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Why Verify Robots?

In summer 2016, Reynald at- Wy,
tended a demonstration of the 2
rescue capabilities of the HRP-2
robot.

AIST open house in Tsukuba
[2016-07-23]
Can you find Reynald?
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Why Verify Robots?

One of the task of the robot was to
walk among debris.

In particular, it started walking a
very narrow path. )
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Why Verify Robots?

One of the task of the robot was to
walk among debris.
In particular, it started walking a
very narrow path.

I
.
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It started walking like this...
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Why Verify Robots?
It started walking like this...

One of the task of the robot was to
walk among debris.

In particular, it started walking a
very narrow path.

I

..but fell after a few steps
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Motivation and Contribution

e There is a need for safer robots
- As of today, even a good robot can unexpectedly fail
- HRP-2 was number 10 among 23 participants
at the Finals of the 2015 DARPA Robotics Challenge
e Our work
- (does not solve any issue with HRP-2 yet)
- provides formal theories of
- 3D geometry
- rigid body transformations
- for describing robot manipulators
- in the Coq proof-assistant [Inria, 1984~]
- using the Mathematical Components library
- https://github.com/affeldt-aist/coq-robot
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https://github.com/affeldt-aist/coq-robot

What is a Robot Manipulator?

e E.g., SCARA (Selective Compliance Assembly Robot Arm)

Mitsubishi RH-S series

- Formalized 3D Geometry for Robot Manipulators - EUTypes COST Meeting, Nijmegen, January 23,2018




What is a Robot Manipulator?

e E.g., SCARA (Selective Compliance Assembly Robot Arm)

Mitsubishi RH-S series Schematic version

- Formalized 3D Geometry for Robot Manipulators - EUTypes COST Meeting, Nijmegen, January 23,2018




What is a Robot Manipulator?

e E.g., SCARA (Selective Compliance Assembly Robot Arm)

Mitsubishi RH-S series Schematic version
<+

e Robot manipulator & Links connected by joints

- Revolute joint <> rotation
- Prismatic joint < translation
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What is a Robot Manipulator?

e E.g., SCARA (Selective Compliance Assembly Robot Arm)

Mitsubishi RH-S series Schematic version

lmk] l|nk2
l|nk3
link 0 94\(1\/‘ link 4

e Robot manipulator & Links connected by joints

- Revolute joint <> rotation
- Prismatic joint < translation

NB: A humanoid robot can be seen as made of robot manipulators
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Why Rigid Body Transformations?

* To describe the relative position of links
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Why Rigid Body Transformations?

* To describe the relative position of links
 For this purpose, frames are attached to links:
Without frames

az
aq —
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Why Rigid Body Transformations?

* To describe the relative position of links
 For this purpose, frames are attached to links:
Without frames With frames

az
aq —
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Why Rigid Body Transformations?

* To describe the relative position of links
 For this purpose, frames are attached to links:

Without frames With frames

a

aj
link 1 ink 2
0 0 — ds
1 link 3 ds
link 0 64W link 4

= Approach: use the MATHEMATICAL COMPONENTS
library [INRIA/MSR, 2007~]
- it contains the most extensive formalized theory on matrices and
linear algebra
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Outline

1. Basic Elements of 3D Geometry

2. Robot Manipulators with Matrices
3D Rotations
Rigid Body Transformations
Example: SCARA

3. Robot Manipulators with Exponential Coordinates
Exponential of skew-symmetric matrices
Screw Motions
Example: SCARA

4. Velocity in Robot Manipulators (WIP)

5. Conclusion
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Basic Elements of 3D Geometry
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Formalization of Angles (CPP2017)

Basicidea:
angle o &
unit complex number e'*
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Formalization of Angles (CPP2017)

Basicidea:
angle o &
unit complex number e'*

e Dependent record:

Recordangle:=Angle{
expi :R[i] (» think of it as the type of complex numbers *);
_:expi|==1}
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Formalization of Angles (CPP2017)

Basicidea:
angle o &
unit complex number e'*

e Dependent record:

Recordangle:=Angle{
expi :R[i] (» think of it as the type of complex numbers *);
_:expi|==1}
e The argument of a complex number defines an angle:

Definitionarg(x:R[i]):angle:=
insubd angle® (x /| x|).
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Formalization of Angles (CPP2017)

Basicidea:
angle o &
unit complex number e'*

e Dependent record:

Recordangle:=Angle{
expi :R[i] (» think of it as the type of complex numbers *);
_:expi|==1}
e The argument of a complex number defines an angle:
Definitionarg(x:R[i]):angle:=
insubd angle® (x /| x|).

o Example: definition of 7t
Definitionpi:=arg(-1).

