The Simply Typed Lambda Calculus \mathcal{N} EUTypes Meeting in Nijmegen

S. Berardi (sp.), U. de’ Liguoro

Torino University, Italy

January 23, 2018

A First Order Reformulation of Polymorphism

(1) We introduce a simply typed λ-calculus, system \mathcal{N}
(2) Our goal is representing in \mathcal{N} all well-founded trees and polymorphic maps on them which are definable in system \mathcal{F}
(3) The main feature of \mathcal{N} is the possibility of extending at run-time the domain of a recursively defined map

A First Order Reformulation of Polymorphism

(1) We introduce a simply typed λ-calculus, system \mathcal{N}
(2) Our goal is representing in \mathcal{N} all well-founded trees and polymorphic maps on them which are definable in system \mathcal{F}
(3) The main feature of \mathcal{N} is the possibility of extending at run-time the domain of a recursively defined map
(1) Reduction of \mathcal{N} are:

- algebraic reductions
- reductions for primitive recursion on trees
- reductions for adding one constructor to a recursive definition

This is an ongoing work!

The result we already have about system \mathcal{N} are:
(1) normalization (with an intuitionistic proof)
(2) all trees denoted by some term t in some data type D of system \mathcal{N} are well-founded.
(3) system \mathcal{N} defines a Infinitary Proof System for second order intuitionistic arithmetic

This is an ongoing work!

The result we already have about system \mathcal{N} are:
(1) normalization (with an intuitionistic proof)
(2) all trees denoted by some term t in some data type D of system \mathcal{N} are well-founded.
(3) system \mathcal{N} defines a Infinitary Proof System for second order intuitionistic arithmetic

The results we are checking is:
(1) equivalence between system \mathcal{N} and polymorphism
(2) There is a fully-abstract model of system \mathcal{N}

- §1. Types of \mathcal{N}
- §2. Recursion in \mathcal{N}
- §3. Terms of \mathcal{N}
- §4. Semantics for Expandable Recursion
- §5. Conclusions

§1. Types of system \mathcal{N}

(1) Let $\left(D_{1}, \ldots, D_{n}\right)$ be the set of well-founded trees whose constructors have index sets among D_{1}, \ldots, D_{n}.
(2) In Martin-Lof notation [1], $\left(D_{1}, \ldots, D_{n}\right)$ is the W-type $W(i:\{1, \ldots, n\}) D_{i}$.
(1) Let $\left(D_{1}, \ldots, D_{n}\right)$ be the set of well-founded trees whose constructors have index sets among D_{1}, \ldots, D_{n}.
(2) In Martin-Lof notation [1], $\left(D_{1}, \ldots, D_{n}\right)$ is the W-type $W(i:\{1, \ldots, n\}) D_{i}$.
(3) The set Data of data types of \mathcal{N} is the smallest set such that: if $D_{1}, \ldots, D_{n} \in \mathcal{D}$ then $\left(D_{1}, \ldots, D_{n}\right) \in \mathcal{D}$.
(4) Data includes the data types: \emptyset, Unit, Bool, Nat, finite binary trees, well-founded at most countable trees, and many more.
(1) Let $\left(D_{1}, \ldots, D_{n}\right)$ be the set of well-founded trees whose constructors have index sets among D_{1}, \ldots, D_{n}.
(2) In Martin-Lof notation [1], $\left(D_{1}, \ldots, D_{n}\right)$ is the W-type $W(i:\{1, \ldots, n\}) D_{i}$.
(3) The set Data of data types of \mathcal{N} is the smallest set such that: if $D_{1}, \ldots, D_{n} \in \mathcal{D}$ then $\left(D_{1}, \ldots, D_{n}\right) \in \mathcal{D}$.
(4) Data includes the data types: \emptyset, Unit, Bool, Nat, finite binary trees, well-founded at most countable trees, and many more.
(5) The set Tp of types of \mathcal{N} is inductively defined by $T::=D|T \times T| T \rightarrow T$ for any data type $D \in$ Data.

