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A First Order Reformulation of Polymorphism

1 We introduce a simply typed λ-calculus, system N
2 Our goal is representing in N all well-founded trees and

polymorphic maps on them which are definable in system
F

3 The main feature of N is the possibility of extending at
run-time the domain of a recursively defined map

4 Reduction of N are:
algebraic reductions
reductions for primitive recursion on trees
reductions for adding one constructor to a recursive
definition
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This is an ongoing work!

The result we already have about system N are:
1 normalization (with an intuitionistic proof)
2 all trees denoted by some term t in some data type D of

system N are well-founded.
3 system N defines a Infinitary Proof System for second

order intuitionistic arithmetic

The results we are checking is:

1 equivalence between system N and polymorphism
2 There is a fully-abstract model of system N
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Plan of the Talk

§1. Types of N ⇐=⇐=⇐=⇐=⇐=

§2. Recursion in N

§3. Terms of N

§4. Semantics for Expandable Recursion

§5. Conclusions
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§1. Types of system N

1 Let (D1, . . . ,Dn) be the set of well-founded trees whose
constructors have index sets among D1, . . . ,Dn.

2 In Martin-Lof notation [1], (D1, . . . ,Dn) is the W -type
W (i : {1, . . . ,n})Di .

3 The set Data of data types of N is the smallest set such
that: if D1, . . . ,Dn ∈ D then (D1, . . . ,Dn) ∈ D.

4 Data includes the data types: ∅, Unit, Bool, Nat, finite
binary trees, well-founded at most countable trees, and
many more.

5 The set Tp of types of N is inductively defined by
T ::= D|T × T |T → T for any data type D ∈ Data.
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The general pattern for a Tree

D = (D′,D′′,D′′′) is the set of well-founded trees whose nodes
have index set D′ or D′′ or D′′′. A tree in D is made of:

1 constructors c′, c′′, c′′′ of index sets D′,D′′,D′′′
2 index maps f ,g,h of type D′ → D,D′′ → D,D′′′ → D
3 indexes y , z : D′, t ,u : D′′, v ,w : D′′′

Assume that f (y), f (y) have values c′′(g), c′′′(h). Then
x = c′(f ) : D denotes the tree:

x = c′(f )

f (y) = c′′(g)

g(t)

t : D′′

. . . g(u)

u : D′′

y : D′

. . . f (z) = c′′′(h)

h(v)

v : D′′′

. . . h(w)

w : D′′′

z : D′
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Road Map: §2

§1. Types of N

§2. Recursion in N ⇐=⇐=⇐=⇐=⇐=

§3. Terms of N

§4. Semantics for Expandable Recursion

§5. Conclusions
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§2. Recursion in N
1 Informally, a primitive recursion of h : D → A runs as

follows. Assume that D has a constructor ci with argument
list d1, . . . ,dn, . . .. We first apply h to each d1, . . . ,dn, . . .,
obtaining h(d1), . . . ,h(dn), . . . : A, then we define

h(ci(d1, . . . ,dn, . . .)) = ri(h(d1), . . . ,h(dn), . . .)

The constructor ci disappear.

2 In any D ∈ Data, the list d1, . . . ,dn, . . . of arguments of ci is
expressed in N by an index map f : Di → D such that
f (e1) = d1, . . . , f (en) = dn, . . . for some e1, . . . ,en, . . . : Di .

3 Thus, instead of forming h(d1), . . . ,h(dn), . . . : A, we form
h◦f : Di → A, an index map for h(d1) = h(f (e1)), . . .,
h(dn) = h(f (en)), . . . : A. Then we define in N :

h(ci(f)) = ri(h◦f)
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Definition of Extendable Recursion

1 Extendable recursion on D in system N defines a map
h : D → A using one clause ri for each Di , and a single
extra clause rn : A→ A, dealing with all possible
extensions of the data type D.