. &zw - Formalized 3D Geometry for Robot Manip pes COST Meeting, Nijmegen, January 23, 2018




Trigonometric Functions/Relations (CPP2017)

Trigonometric functions
defined using complex numbers
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Trigonometric Functions/Relations (CPP2017)
1

Trigonometric functions
defined using complex numbers

e E.g., cos(x) "% Re (expi «)
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Trigonometric Functions/Relations (CPP2017)
1

Trigonometric functions
defined using complex numbers

e E.g., cos(x) "% Re (expi «)

e E.g.,arcsin(x) £ arg (\/1 — X2+ xi)

mnced arg (Num.sqrt (1 — x"2) +ix x)
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Trigonometric Functions/Relations (CPP2017)

Trigonometric functions
defined using complex numbers

e E.g., cos(x) "% Re (expi «)

e E.g.,arcsin(x) £ arg (\/1 — X2+ xi)
ncgd arg (Num.sqrt (1 — x"2) +ix x)
Standard trigonometric relations recovered easily:

e LemmaacosK x:—1<=x<=1—cos (acos x)=x.

e LemmasinDab:sin(atb)=sinaxcosb+cosaxsinb.
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Formalization of the Cross-product (CPP2017)

k=ixj

The cross-product is used 7
. . A J
to define oriented frames
i
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Formalization of the Cross-product (CPP2017)

k=ixj
The cross-product is used 7
. . A J
to define oriented frames
i

e Let’e_0,’e_1,’e_2 be the canonical vectors
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Formalization of the Cross-product (CPP2017)

k=ixj
The cross-product is used 7
. . A J
to define oriented frames
i

e Let’e_0,’e_1,’e_2 be the canonical vectors
 Pencil-and-paper definition of the cross-product:

- — def 100 , 010/, 00 1],
UXV = |uwuwuwu|’e 04 |uwuwu|’e 1T+ [voumuw|’e 2
Vo i 2 - Vo i V2 - Vo i V2 -
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Formalization of the Cross-product (CPP2017)

k=ixj
The cross-product is used 7
. . A J
to define oriented frames
i

e Let’e_0,’e_1,’e_2 be the canonical vectors
 Pencil-and-paper definition of the cross-product:

- — def 100 |, 010/, 00 1],
UXV = |uwuwuwu|’e 04 |uwuwu|’e 1T+ [voumuw|’e 2
Vo i 2 - Vo i V2 - Vo i V2 -

e Formal definition using MATHEMATICAL COMPONENTS:

Definitioncrossmuluv:=
\row_(k<3)\det (col_mx3’e_kuv).
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Formalization of the Cross-product (WIP)

First formalize Exterior Algebra
https://github.com/CohenCyril/Clifford
(joint work with Maxime Bombar)

e If (eo,...,en_1) is a basis, a basis of the exterior algebra is

(e,-o /\.../\e,-k)

fo<...<iy *

o We embed itin R?"
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Formalization of the Cross-product (WIP)

First formalize Exterior Algebra
https://github.com/CohenCyril/Clifford
(joint work with Maxime Bombar)

e If (eo,...,en_1) is a basis, a basis of the exterior algebra is

(e,-o /\.../\e,-k)

fo<...<iy *

¢ We embed it in R’
e Crossproduct:u x v = @(u/\v)where @ : e; \ e — te, (i)
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Formalization of the Cross-product (WIP)

First formalize Exterior Algebra
https://github.com/CohenCyril/Clifford
(joint work with Maxime Bombar)

e If (eo,...,en_1) is a basis, a basis of the exterior algebra is

(e,-o /\.../\e,-k)

fo<...<iy ®

¢ We embed it in R’
e Crossproduct:u x v = @(u/\v)where @ : e; \ e — te, (i)
e Looks overkill but...