The general pattern for a Tree

$D=\left(D^{\prime}, D^{\prime \prime}, D^{\prime \prime \prime}\right)$ is the set of well-founded trees whose nodes have index set D^{\prime} or $D^{\prime \prime}$ or $D^{\prime \prime \prime}$. A tree in D is made of:
© constructors $c^{\prime}, c^{\prime \prime}, c^{\prime \prime \prime}$ of index sets $D^{\prime}, D^{\prime \prime}, D^{\prime \prime \prime}$
(2) index maps f, g, h of type $D^{\prime} \rightarrow D, D^{\prime \prime} \rightarrow D, D^{\prime \prime \prime} \rightarrow D$
(3) indexes $y, z: D^{\prime}, t, u: D^{\prime \prime}, v, w: D^{\prime \prime \prime}$

Assume that $f(y), f(y)$ have values $c^{\prime \prime}(g), c^{\prime \prime \prime}(h)$. Then $x=\mathbf{c}^{\prime}(f): D$ denotes the tree:

The general pattern for a Tree

$D=\left(D^{\prime}, D^{\prime \prime}, D^{\prime \prime \prime}\right)$ is the set of well-founded trees whose nodes have index set D^{\prime} or $D^{\prime \prime}$ or $D^{\prime \prime \prime}$. A tree in D is made of:
© constructors $c^{\prime}, c^{\prime \prime}, c^{\prime \prime \prime}$ of index sets $D^{\prime}, D^{\prime \prime}, D^{\prime \prime \prime}$
(2) index maps f, g, h of type $D^{\prime} \rightarrow D, D^{\prime \prime} \rightarrow D, D^{\prime \prime \prime} \rightarrow D$
(3) indexes $y, z: D^{\prime}, t, u: D^{\prime \prime}, v, w: D^{\prime \prime \prime}$

Assume that $f(y), f(y)$ have values $c^{\prime \prime}(g), c^{\prime \prime \prime}(h)$. Then $x=\mathbf{c}^{\prime}(f): D$ denotes the tree:

- §1. Types of \mathcal{N}
- §2. Recursion in \mathcal{N}
- \S 3. Terms of \mathcal{N}
- §4. Semantics for Expandable Recursion
- §5. Conclusions

§2. Recursion in \mathcal{N}

(1) Informally, a primitive recursion of $h: D \rightarrow A$ runs as follows. Assume that D has a constructor $\mathbf{c}_{\boldsymbol{i}}$ with argument list $d_{1}, \ldots, d_{n}, \ldots$. We first apply h to each $d_{1}, \ldots, d_{n}, \ldots$, obtaining $h\left(d_{1}\right), \ldots, h\left(d_{n}\right), \ldots: A$, then we define

$$
\mathbf{h}\left(\mathbf{c}_{\mathbf{i}}\left(\mathbf{d}_{1}, \ldots, d_{\mathbf{n}}, \ldots\right)\right)=\mathbf{r}_{\mathbf{i}}\left(\mathbf{h}\left(d_{1}\right), \ldots, h\left(d_{\mathbf{n}}\right), \ldots\right)
$$

The constructor $\mathbf{c}_{\mathbf{i}}$ disappear.

§2. Recursion in \mathcal{N}

(1) Informally, a primitive recursion of $h: D \rightarrow A$ runs as follows. Assume that D has a constructor $\mathbf{c}_{\boldsymbol{i}}$ with argument list $d_{1}, \ldots, d_{n}, \ldots$. We first apply h to each $d_{1}, \ldots, d_{n}, \ldots$, obtaining $h\left(d_{1}\right), \ldots, h\left(d_{n}\right), \ldots: A$, then we define

$$
\mathbf{h}\left(\mathbf{c}_{\mathbf{i}}\left(\mathbf{d}_{1}, \ldots, \mathbf{d}_{\mathbf{n}}, \ldots\right)\right)=\mathbf{r}_{\mathbf{i}}\left(\mathbf{h}\left(\mathbf{d}_{1}\right), \ldots, h\left(\mathbf{d}_{\mathbf{n}}\right), \ldots\right)
$$

