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Why Verify Robots?
In summer 2016, Reynald at-
tended a demonstration of the
rescue capabilities of the HRP-2
robot.

AIST open house in Tsukuba
[2016-07-23]

Can you find Reynald?
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Why Verify Robots?

One of the task of the robot was to
walk among debris.
In particular, it started walking a
very narrow path.

It started walking like this...

. . .but fell a�er a few steps
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Motivation and Contribution

• There is a need for safer robots
- As of today, even a good robot can unexpectedly fail

- HRP-2 was number 10 among 23 participants
at the Finals of the 2015 DARPA Robotics Challenge

• Our work
- (does not solve any issue with HRP-2 yet)
- provides formal theories of

- 3D geometry
- rigid body transformations

- for describing robot manipulators
- in the Coq proof-assistant [Inria, 1984∼]
- using the Mathematical Components library
- https://github.com/affeldt-aist/coq-robot
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What is a Robot Manipulator?

• E.g., SCARA (Selective Compliance Assembly Robot Arm)

Mitsubishi RH-S series

Schematic version

link 0

link 1 link 2

link 3

link 4

a1

θ1
θ2
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d3
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θ4

• Robot manipulator def= Links connected by joints
- Revolute joint↔ rotation
- Prismatic joint↔ translation

NB: A humanoid robot can be seen as made of robot manipulators
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Why Rigid Body Transformations?

• To describe the relative position of links

• For this purpose, frames are attached to links:

Without frames

link 0
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link 3

link 4
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d4

θ4

With frames

y0
z0

x0

y1
z1

x1
y2z2
x2
y3z3
x3y4z4
x4⇒ Approach: use the MATHEMATICAL COMPONENTS

library [INRIA/MSR, 2007∼]
- it contains the most extensive formalized theory onmatrices and
linear algebra
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Outline

1. Basic Elements of 3D Geometry

2. Robot Manipulators with Matrices
3D Rotations
Rigid Body Transformations
Example: SCARA

3. Robot Manipulators with Exponential Coordinates
Exponential of skew-symmetric matrices
Screw Motions
Example: SCARA

4. Velocity in Robot Manipulators (WIP)

5. Conclusion
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Basic Elements of 3DGeometry



Formalization of Angles (CPP2017)

Basic idea:
angle α↔
unit complex number eiα α

0

eiα

−1 1

−i

i

• Dependent record:
Record angle := Angle {
expi : R[i] (* think of it as the type of complex numbers *) ;
_ : ‘| expi | == 1 }.

• The argument of a complex number defines an angle:
Definition arg (x : R[i]) : angle :=
insubd angle0 (x / ‘| x |).

• Example: definition of π
Definition pi := arg (−1).
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Trigonometric Functions/Relations (CPP2017)

Trigonometric functions
defined using complex numbers

α
cosα0

eiα

−1 1

−1

1

• E.g., cos(α) in Coq→ Re (expi α)

• E.g., arcsin(x) def
= arg

(√
1− x2 + xi

)
in Coq→ arg (Num.sqrt (1− x^2) +i∗ x)

Standard trigonometric relations recovered easily:

• Lemma acosK x :−1 <= x <= 1→cos (acos x) = x.
• Lemma sinD a b : sin (a+b) = sin a ∗ cos b + cos a ∗ sin b.
• . . .
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Formalization of the Cross-product (CPP2017)

The cross-product is used
to define oriented frames

~i

~k =~i ×~j

~jA

• Let ’e_0, ’e_1, ’e_2 be the canonical vectors
• Pencil-and-paper definition of the cross-product:

~u × ~v def
=
∣∣∣ 1 0 0
u0 u1 u2
v0 v1 v2

∣∣∣ ’e_0 +
∣∣∣ 0 1 0
u0 u1 u2
v0 v1 v2

∣∣∣ ’e_1 +
∣∣∣ 0 0 1
u0 u1 u2
v0 v1 v2

∣∣∣ ’e_2

• Formal definition using MATHEMATICAL COMPONENTS:
Definition crossmul u v :=
\row_(k < 3) \det (col_mx3 ’e_k u v).
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Formalization of the Cross-product (WIP)
First formalize Exterior Algebra
https://github.com/CohenCyril/Clifford
(joint work with Maxime Bombar)
• If (e0, . . . , en−1) is a basis, a basis of the exterior algebra is(

ei0 ∧ . . .∧ eik
)
i0<...<ik

.

• We embed it inR2n

• Cross product : u× v = ϕ(u∧ v)whereϕ : ei ∧ ej 7→ ±e2−(i+j)
• Looks overkill but . . .