2 If t ≡ ci(f), as usual we set

h(t) = ri(h◦f)

3 The clause rn is used on trees t ≡ future(f) : D built by
some new constructor future. We assume that h : D → A
is already defined on f (e) : D for all e : Di , we move the
recursive call to h to the children of t , forming
future(h◦f ) : A, then we apply rn obtaining

h(t) = rn(future(h◦f))

The constructor future does not disappear.
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Recursion with Extendable Domain in N

In order to extend the domain of a recursive map at run-time,
our first step is to introduce an operation extending a data
type.

1 We define an operation (.)@E adding one index set
E ∈ Data to a data type D = (D0, . . . ,Dn−1):
D@E = (D0, . . . ,Dn−1,E) ∈ Data.

2 D@E has one tree constructor cn : (E → D@E)→ D@E
more than D.

3 (.)@D is extended pointwise and componentwise to all
types in Tp by:

(A× B)@E ≡ A@E × B@E ∈ Tp
(A→ B)@E ≡ A→ B@E ∈ Tp.

4 We call the type A@E an extension of the type A.
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Future constructors

In order to extend the domain of a recursive map at run-time,
our second step is to introduce constants
futurem,E ,D : (E → D)→ D we call future constructors.

1 If D = (D0, . . . ,Dn−1), then futurem,E ,D represents in D a
constructor cn we may to D in a possible extension D@E =
(D0, . . . ,Dn−1,E).

2 We add a unary term operator Forthm,E , executing a
possible extension of D with E .

3 Forthm,E replaces futurem,E ,D with cn:

Forthm,E .futurem,E ,D(f ) = cn(Forthm,E (f ))

4 futurem,E ,D, Forthm,E are extended to all types point-wise
and component-wise.
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An example: one uniform extension of negation

1 Let Bool = {0,1}. Bool with future constructors is a set of
trees whose leaves are booleans.

2 Let ¬(0) = 1, ¬(1) = 0. We uniformly extend ¬ to any
future constructor of Bool with the clause
¬(future(f )) = future(¬◦f ).

3 The result is a map negating all leaves of a tree.

x ≡ future(id)

id(0) ≡ 0

0 : Bool

id(1) ≡ 1

1 : Bool

 ¬(x) ≡ future(¬◦id)

¬(id(0)) ≡ 1

0 : Bool

¬(id(1)) ≡ 0

1 : Bool
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§3. Terms of N

1 Terms of N of type A are defined w.r.t. a list
Γ ≡ E0, . . . ,Em−1 of data types, denoting possible
extensions of A.

2 Terms of N include all algebraic combinators, pairing,
projections, tree constructors, future constructors
future : (E → A)→ A for E ∈ Γ, uniform application
u : D, (D → D)→ D and for each D = (D0, . . . ,Dn−1) a
constant r ≡ rD,A denoting recursion on trees of D with
result in A.

3 r has one recursive clause ri : (Di → A)→ A for each index
set Di , and one extra clause rn : A→ A, dealing with
extensions of A.

4 Terms are closed under application, and under the unary
operator Forthm,E , which removes the type E in position m
from a context.

5 We write Γ ` t : A for “t : A in the context Γ”.
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Typing rules of N

Definition (Terms of N )

Let n,m ∈ Nat, i < n, j < m, D = (D0, . . . ,Dn−1),E ∈ Data,
A,B ∈ Tp, and Γ = E0, . . . ,Em−1 any context :

1 Γ ` C : A. If C(~x) = α[~x ] is a combinator of type A
2 Γ `< , >: A,B → A1 × A2 and Γ ` πi : A1 × A2 → Ai

3 (constructors) Γ ` consi,D : (Di → D)→ D
4 If Γ ` t : A→ B and Γ ` u : A, then Γ ` t(u) : B.