The constructor $\mathbf{c}_{\mathbf{i}}$ disappear.
(3) In any $D \in$ Data, the list $d_{1}, \ldots, d_{n}, \ldots$ of arguments of $\mathbf{c}_{\mathbf{i}}$ is expressed in \mathcal{N} by an index map $f: D_{i} \rightarrow D$ such that $f\left(e_{1}\right)=d_{1}, \ldots, f\left(e_{n}\right)=d_{n}, \ldots$ for some $e_{1}, \ldots, e_{n}, \ldots: D_{i}$.

§2. Recursion in \mathcal{N}

(1) Informally, a primitive recursion of $h: D \rightarrow A$ runs as follows. Assume that D has a constructor $\mathbf{c}_{\boldsymbol{i}}$ with argument list $d_{1}, \ldots, d_{n}, \ldots$. We first apply h to each $d_{1}, \ldots, d_{n}, \ldots$, obtaining $h\left(d_{1}\right), \ldots, h\left(d_{n}\right), \ldots: A$, then we define

$$
\mathbf{h}\left(\mathbf{c}_{\mathbf{i}}\left(\mathbf{d}_{1}, \ldots, \mathbf{d}_{\mathbf{n}}, \ldots\right)\right)=\mathbf{r}_{\mathbf{i}}\left(\mathbf{h}\left(\mathbf{d}_{1}\right), \ldots, h\left(\mathbf{d}_{\mathbf{n}}\right), \ldots\right)
$$

The constructor $\mathbf{c}_{\mathbf{i}}$ disappear.
(2) In any $D \in$ Data, the list $d_{1}, \ldots, d_{n}, \ldots$ of arguments of $\mathbf{c}_{\boldsymbol{i}}$ is expressed in \mathcal{N} by an index map $f: D_{i} \rightarrow D$ such that $f\left(e_{1}\right)=d_{1}, \ldots, f\left(e_{n}\right)=d_{n}, \ldots$ for some $e_{1}, \ldots, e_{n}, \ldots: D_{i}$.
(0) Thus, instead of forming $h\left(d_{1}\right), \ldots, h\left(d_{n}\right), \ldots: A$, we form hof: $D_{i} \rightarrow A$, an index map for $h\left(d_{1}\right)=h\left(f\left(e_{1}\right)\right), \ldots$, $h\left(d_{n}\right)=h\left(f\left(e_{n}\right)\right), \ldots: A$. Then we define in \mathcal{N} :

$$
\mathbf{h}\left(\mathbf{c}_{\mathbf{i}}(\mathbf{f})\right)=\mathbf{r}_{\mathbf{i}}(\mathbf{h} \circ \mathbf{f})
$$

Definition of Extendable Recursion

(1) Extendable recursion on D in system \mathcal{N} defines a map $h: D \rightarrow A$ using one clause r_{i} for each D_{i}, and a single extra clause $r_{n}: A \rightarrow A$, dealing with all possible extensions of the data type D.

Definition of Extendable Recursion

(1) Extendable recursion on D in system \mathcal{N} defines a map $h: D \rightarrow A$ using one clause r_{i} for each D_{i}, and a single extra clause $r_{n}: A \rightarrow A$, dealing with all possible extensions of the data type D.
(2) If $\mathbf{t} \equiv \mathbf{c}_{\mathbf{i}}(\mathbf{f})$, as usual we set

$$
h(t)=r_{i}(h \circ f)
$$

(3) The clause r_{n} is used on trees $\mathbf{t} \equiv$ future $(\mathbf{f}): \mathbf{D}$ built by some new constructor future. We assume that $h: D \rightarrow A$ is already defined on $f(e): D$ for all $e: D_{i}$, we move the recursive call to h to the children of t, forming future $(h \circ f): A$, then we apply r_{n} obtaining

$$
h(t)=r_{n}(\text { future }(h \circ f))
$$

The constructor future does not disappear.