- Factors bi-linearity theorems and triple product.
- Generalizes cross product to higher dimensions.
- Generalizations of exterior algebras are Cli�ord algebras, also
very useful in robotics [Ma et al., 2016]

- May help the study of di�erentials.
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RobotManipulatorswithMatri-
ces



Outline

1. Basic Elements of 3D Geometry

2. Robot Manipulators with Matrices
3D Rotations
Rigid Body Transformations
Example: SCARA

3. Robot Manipulators with Exponential Coordinates
Exponential of skew-symmetric matrices
Screw Motions
Example: SCARA

4. Velocity in Robot Manipulators (WIP)

5. Conclusion
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Formal Definition of a Rotation (CPP2017)

Rotation of angle α around~u def
=

A linear function f and a frame 〈 ~u
||~u|| ,

~j,~k 〉 such that:

~u

~k

~j

α

f(~u) = ~u
f(~j) = cos(α)~j + sin(α)~k
f(~k) = − sin(α)~j + cos(α)~k

In practice, rotations are represented by rotation matrices
• MatricesM such thatMMT = 1 and det(M) = 1
• Special orthogonal group ’SO[R]_3⇒ Equivalent to rotations defined above
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Spectral Theorem (WIP)
https://github.com/CohenCyril/spectral
A shorter option to establish the equivalence.
• Orthogonal matrices (MMT = 1) are normal (MMT = MTM)
• Normal matrices are diagonalizable in an orthonormal basis.
Theorem normal_spectralP {n} {A : ’M[C]_n}
(P := spectralmx A) (sp := spectral_diag A) :
reflect (A = invmx P ∗m diag_mx sp ∗m P) (A \is normalmx).

Lemma spectral_unitary n (A : ’M[C]_n) :
spectralmx A \is unitary.

• 3-dimensional rotations eigenvalues are 1, eiα, e−iα (WIP)
• The axis is a non zero vector from the eigenspace ker(M− 1).
• The angle is α or its negation. (WIP)

NB: Spectral theorem useful for singular value decomposition.
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Definition of a Rigid Body Transformation
A RBT preserves lengths and orientation

1 f preserves lengths when
- ||p− q|| = ||f(p) − f(q)|| for all points p and q

2 f preserves orientation when it preserves the cross-product
- f∗(~u×~v) = f∗(~u)× f∗(~v) for all vectors~u and~v

~v

~u

~u×~v f f∗(~v)

f∗(~u)

f∗(~u×~v)

- f∗(~w)
def
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Matrix Representation for RBT
In practice, RBT are given in homogeneous representation

• 4× 4-matrices
•
[ r 0
t 1

]
with r a rotation matrix and t a translation

• Example:

y0
z0

x0

y1
z1

x1
θ1

a1

1) Rotation of θ1 around z-axis
2) Translation [a1 cos θ1; a1 sin θ1; 0]

Definition A10 :=
hom (Rz θ1) (row3 (a1 ∗ cos θ1) (a1 ∗ sin θ1) 0).

– Formalized 3D Geometry for Robot Manipulators – EUTypes COST Meeting, Nijmegen, January 23, 2018 19



Matrix Representation for RBT
In practice, RBT are given in homogeneous representation
• 4× 4-matrices

•
[ r 0
t 1

]
with r a rotation matrix and t a translation

• Example:

y0
z0

x0

y1
z1

x1
θ1

a1

1) Rotation of θ1 around z-axis
2) Translation [a1 cos θ1; a1 sin θ1; 0]

Definition A10 :=
hom (Rz θ1) (row3 (a1 ∗ cos θ1) (a1 ∗ sin θ1) 0).

– Formalized 3D Geometry for Robot Manipulators – EUTypes COST Meeting, Nijmegen, January 23, 2018 19



Matrix Representation for RBT
In practice, RBT are given in homogeneous representation
• 4× 4-matrices
•
[ r 0
t 1

]
with r a rotation matrix and t a translation

• Example:

y0
z0

x0

y1
z1

x1
θ1

a1

1) Rotation of θ1 around z-axis
2) Translation [a1 cos θ1; a1 sin θ1; 0]

Definition A10 :=
hom (Rz θ1) (row3 (a1 ∗ cos θ1) (a1 ∗ sin θ1) 0).

– Formalized 3D Geometry for Robot Manipulators – EUTypes COST Meeting, Nijmegen, January 23, 2018 19



Matrix Representation for RBT
In practice, RBT are given in homogeneous representation
• 4× 4-matrices
•
[ r 0
t 1

]
with r a rotation matrix and t a translation

• Example:

y0
z0

x0

y1
z1

x1
θ1

a1

1) Rotation of θ1 around z-axis
2) Translation [a1 cos θ1; a1 sin θ1; 0]

Definition A10 :=
hom (Rz θ1) (row3 (a1 ∗ cos θ1) (a1 ∗ sin θ1) 0).