5 (future constructors) Γ ` futurej,Ej ,A : (Ej → A)→ A
6 (uniform application) Γ ` uD : D, (D → D)→ D
7 (recursion) Γ ` rD,A : ~R,D → A, with Ri = (Di → A)→ A

for all i < n, and Rn = (A→ A)

8 (Forth) If Γ,E ,∆ ` t : A, then Γ,∆ ` Forthm,E .t : A@E

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N



Typing rules of N

Definition (Terms of N )

Let n,m ∈ Nat, i < n, j < m, D = (D0, . . . ,Dn−1),E ∈ Data,
A,B ∈ Tp, and Γ = E0, . . . ,Em−1 any context :

1 Γ ` C : A. If C(~x) = α[~x ] is a combinator of type A
2 Γ `< , >: A,B → A1 × A2 and Γ ` πi : A1 × A2 → Ai

3 (constructors) Γ ` consi,D : (Di → D)→ D
4 If Γ ` t : A→ B and Γ ` u : A, then Γ ` t(u) : B.

5 (future constructors) Γ ` futurej,Ej ,A : (Ej → A)→ A
6 (uniform application) Γ ` uD : D, (D → D)→ D
7 (recursion) Γ ` rD,A : ~R,D → A, with Ri = (Di → A)→ A

for all i < n, and Rn = (A→ A)

8 (Forth) If Γ,E ,∆ ` t : A, then Γ,∆ ` Forthm,E .t : A@E

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N



Definition (Reductions on u, r for N )
1 Let c ≡ futurei,E ,D,consi,D and g : D → D and c(f ) : D.

1 u(c(f ))(g) c(g◦f ) : B
2 If d e : D then u(d)(g) u(e)(g)

2 Assume D = (D0, . . . ,Dn−1), ~r = r0, . . . , rn.
1 If d ≡ c(f ) and c ≡ consi then r~rd ri (r(~r)◦f )
2 If d ≡ c(f ) and c ≡ future then r~rd rn(c(r(~r)◦f ))
3 If d e then r~rd r~re

The remaining reductions for N are given in Appendix.
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§4. Semantics for Expandable Recursion

In order to define a model of system N we face the following
vicious cycle.

1 The definition of a term E ` t : D may include a future
constructor futureE of index set E .

2 futureE has type : (E → D)→ D, and has domain all
maps E → D.

3 If E = D, defining these maps requires to define D before
completing the definition of any t : D.

4 Thus, the definition of futureE is not stratified.
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Candidates and Approximated Constructors

Let E ∈ Data, and A be any model of N , and EA be the
interpretation of the type E in A, and X ⊆ EA.

1 We call X a candidate for EA.
2 In the models of N we add constants jX : (X → D)→ D.
3 We call jX an approximation of the future constructor

futureE : (E → D)→ D.

4 The branching of jX (f ) is a restriction of the branching of
futureE (f ).

5 The definition of jX is stratified, therefore if we may
interpret futureE = jX we would be done.

Unfortunately . . . (see next slide)
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A second vicious cycle

1 Unfortunately, we cannot have futureE = jX in A.
2 Indeed, if we choose X ⊆ EA and we add the new constant
jX to A, then we may define new terms e ∈ EA from them.

3 e is defined after X , thus we may have e 6∈ X , hence
X 6= E and futureE 6= jX .

4 If we try to force X = EA in A, we find a vicious cycle
similar to the vicious cycle in the definition of constructor.

5 This second vicious cycle, however, is easier to break.
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Breaking the vicious cycle

1 For any model A there is a model AE ⊃ A including the
approximated constructor jEA

.
2 N cannot distinguish between futureE and jEA

:
thus, the behavior of futureE in A may be described from
the behavior of jEA

in AE , without any vicious cycle.

3 By exploiting this idea we may adapt Tait’s notion of
reducibility ([3]) to system N .

4 We express Tait’s reducibility w.r.t. a countable family of
models of N , closed under the operation A 7→ AE .

5 This proof cannot be expressed in a second order
arithmetic, unless we bound the number of nesting in a
data type and in a type.
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§5: Conclusions

The main feature of N is: the domain of a map of N is
extendable at run-time, yet all maps are total.