In order to extend the domain of a recursive map at run-time, our first step is to introduce an operation extending a data type.
(1) We define an operation (.)@E adding one index set $E \in$ Data to a data type $D=\left(D_{0}, \ldots, D_{n-1}\right)$: $D @ E=\left(D_{0}, \ldots, D_{n-1}, E\right) \in$ Data.
(2) $D @ E$ has one tree constructor $\mathbf{c}_{\mathbf{n}}:(E \rightarrow D @ E) \rightarrow D @ E$ more than D.

Recursion with Extendable Domain in \mathcal{N}

In order to extend the domain of a recursive map at run-time, our first step is to introduce an operation extending a data type.
(1) We define an operation (.)@E adding one index set
$E \in$ Data to a data type $D=\left(D_{0}, \ldots, D_{n-1}\right)$: $D @ E=\left(D_{0}, \ldots, D_{n-1}, E\right) \in$ Data.
(2) $D @ E$ has one tree constructor $\mathbf{c}_{\mathbf{n}}:(E \rightarrow D @ E) \rightarrow D @ E$ more than D.
(3) (.) \mathbb{D} is extended pointwise and componentwise to all types in Tp by:

- $(A \times B) @ E \equiv A @ E \times B @ E \in \mathbf{T p}$
- $(A \rightarrow B) @ E \equiv A \rightarrow B @ E \in \mathbf{T p}$.
(4) We call the type $A @ E$ an extension of the type A.

Future constructors

In order to extend the domain of a recursive map at run-time, our second step is to introduce constants future ${ }_{m, E, D}:(E \rightarrow D) \rightarrow D$ we call future constructors.
(1) If $D=\left(D_{0}, \ldots, D_{n-1}\right)$, then future ${ }_{m, E, D}$ represents in D a constructor $\mathbf{c}_{\mathbf{n}}$ we may to D in a possible extension $D @ E=$ $\left(D_{0}, \ldots, D_{n-1}, E\right)$.

Future constructors

In order to extend the domain of a recursive map at run-time, our second step is to introduce constants future ${ }_{m, E, D}:(E \rightarrow D) \rightarrow D$ we call future constructors.
(1) If $D=\left(D_{0}, \ldots, D_{n-1}\right)$, then future ${ }_{m, E, D}$ represents in D a constructor $\mathbf{c}_{\mathbf{n}}$ we may to D in a possible extension $D @ E=$ $\left(D_{0}, \ldots, D_{n-1}, E\right)$.
(2) We add a unary term operator Forth ${ }_{m, E}$, executing a possible extension of D with E.

Future constructors

In order to extend the domain of a recursive map at run-time, our second step is to introduce constants future ${ }_{m, E, D}:(E \rightarrow D) \rightarrow D$ we call future constructors.
(1) If $D=\left(D_{0}, \ldots, D_{n-1}\right)$, then future ${ }_{m, E, D}$ represents in D a constructor $\mathbf{c}_{\mathbf{n}}$ we may to D in a possible extension $D @ E=$ $\left(D_{0}, \ldots, D_{n-1}, E\right)$.
(2) We add a unary term operator Forth ${ }_{m, E}$, executing a possible extension of D with E.
(3) Forth ${ }_{m, E}$ replaces future ${ }_{m, E, D}$ with $\mathbf{c}_{\mathbf{n}}$:

Forth $_{m, E}$. future $_{m, E, D}(f)=\mathbf{c}_{\mathbf{n}}\left(\operatorname{Forth}_{m, E}(f)\right)$
(4) future ${ }_{m, E, D}$, Forth $_{m, E}$ are extended to all types point-wise and component-wise.

An example: one uniform extension of negation

(1) Let $\mathbf{B o o l}=\{0,1\}$. Bool with future constructors is a set of trees whose leaves are booleans.
(2) Let $\neg(0)=1, \neg(1)=0$. We uniformly extend \neg to any future constructor of Bool with the clause $\neg($ future $(f))=$ future $(\neg \circ f)$.