– Formalized 3D Geometry for Robot Manipulators – EUTypes COST Meeting, Nijmegen, January 23, 2018 19



Matrix Representation for RBT
In practice, RBT are given in homogeneous representation
• 4× 4-matrices
•
[ r 0
t 1

]
with r a rotation matrix and t a translation

• Example:

y0
z0

x0

y1
z1

x1
θ1

a1

1) Rotation of θ1 around z-axis
2) Translation [a1 cos θ1; a1 sin θ1; 0]

Definition A10 :=
hom (Rz θ1) (row3 (a1 ∗ cos θ1) (a1 ∗ sin θ1) 0).

– Formalized 3D Geometry for Robot Manipulators – EUTypes COST Meeting, Nijmegen, January 23, 2018 19



Matrix Representation for RBT
In practice, RBT are given in homogeneous representation
• 4× 4-matrices
•
[ r 0
t 1

]
with r a rotation matrix and t a translation

• Example:

y0
z0

x0

y1
z1

x1
θ1

a1

1) Rotation of θ1 around z-axis
2) Translation [a1 cos θ1; a1 sin θ1; 0]

Definition A10 :=
hom (Rz θ1) (row3 (a1 ∗ cos θ1) (a1 ∗ sin θ1) 0).

– Formalized 3D Geometry for Robot Manipulators – EUTypes COST Meeting, Nijmegen, January 23, 2018 19



Outline

1. Basic Elements of 3D Geometry

2. Robot Manipulators with Matrices
3D Rotations
Rigid Body Transformations
Example: SCARA

3. Robot Manipulators with Exponential Coordinates
Exponential of skew-symmetric matrices
Screw Motions
Example: SCARA

4. Velocity in Robot Manipulators (WIP)

5. Conclusion

– Formalized 3D Geometry for Robot Manipulators – EUTypes COST Meeting, Nijmegen, January 23, 2018 20



Forward Kinematics for
the SCARA Robot Manipulator

Fwd Kin. = Position and orienta-
tion of the end-e�ector given the
link and joint parameters

link 0

link 1
link 2

link 3

link 4

a1

θ1
θ2

a2

d3
d4

θ4

Just perform the product of the successive RBT’s:
Lemma hom_SCARA_forward :
A43 ∗ A32 ∗ A21 ∗ A10 = hom scara_rot scara_trans.

with
Definition scara_rot := Rz (θ1 + θ2+ θ4).
Definition scara_trans := row3 (a2 ∗ cos (θ2 + θ1) + a1 ∗ cos θ1)

(a2 ∗ sin (θ2 + θ1) + a1 ∗ sin θ1)
(d4 + d3).
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3
RobotManipulatorswith Expo-
nential Coordinates
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Exponential Coordinates
of Rotations

• Alternative representation with less parameters

• eαS(w) where S(w) =
[

0 wz −wy
−wz 0 wx
wy −wx 0

]

- We could use a generic matrix exponential
eM = 1+ M+ M2

2! +
M3
3! + · · ·

- But whenM is skew-symmetric, there is closed formula

eαS(w) def
= 1+ sin(α)S(w) + (1− cos(α))S(w)2

(Rodrigues’ formula)

⇒ Equivalent to a rotation of angle α around ~w
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What is a ScrewMotion?

• An axis (a point and a vector), an angle, a pitch

x

z

y

~w

p0

p

p ′
||p ′′ − p ′||/α

p ′′α

• Translation and rotation axes are parallel
- This was not required for homogeneous representations⇒ Are screwmotions RBT?
- Yes: Chasles’ theorem (“the first theorem of robotics”)
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Represent ScrewMotions
with Exponentials of Twists

• To represent screwmotions, we can use eα
[
S(w) 0
v 0

]

With v = −w×p0+hwwe
recover the screw motion
of the previous slide

~w

p0

p

p ′ h

p ′′α

• The pair of vectors (v,w) is called a twist

• Luckily, there is a closed formula for eα
[
S(w) 0
v 0

]


[
I 0
α v 1

]
if w = 0[

eα S(w) 0
(w×v)(1−eα S(w))+(α v)(wTw)

||w||2 1

]
if w 6= 0
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Fwd Kinematics for SCARAwith ScrewMotions

link 0

link 1
link 2

link 3

link 4

a1

θ1
θ2

a2

d3
d4

θ4

q1 q2 q4

w1 w2 w4=v3

Position and orientation of the end-e�ector:
• When the joint parameters are fixed at 0:
Definition g0 := hom 1 (row3 (a1 + a2) 0 d4).

• With joints with twists ti and parameters di or θi
Definition g := g0 ∗ ‘e$(θ4, t4) ∗
‘e$(Rad.angle_of d3, t3) ∗ ‘e$(θ2, t2) ∗ ‘e$(θ1, t1).