- Factors bi-linearity theorems and triple product.

- Generalizes cross product to higher dimensions.

- Generalizations of exterior algebras are Clifford algebras, also

very useful in robotics [Ma et al., 2016]
- May help the study of differentials.
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https://github.com/CohenCyril/Clifford

Robot Manipulators with Matri-
ces
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Outline

1. Basic Elements of 3D Geometry

2. Robot Manipulators with Matrices
3D Rotations

3. Robot Manipulators with Exponential Coordinates

4. Velocity in Robot Manipulators (WIP)

5. Conclusion
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Formal Definition of a Rotation (CPP2017)

Rotation of angle « around 4 T

Alinear function f and a frame ( % J, k) such that:

j i} B}
f(d) = d
Eoc d f() = cos(a)j+ sin(x)k
f(k) = —sin(a)j+ cos(a)k
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Formal Definition of a Rotation (CPP2017)

Rotation of angle o around i = T

Alinear function f and a frame ( % J, k) such that:

j i} B}
f(d) = d
Eoc d f() = cos(a)j+ sin(x)k
f(k) = —sin(a)j+ cos(a)k

In practice, rotations are represented by rotation matrices
o Matrices M such that MM" = 1and det(M) =1
e Special orthogonal group *SO[R]_3
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Formal Definition of a Rotation (CPP2017)

Rotation of angle o around i = T

Alinear function f and a frame ( % J, k) such that:

j i} B}
f(d) = d
Eoc d f() = cos(a)j+ sin(x)k
f(k) = —sin(a)j+ cos(a)k

In practice, rotations are represented by rotation matrices
o Matrices M such that MM" = 1and det(M) =1
e Special orthogonal group *SO[R]_3

= Equivalent to rotations defined above
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Spectral Theorem (WIP)

https://github.com/CohenCyril/spectral
A shorter option to establish the equivalence.
* Orthogonal matrices (MMT = 1) are normal (MM = M M)
¢ Normal matrices are diagonalizable in an orthonormal basis.
Theoremnormal_spectralP {n}{A:’M[C]_n}
(P:=spectralmxA) (sp:=spectral_diagA):
reflect (A=4invmx P x, diag_mx sp #, P) (A \ s normalmx).

Lemma spectral_unitaryn(A:’M[C]_n):
spectralmx A\isunitary.
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Spectral Theorem (WIP)

https://github.com/CohenCyril/spectral
A shorter option to establish the equivalence.
* Orthogonal matrices (MMT = 1) are normal (MM = M M)
¢ Normal matrices are diagonalizable in an orthonormal basis.
Theoremnormal_spectralP {n}{A:’M[C]_n}
(P:=spectralmxA) (sp:=spectral_diagA):
reflect (A=4invmx P x, diag_mx sp #, P) (A \ s normalmx).

Lemma spectral_unitaryn(A:’M[C]_n):
spectralmx A\isunitary.

« 3-dimensional rotations eigenvalues are 1, e/, e~ (WIP)
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Spectral Theorem (WIP)

https://github.com/CohenCyril/spectral
A shorter option to establish the equivalence.

* Orthogonal matrices (MMT = 1) are normal (MM = M M)
Normal matrices are diagonalizable in an orthonormal basis.

Theoremnormal_spectralP {n}{A:’M[C]_n}
(P:=spectralmxA) (sp:=spectral_diagA):
reflect (A=4invmx P x,, diag_mx sp #, P) (A \1s normalmx).

Lemma spectral_unitaryn(A:’M[C]_n):
spectralmx A\isunitary.

« 3-dimensional rotations eigenvalues are 1, e/, e~ (WIP)
» The axis is a non zero vector from the eigenspace ker(M — 1).
e The angleis « or its negation. (WIP)
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Spectral Theorem (WIP)

https://github.com/CohenCyril/spectral
A shorter option to establish the equivalence.
* Orthogonal matrices (MMT = 1) are normal (MM = M M)
¢ Normal matrices are diagonalizable in an orthonormal basis.
Theoremnormal_spectralP {n}{A:’M[C]_n}
(P:=spectralmxA) (sp:=spectral_diagA):
reflect (A=4invmx P x,, diag_mx sp #, P) (A \1s normalmx).