An example: one uniform extension of negation

(1) Let $\mathbf{B o o l}=\{0,1\}$. Bool with future constructors is a set of trees whose leaves are booleans.
(2) Let $\neg(0)=1, \neg(1)=0$. We uniformly extend \neg to any future constructor of Bool with the clause $\neg($ future (f)) $=$ future $(\neg \circ f)$.
(0) The result is a map negating all leaves of a tree.

- §1. Types of \mathcal{N}
- §2. Recursion in \mathcal{N}
- §3. Terms of \mathcal{N}
- §4. Semantics for Expandable Recursion
- §5. Conclusions

§3. Terms of \mathcal{N}

(1) Terms of \mathcal{N} of type A are defined w.r.t. a list $\Gamma \equiv E_{0}, \ldots, E_{m-1}$ of data types, denoting possible extensions of A.
(2) Terms of \mathcal{N} include all algebraic combinators, pairing, projections, tree constructors, future constructors future : $(E \rightarrow A) \rightarrow A$ for $E \in \Gamma$, uniform application $\mathbf{u}: D,(D \rightarrow D) \rightarrow D$ and for each $D=\left(D_{0}, \ldots, D_{n-1}\right)$ a constant $\mathbf{r} \equiv \mathbf{r}_{D, A}$ denoting recursion on trees of D with result in A.
(3) \mathbf{r} has one recursive clause $r_{i}:\left(D_{i} \rightarrow A\right) \rightarrow A$ for each index set D_{i}, and one extra clause $r_{n}: A \rightarrow A$, dealing with extensions of A.
(3) Terms are closed under application, and under the unary operator Forth ${ }_{m, E}$, which removes the type E in position m from a context.
(0) We write $\Gamma \vdash t: A$ for " $t: A$ in the context Γ ".

Typing rules of \mathcal{N}

Definition (Terms of \mathcal{N})

Let $n, m \in$ Nat, $i<n, j<m, D=\left(D_{0}, \ldots, D_{n-1}\right), E \in$ Data, $A, B \in \mathbf{T p}$, and $\Gamma=E_{0}, \ldots, E_{m-1}$ any context :
(1) 「 $\vdash C: A$. If $C(\vec{x})=\alpha[\vec{x}]$ is a combinator of type A
(2) $\Gamma \vdash<_{-},{ }_{-}>: A, B \rightarrow A_{1} \times A_{2}$ and $\Gamma \vdash \pi_{i}: A_{1} \times A_{2} \rightarrow A_{i}$
(3) (constructors) $\Gamma \vdash$ cons $_{i, D}:\left(D_{i} \rightarrow D\right) \rightarrow D$
(4) If $\Gamma \vdash t: A \rightarrow B$ and $\Gamma \vdash u: A$, then $\Gamma \vdash t(u): B$.

Typing rules of \mathcal{N}

Definition (Terms of \mathcal{N})

Let $n, m \in$ Nat, $i<n, j<m, D=\left(D_{0}, \ldots, D_{n-1}\right), E \in$ Data,
$A, B \in \mathbf{T p}$, and $\Gamma=E_{0}, \ldots, E_{m-1}$ any context:
(1) $\Gamma \vdash C: A$. If $C(\vec{x})=\alpha[\vec{x}]$ is a combinator of type A
(2) $\Gamma \vdash<_{-},{ }_{-}>: A, B \rightarrow A_{1} \times A_{2}$ and $\Gamma \vdash \pi_{i}: A_{1} \times A_{2} \rightarrow A_{i}$
(3) (constructors) $\Gamma \vdash$ cons $_{i, D}:\left(D_{i} \rightarrow D\right) \rightarrow D$
(4) If $\Gamma \vdash t: A \rightarrow B$ and $\Gamma \vdash u: A$, then $\Gamma \vdash t(u): B$.
(5) (future constructors) $\Gamma \vdash$ future $_{j, E_{j}, A}:\left(E_{j} \rightarrow A\right) \rightarrow A$
(6) (uniform application) $\Gamma \vdash \mathbf{u}_{D}: D,(D \rightarrow D) \rightarrow D$
(3) (recursion) $\Gamma \vdash \mathbf{r}_{D, A}: \vec{R}, D \rightarrow A$, with $R_{i}=\left(D_{i} \rightarrow A\right) \rightarrow A$ for all $i<n$, and $R_{n}=(A \rightarrow A)$
(8) (Forth) If $\Gamma, E, \Delta \vdash t: A$, then $\Gamma, \Delta \vdash$ Forth $_{m, E}$. $: A @ E$

