.at/cek/coghammer/ 11/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Translation

- The function & encodes propositions as FOL formulas and is used
for terms of Coq having type Prop.
- If Tkt : Prop then Z(Ilx : t.s) = Fr(t) = Fr ., (5).
- T/ t : Prop then Zr(Ilx : t.s) = Vx.%:(t, x) = Fr ... (5).
- The function ¢ encodes types as guards and is used for terms of Coq
which have type Type.
For instance, for a (closed) type T = Ilx : a.(x) we have

Y(7t,f)=Vx.9(a,x) > 94(B(x), fx)

- The function ¢ encodes Coq terms as FOL terms.
- 6r(ts) is equal to:
- ¢if '+ ts: a: Prop,

http://cl-informatik.uibk.ac.at/cek/coghammer/ 11/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Translation

- The function & encodes propositions as FOL formulas and is used
for terms of Coq having type Prop.
- If Tkt : Prop then Z(Ilx : t.s) = Fr(t) = Fr ., (5).
- T/ t : Prop then Zr(Ilx : t.s) = Vx.%:(t, x) = Fr ... (5).
- The function ¢ encodes types as guards and is used for terms of Coq
which have type Type.
For instance, for a (closed) type T = Ilx : a.(x) we have

Y(7t,f)=Vx.9(a,x) > 94(B(x), fx)

- The function ¢ encodes Coq terms as FOL terms.
- 6r(ts) is equal to:
- ¢if '+ ts: a: Prop,
- 6r(t)ifT'Fs:a:Prop,

http://cl-informatik.uibk.ac.at/cek/coghammer/ 11/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Translation

- The function & encodes propositions as FOL formulas and is used
for terms of Coq having type Prop.
- If Tkt : Prop then Z(Ilx : t.s) = Fr(t) = Fr ., (5).
- T/ t : Prop then Zr(Ilx : t.s) = Vx.%:(t, x) = Fr ... (5).
- The function ¢ encodes types as guards and is used for terms of Coq
which have type Type.
For instance, for a (closed) type T = Ilx : a.(x) we have

Y(7t,f)=Vx.9(a,x) > 94(B(x), fx)

- The function ¢ encodes Coq terms as FOL terms.
- 6r(ts) is equal to:
- ¢if '+ ts: a: Prop,
- 6r(t)ifT'Fs:a:Prop,
- 6r(t)6r(s) otherwise.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 11/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Translation

- The function & encodes propositions as FOL formulas and is used
for terms of Coq having type Prop.
- If Tkt : Prop then Z(Ilx : t.s) = Fr(t) = Fr ., (5).
- T/ t : Prop then Zr(Ilx : t.s) = Vx.%:(t, x) = Fr ... (5).
- The function ¢ encodes types as guards and is used for terms of Coq
which have type Type.
For instance, for a (closed) type T = Ilx : a.(x) we have

Y(7t,f)=Vx.9(a,x) > 94(B(x), fx)

- The function ¢ encodes Coq terms as FOL terms.
- 6r(ts) is equal to:
- ¢if '+ ts: a: Prop,
- 6r(t)ifT'Fs:a:Prop,
- 6r(t)6r(s) otherwise.
- %G.(AX : t.5) = Fy where s does not start with a lambda-abstraction
any more, F is a fresh constant, y = FV(AX : t.s) and
Vy.Zp (VX : T.FyX =s) is a new axiom.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 11/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

ATP invocation

- We use Vampire, E prover, and Z3.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 12/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

ATP invocation

- We use Vampire, E prover, and Z3.

- The provers may be run in parallel with different numbers of
premises and premise selection methods.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 12/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Proof reconstruction

- Use dependencies from a successful ATP run.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 13/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Proof reconstruction

- Use dependencies from a successful ATP run.

- Do automatic proof search using different versions of our tactics
(implemented in Ltac), with a fixed time limit for each.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 13/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Proof reconstruction

- Use dependencies from a successful ATP run.

- Do automatic proof search using different versions of our tactics
(implemented in Ltac), with a fixed time limit for each.

- 85.2% of proofs reconstructed.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 13/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Overall hammer evaluation

All statements from the Coq standard libary

ATP success 50%
- ATPs used: E, Z3, Vampire with 30 seconds time limit

Overall success 40.8%

- 8 threads with different lemma selection, premises, provers,
reconstruction

http://cl-informatik.uibk.ac.at/cek/coghammer/ 14/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Conclusion

- Proof length already close to that of Isabelle/HOL.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 15/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Conclusion

- Proof length already close to that of Isabelle/HOL.
- Improvements needed for dependent types and boolean reflection.

http://cl-informatik.uibk.ac.at/cek/coghammer/ 15/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/

Download

http://cl-informatik.uibk.ac.at/cek/coghammer/

http://cl-informatik.uibk.ac.at/cek/coghammer/ 16/16


http://cl-informatik.uibk.ac.at/cek/coqhammer/
http://cl-informatik.uibk.ac.at/cek/coqhammer/