Lemma spectral_unitaryn(A:’M[C]_n):
spectralmx A\isunitary.
« 3-dimensional rotations eigenvalues are 1, e/, e~ (WIP)
» The axis is a non zero vector from the eigenspace ker(M — 1).
e The angleis « or its negation. (WIP)
NB: Spectral theorem useful for singular value decomposition.
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Outline

1. Basic Elements of 3D Geometry

2. Robot Manipulators with Matrices

Rigid Body Transformations

3. Robot Manipulators with Exponential Coordinates

4. Velocity in Robot Manipulators (WIP)

5. Conclusion
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Definition of a Rigid Body Transformation

A RBT preserves lengths and orientation
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Definition of a Rigid Body Transformation

A RBT preserves lengths and orientation

1 f preserves lengths when
- llp — qll = lIf(p) — f(q)|[ for all points p and g
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Definition of a Rigid Body Transformation

A RBT preserves lengths and orientation

1 f preserves lengths when
- llp —qll = lIf(p) — f(q)l| for all points p and q
2 f preserves orientation when it preserves the cross-product
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Definition of a Rigid Body Transformation

A RBT preserves lengths and orientation

1 f preserves lengths when
- lip—qll = lIf(p) — f(q)]| for all points p and q

2 f preserves orientation when it preserves the cross-product
- f.(d x V) = £, (t) x £, (V) for all vectors i and vV

f. (G x V)
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Definition of a Rigid Body Transformation

A RBT preserves lengths and orientation

1 f preserves lengths when
- lip—qll = lIf(p) — f(q)]| for all points p and q

2 f preserves orientation when it preserves the cross-product
- f.(d x V) = £, (t) x £, (V) for all vectors i and vV

f. (G x V)

def

- (W) =f(q) —f(p) withw =g —p

- Formalized 3D Geometry for Robot Manip pes COST Meeting, Nijmegen, January 23, 2018 18




Definition of a Rigid Body Transformation

A RBT preserves lengths and orientation
1 f preserves lengths when
- llp —qll = lIf(p) — f(q)l| for all points p and q
2 f preserves orientation when it preserves the cross-product
- f.(d x V) = £, (t) x £, (V) for all vectors i and vV

f. (G x V)

- def

- f, (W) Ef(q) —f(p)withw =g —p
= Equivalent to direct isometries [O’Neill, 1966]
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Matrix Representation for RBT

In practice, RBT are given in homogeneous representation
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Matrix Representation for RBT

In practice, RBT are given in homogeneous representation
e 4 x 4-matrices
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Matrix Representation for RBT

In practice, RBT are given in homogeneous representation

e 4 x 4-matrices

o [ 9] with r a rotation matrix and t a translation
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Matrix Representation for RBT

In practice, RBT are given in homogeneous representation

e 4 x 4-matrices
o [ 9] with r a rotation matrix and t a translation

e Example:
a
2
34
Z° Yo @)ﬁ
X
B — 0
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Matrix Representation for RBT

In practice, RBT are given in homogeneous representation

e 4 x 4-matrices
o [ 9] with r a rotation matrix and t a translation

e Example:
a
P4
34
Z° Yo @L)ﬁ
X
B — 0

1) Rotation of 6, around z-axis
2) Translation [a; cos 0; 0 sin 0;; 0]
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Matrix Representation for RBT

In practice, RBT are given in homogeneous representation

e 4 x 4-matrices
o [ 9] with r a rotation matrix and t a translation

e Example:
a
P4
34
Z° Yo @L)ﬁ
X
B — 0

1) Rotation of 6, around z-axis
2) Translation [a; cos 0; 0 sin 0;; 0]
Definition Al0 :=
hom (Rz 0;) (row3 (al * cos 0;) (al * sin©;)0).
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Outline

1. Basic Elements of 3D Geometry

2. Robot Manipulators with Matrices

Example: SCARA
3. Robot Manipulators with Exponential Coordinates
4. Velocity in Robot Manipulators (WIP)