Theorem (Totality and Expressive Power of N )
1 All terms of N normalize
2 All trees denoted by some term t : D ∈ Data of system N

are well-founded.
3 (Expressive Power) We may define in N an Infinitary

Proof System for second order intuitionistic arithmetic HA2
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Summary of the Talk

1 We defined a simply typed λ-calculus N in which
primitive recursive definitions on trees may be extended to
a larger domain at run-time.

2 System N is defined in term of concrete tree operations
and aims to be equivalent to polymorphism.

3 What we proved: System N has the usual properties of
Subject Reduction, Confluence and Normalization, and
defines a Infinitary Proof System for Second Order
Arithmetic.

4 What we are checking: whether well-founded trees and
the definable maps on them are the same in system N and
system F , and whether N defines a denotation system for
ordinals of second order analysis.
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A research report about system N may be found at:

www.di.unito.it/˜stefano/
SistemaN-definizioni-14-Luglio-2017.pdf
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A Century of Constructive Reasoning . . .

Figure: Hilbert Constructivization Conjecture (Courtesy from
Goettingen State and University Library, Germany. Thanks to
Benedikt Ahrens for translating).

Probably the first version (around 1917) of the following
conjecture by Hilbert:

”Prove the following theorem: When a proof of existence
has been concluded in mathematics, then also the

decision (in a finite number of steps, as one says) is
always possible. ”
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Appendix: the complete set of reductions for N

Definition (Algebraic Reductions for N )
1 Let C(~x) = α[~x ] be any combinator.

1 C(~t) α[~t/~x ].
2 πi (< a1,a2 >) ai for i = 1,2
3 If a b then πi (a) πi (b).
4 If f g then fa ga

2 Let c ≡ futurei,E and P be the combinator postponing an
application, defined by P(x , y) = y(x)

1 c(f )(e) c(Pe◦f )
2 πi (c(f )) c(πi◦f ) for i = 1,2
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Definition (Reductions on u, r for N )
1 Let c ≡ futurei,E ,D,consi,D and g : D → D and c(f ) : D.

1 u(c(f ))(g) c(g◦f ) : B
2 If d e : D then u(d)(g) u(e)(g)

2 Assume D = (D0, . . . ,Dn−1), ~r = r0, . . . , rn.
1 If d ≡ c(f ) and c ≡ consi then r~rd ri (r(~r)◦f )
2 If d ≡ c(f ) and c ≡ future then r~rd rn(c(r(~r)◦f ))
3 If d e then r~rd r~re
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1 Forth upgrades a term from the context Γ,E ,∆ to the
context Γ,∆, executing the extension of index set E .

2 Forth requires the operation ai,E of context lifting (defined
in the next slide).

Definition (Reductions for Forth)

Assume D = (D0, . . . ,Dn−1).

1 (up-grading) Forth.futurei,E ,D(f ) cn,D@E(Forth.f )

2 Forth.futurej+1,E ,D(f ) futurej,E ,D@E (Forth.f ) for j ≥ i
3 Forth.c(f ) c(Forth.f ) for any other (future) constructor
4 If d : D ∈ Data and d e : D then Forthd Forthe.
5 (Forth.f )(a) Forth.f (ai,E )

6 πi(Forth.a) Forth.πi(a)) for i = 1,2.
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Context Lifting t i ,E

1 Context Lifting downgrades a term from the context Γ,∆ to
the context Γ,E ,∆, adding the extension of index set E to
the list of future extensions.

2 Context lifting adds 1 to the subscripts of future
constructors with index in ∆.

Definition (The term t i,E )
Assume Γ ` t : A is a term of N , c is any constant. We define
t i,E by induction on t .

1 (down-grading) (futurej,F )i,E ≡ futurej+1,F for all j ≥ i
2 c i,E ≡ c in all other cases.
3 Forthj,F (u)i,E ≡ Forthj+1,F (ui,E ) for all j ≥ i .
4 Forthj,F (u)i,E ≡ Forthj,F (ui+1,E ) in all other cases.
5 t(u)i,E ≡ t i,E (ui,E )
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