• Revolute: ti = (−wi × qi,wi); prismatic: t3 = (v3, 0)
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4
Velocity in RobotManipulators
(WIP)



Velocity and Jacobian of a Robot

• If q = (q0, . . . , qk) are the joint parameters,
and Pn = (Xn, Yn, Zn,ωXn ,ωYn ,ωZn) the position and orientation
of the final frame. We should establish a relation Ṗn = J(q) · q̇.

• J is called the Jacobian of the robot.
• Wewant to certify a closed algebraic expression for J for our
chains. E.g.

J = S(θ0) + A0S(θ1)A−10 + A0A1S(θ1)A−11 A
−1
0 + . . .

• Wemust rely on an analysis library, compatible with
mathematical components.
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Analysis with Mathematical Components (WIP)

• The Coquelicot Library [Boldo et al.] is a good start.
• It does not contain matrices and thus no Jacobian.
• “Halfway” between constructive and classical

We are in the process of re-implementing a classical analysis based on
Coquelicot’s ideas, but compatible with Mathematical Components.

• https://github.com/math-comp/analysis
(Reynald A�eldt, C.C., Damien Rouhling)

• Lemma diff_locally (x : V) (f : V→W) : differentiable x f→
f \o shift x = cst (f x) + ’d_x f +o_(0 : V) id.

Definition jacobian n m (f : ’rV_n→’rV_m) p := lin1_mx (’d_p f).
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Libraries Overview (Merge in progress)
• https://github.com/affeldt-aist/coq-robot:
homogeneous coordinates, cross products, angles, rotations,
RBT, Denavit-Hartenberg, screwmotions, quaternions,
exponential of skew-matrices, future work: velocity kinematics

• https://github.com/CohenCyril/spectral:
generalized eigenspaces, Gram-Schmidt, cotrigonalization,
codiagonalization, spectral theorem for normal, unitary and
hermitian matrices, future work: systematic study of quadratic
forms

• https://github.com/CohenCyril/Clifford:
exterior algebra (WIP), future work: Cli�ord algebras

• https://github.com/math-comp/analysis:
filter based classical topology, continuity, Landau notations,
di�erential, Jacobian, future work: integration
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RelatedWork Mostly in 2D

• Collision avoidance algorithm for a vehicle moving in a plane in
Isabelle [Walter et al., SAFECOMP 2010]

• Gathering algorithms for autonomous robots and impossibility
results [Auger et al., SSS 2013] [Courtieu et al., IPL 2015, DISC 2016]

• Planar manipulators in HOL-Light [Farooq et al., ICFEM 2013]
• Event-based programming framework in Coq [Anand et al., ITP
2015]

• (in 3D) Conformal geometric algebra in HOL-Light [Ma et al.,
Advances in Applied Cli�ord Algebras 2016]
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Applications?

• by showing preservation of invariants
• we could use CoRN ideas to bridge with a computable alternative
[Kaliszyk and O’Connor, CoRR 2008] [Krebbers and Spitters, LMCS 2011]

• using CoqEAL for program refinements [Dénès et al., ITP 2012]
[Cohen et al., CPP 2013]
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Denavit-Hartenberg Convention

• Convention for the relative positioning of frames

- Consecutive frames i and j are such that
1) (oj, ~xj) and (oi,~zi) are perpendicular
2) and intersect

- The corresponding RBT can then be written
hRx(α)hTx(a)hTz(d)hRz(θ)

• Example: parameters for the SCARA robot manipulator

link 0

link 1
link 2

link 3

link 4

a1

θ1
θ2

a2

d3
d4

θ4

link αi ai di θi
twist length o�set angle

1 0 a1 0 θ1
2 0 a2 0 θ2
3 0 0 d3 0
4 0 0 d4 θ4
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Angle-axis Representation of a Rotation

• A evenmore direct computation method for the exponential
coordinates:

- a def
= arccos

(
tr(M)−1

2

)
in Coq→ Aa.angle

- ~w def
= unskew 1

2 sin(a) (M− MT) in Coq→ Aa.vaxis
(with special cases when the angle is 0 or π)

• Correctness:

Lemma angle_axis_eskew M : M \is ’SO[R]_3→
M = ‘e^(Aa.angle M, normalize (Aa.vaxis M)).
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Exponential of Twists are RBT

Notation: ea t in Coq→ ‘e$(a, t)→ ’e$(a, t) represents some RBT
- the shape of the matrix corresponds to some homogeneous
representation← Any RBT can be represented by some ’e$(a, t):

Lemma etwist_is_onto_SE f : f \is ’SE3[R]→
exists t a, f = ‘e$(a, t).

- constructive proof:
a) from f , extract rotation r and translation p
b) a andw are the exponential coordinates of r
c) v = ||w||2p

( 1
a −

1
2S(w) +

( 1
a −

1
2 cot

( a
2

))
S(w)2

)
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