5. Conclusion
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Forward Kinematics for
the SCARA Robot Manipulator a

(o]

link 1.7~

Fwd Kin. = Position and orienta-
tion of the end-effector given the 0
link and joint parameters ]

- Formalized 3D Geometry for Robot Manipulators - EUTypes COST Meeting, Nijmegen, January 23,2018

21



Forward Kinematics for
the SCARA Robot Manipulator a

3 ink2

link1.7

Fwd Kin. = Position and orienta-
tion of the end-effector given the 0
link and joint parameters ]

Just perform the product of the successive RBT’s:

Lemma hom_SCARA_forward:
A43 xA32xA21 xAl0@=homscara_rotscara_trans.
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Forward Kinematics for
the SCARA Robot Manipulator

Fwd Kin. = Position and orienta-
tion of the end-effector given the 0
link and joint parameters ]

Just perform the product of the successive RBT’s:

Lemma hom_SCARA_forward:
A43 xA32xA21xAlO@=homscara_rot scara_trans.
with
Definition scara_rot: =Rz (0;+0,+0,).
Definitionscara_trans:=row3 (a2 *cos (0, +6;)+al*cos6,)
(@a2xsin(0,+6;)+alxsino)
(d4 +d3).
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Robot Manipulators with Expo-
nential Coordinates

&ZW - Formalized 3D Geometry for Robot Manipulators - EUTypes COST Meeting, Nijmegen, January 23, 2018 22




Outline

1. Basic Elements of 3D Geometry

2. Robot Manipulators with Matrices

3. Robot Manipulators with Exponential Coordinates
Exponential of skew-symmetric matrices

4. Velocity in Robot Manipulators (WIP)

5. Conclusion
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Exponential Coordinates
of Rotations

« Alternative representation with less parameters

0 w; —wy
o e \where S(w) = |:Wz 0wy ]
wy —wy 0

- Formalized 3D Geometry for Robot Manipulators - EUTypes COST Meeting, Nijmegen, January 23,2018 24




Exponential Coordinates
of Rotations

« Alternative representation with less parameters
0 w; —wy
o e \where S(w) = | —w;, 0wy
wy —wy 0
- We could use a generic matrix exponential
2 3
M=1+M+ 5+ 5+
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Exponential Coordinates
of Rotations

« Alternative representation with less parameters

0 w; —wy
o e \where S(w) = | —w;, 0wy
wy —wy 0
- We could use a generic matrix exponential
M=t My
- But when M is skew-symmetric, there is closed formula

&S %1 | gin(o)S(w) + (1 cos(a))S(w)?

(Rodrigues’ formula)
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Exponential Coordinates
of Rotations

« Alternative representation with less parameters

0 w; —wy
o e \where S(w) = |:Wz 0wy ]
wy —wy 0

- We could use a generic matrix exponential
2 3
M=1+M+ 5+ 5+
- But when M is skew-symmetric, there is closed formula

&S %1 | gin(o)S(w) + (1 cos(a))S(w)?

(Rodrigues’ formula)

= Equivalent to a rotation of angle « around w
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Outline

1. Basic Elements of 3D Geometry

2. Robot Manipulators with Matrices

3. Robot Manipulators with Exponential Coordinates

Screw Motions

4. Velocity in Robot Manipulators (WIP)

5. Conclusion
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What is a Screw Motion?

e An axis (a point and a vector), an angle, a pitch

w
N pI/
y P = p'll/e
p
X
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What is a Screw Motion?

e Anaxis (a point and a vector), an angle, a pitch

S

p

§
A \\
. \
|

7/@” —p'll/x

z
p

X

» Translation and rotation axes are parallel
- This was not required for homogeneous representations
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What is a Screw Motion?

e Anaxis (a point and a vector), an angle, a pitch

S

p

. "
\\
. \
|
7/@” —p'll/x

Po p

z

X

» Translation and rotation axes are parallel

- This was not required for homogeneous representations
= Are screw motions RBT?

- Yes: Chasles’ theorem (“the first theorem of robotics”)
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Represent Screw Motions

with Exponentials of Twists

_ “[sm) 0]
 To represent screw motions, wecanusee L v 0
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Represent Screw Motions

with Exponentials of Twists

_ “[sm) 0]
 To represent screw motions, wecanusee L v 0

Withv = —w x pg+hw we
recover the screw motion
of the previous slide
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Represent Screw Motions

with Exponentials of Twists

_ “[sm) 0]
 To represent screw motions, wecanusee L v 0

Withv = —w x pg+hw we
recover the screw motion
of the previous slide

» The pair of vectors (v, w) is called a twist
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Represent Screw Motions

with Exponentials of Twists

_ “[sm) 0]
 To represent screw motions, wecanusee L v 0

Withv = —w x po+hw we
recover the screw motion
of the previous slide

» The pair of vectors (v, w) is called a twist

) _ oc[5(w) o]
e Luckily, thereis a closed formulafore L v o
l o ifw=0
av 1

oo S(w) 0
(wxv) (1—e*SM)) ¢ (acv) (w'w) 1 ifw#0

[wl[?
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Outline

1. Basic Elements of 3D Geometry

2. Robot Manipulators with Matrices

3. Robot Manipulators with Exponential Coordinates
Example: SCARA

4. Velocity in Robot Manipulators (WIP)

5. Conclusion
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Fwd Kinematics for SCARA with Screw Motions
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Fwd Kinematics for SCARA with Screw Motions
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Fwd Kinematics for SCARA with Screw Motions

Position and orientation of the end-effector:
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Fwd Kinematics for SCARA with Screw Motions

Position and orientation of the end-effector:
¢ When the joint parameters are fixed at 0:

Definition g0 :=hom1(row3 (al+a2)0d4).
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Fwd Kinematics for SCARA with Screw Motions

Position and orientation of the end-effector:
¢ When the joint parameters are fixed at 0:

Definition g0 :=hom1(row3 (al+a2)0d4).
» With joints with twists t; and parameters d; or 6;

Definition g:=g0 * ‘e$(04, t4) x
‘e$(Rad.angle_of d3, t3) * ‘e$(0,, t2) = ‘e$(04, t1).
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Fwd Kinematics for SCARA with Screw Motions

Position and orientation of the end-effector:
¢ When the joint parameters are fixed at 0:

Definition g0 :=hom1(row3 (al+a2)0d4).
» With joints with twists t; and parameters d; or 6;

Definition g:=g0 * ‘e$(04, t4) x
‘e$(Rad.angle_of d3, t3) * ‘e$(0,, t2) = ‘e$(04, t1).

e Revolute: t; = (—w; x g;, w;); prismatic: t3 = (v3,0)
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Velocity in Robot Manipulators
(WIP)
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Velocity and Jacobian of a Robot

e Ifg = (qo,-...,qk) are the joint parameters,
and P, = (Xn, Yn, Zp, wy,, wy,, wz,) the position and orientation
of the final frame. We should establish a relation P, = J(q) - g.

e Jis called the Jacobian of the robot.

¢ We want to certify a closed algebraic expression for J for our
chains. E.g.

J=5(00) +AS(01)A;" + AcAiS(01)A A, + . ..

¢ We must rely on an analysis library, compatible with
mathematical components.
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Analysis with Mathematical Components (WIP)

e The Coquelicot Library [Boldo et al.] is a good start.
e It does not contain matrices and thus no Jacobian.
» “Halfway” between constructive and classical

We are in the process of re-implementing a classical analysis based on
Coquelicot’s ideas, but compatible with Mathematical Components.

e https://github.com/math-comp/analysis
(Reynald Affeldt, C.C., Damien Rouhling)

e Lemmadiff_locally(x:V)(f:V—W):differentiablexf—
fl\oshiftx=cst(fx)+’d_xf+o_(0:V)1d.

Definition jacobiannm(f:’rV_n—="rV_m)p:=T1inl_mx ('d_p f).
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https://github.com/math-comp/analysis

Conclusion

&ZW - Formalized 3D Geometry for Robot Manipulators - EUTypes COST Meeting, Nijmegen, January 23, 2018 33




Libraries Overview (Merge in progress)

e https://github.com/affeldt-aist/coq-robot:
homogeneous coordinates, cross products, angles, rotations,
RBT, Denavit-Hartenberg, screw motions, quaternions,
exponential of skew-matrices, future work: velocity kinematics

e https://github.com/CohenCyril/spectral:
generalized eigenspaces, Gram-Schmidt, cotrigonalization,
codiagonalization, spectral theorem for normal, unitary and
hermitian matrices, future work: systematic study of quadratic
forms

e https://github.com/CohenCyril/Clifford:
exterior algebra (WIP), future work: Clifford algebras

e https://github.com/math-comp/analysis:
filter based classical topology, continuity, Landau notations,
differential, Jacobian, future work: integration
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Related Work Mostly in 2D

e Collision avoidance algorithm for a vehicle moving in a plane in
Isabelle [Walter et al., SAFECOMP 2010]

¢ Gathering algorithms for autonomous robots and impossibility
results [Auger et al., SSS 2013] [Courtieu et al., IPL 2015, DISC 2016]

e Planar manipulators in HOL-Light [Farooq et al., ICFEM 2013]

» Event-based programming framework in Coq [Anand et al., ITP
2015]

¢ (in 3D) Conformal geometric algebra in HOL-Light [Ma et al.,
Advances in Applied Clifford Algebras 2016]
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Applications?

by showing preservation of invariants

e we could use CoRN ideas to bridge with a computable alternative
[Kaliszyk and O’Connor, CoRR 2008] [Krebbers and Spitters, LMCS 2011]

* using CoqEAL for program refinements [Dénés et al., ITP 2012]
[Cohen et al., CPP 2013]
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Additional Slides
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Denavit-Hartenberg Convention

» Convention for the relative positioning of frames
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Denavit-Hartenberg Convention

» Convention for the relative positioning of frames
- Consecutive frames i andj are such that
1) (o, %) and (0j, Z}) are perpendicular
2) and intersect
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Denavit-Hartenberg Convention

» Convention for the relative positioning of frames
- Consecutive frames i andj are such that
1) (o, %) and (0j, Z}) are perpendicular
2) and intersect

- The corresponding RBT can then be written
th(“)th(a)hTz(d)th(e)
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Denavit-Hartenberg Convention

» Convention for the relative positioning of frames
- Consecutive frames i andj are such that
1) (o, %) and (0j, Z}) are perpendicular
2) and intersect
- The corresponding RBT can then be written
th(“)th(a)hTz(d)th(e)

o Example: parameters for the SCARA robot manipulator

link X a; d i 0 i
twist length offset angle

1 0 [e]] 0 61

2 0 a 0 62

3 0 0 ds 0

4 0 0 ds | 04

pes COST Meeting, Nijmegen, January 23, 2018



Angle-axis Representation of a Rotation

¢ Aeven more direct computation method for the exponential
coordinates:

- a ® arccos (%) "% pa. angle
- unskevv2Sln (M— M) "% Aa.vaxis
(with special cases when the angle is 0 or 1)
e Correctness:
Lemma angle_axis_eskewM:M\1is’SO[R]_3 —
M=‘e*Aa.angle M, normalize (Aa.vaxisM)).
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Exponential of Twists are RBT

Notation: et %" e $(a, t)

— ’e$(a, t) represents some RBT
- the shape of the matrix corresponds to some homogeneous
representation
— Any RBT can be represented by some ’e$(a, t):

Lemma etwist_tis_onto_SEf:f \is’SE3[R]—
existsta, f=‘e$(a, t).

- constructive proof:

a) from f, extract rotation r and translation p
b) aand w are the exponential coordinates of r
) v=|wlPp(L—1Sw)+ (I—1cot(%))Sw)?)

- Formalized 3D Geometry for Robot Mani pes COST Meeting, Nijmegen, January 23, 2018




	Basic Elements of 3D Geometry
	Robot Manipulators with Matrices
	3D Rotations
	Rigid Body Transformations
	Example: SCARA

	Robot Manipulators with Exponential Coordinates
	Exponential of skew-symmetric matrices
	Screw Motions
	Example: SCARA

	Velocity in Robot Manipulators (WIP)
	Conclusion
	Appendix
	Additional Slides