Definition (Reductions on \mathbf{u}, \mathbf{r} for \mathcal{N})

(1) Let $c \equiv$ future $_{i, E, D}$, cons $_{i, D}$ and $g: D \rightarrow D$ and $c(f): D$.
(1) $\mathbf{u}(c(f))(g) \rightsquigarrow c(g \circ f): B$
(2) If $d \rightsquigarrow e: D$ then $\mathbf{u}(d)(g) \rightsquigarrow \mathbf{u}(e)(g)$
(2) Assume $D=\left(D_{0}, \ldots, D_{n-1}\right), \vec{r}=r_{0}, \ldots, r_{n}$.
(1) If $d \equiv c(f)$ and $c \equiv$ cons $_{i}$ then $\mathbf{r} \vec{r} d \rightsquigarrow r_{i}(\mathbf{r}(\vec{r}) \circ f)$
(2) If $d \equiv c(f)$ and $c \equiv$ future then $\mathbf{r} \vec{r} d \rightsquigarrow r_{n}(c(\mathbf{r}(\vec{r}) \circ f))$
(3) If $d \rightsquigarrow e$ then $\mathbf{r} \vec{r} d \rightsquigarrow \vec{r} \vec{e}$

The remaining reductions for \mathcal{N} are given in Appendix.

- §1. Types of \mathcal{N}
- §2. Recursion in \mathcal{N}
- $\S 3$. Terms of \mathcal{N}
- §4. Semantics for Expandable Recursion
- §5. Conclusions

§4. Semantics for Expandable Recursion

In order to define a model of system \mathcal{N} we face the following vicious cycle.
(1) The definition of a term $E \vdash t: D$ may include a future constructor future ${ }_{E}$ of index set E.
(2) future E_{E} has type : $(E \rightarrow D) \rightarrow D$, and has domain all maps $E \rightarrow D$.
(0) If $E=D$, defining these maps requires to define D before completing the definition of any $t: D$.
(1) Thus, the definition of future ${ }_{E}$ is not stratified.

Candidates and Approximated Constructors

Let $E \in$ Data, and \mathcal{A} be any model of \mathcal{N}, and $E_{\mathcal{A}}$ be the interpretation of the type E in \mathcal{A}, and $X \subseteq E_{\mathcal{A}}$.
(1) We call X a candidate for $E_{\mathcal{A}}$.
(2) In the models of \mathcal{N} we add constants $j_{X}:(X \rightarrow D) \rightarrow D$.
(3) We call j_{X} an approximation of the future constructor future $_{E}:(E \rightarrow D) \rightarrow D$.

Candidates and Approximated Constructors

Let $E \in$ Data, and \mathcal{A} be any model of \mathcal{N}, and $E_{\mathcal{A}}$ be the interpretation of the type E in \mathcal{A}, and $X \subseteq E_{\mathcal{A}}$.
(1) We call X a candidate for $E_{\mathcal{A}}$.
(2) In the models of \mathcal{N} we add constants $j_{X}:(X \rightarrow D) \rightarrow D$.
(3) We call j_{X} an approximation of the future constructor future $_{E}:(E \rightarrow D) \rightarrow D$.
(4) The branching of $j_{X}(f)$ is a restriction of the branching of future ${ }_{E}(f)$.
(5) The definition of j_{X} is stratified, therefore if we may interpret future ${ }_{E}=j_{X}$ we would be done.

Unfortunately ... (see next slide)

A second vicious cycle

(1) Unfortunately, we cannot have future ${ }_{E}=j_{X}$ in \mathcal{A}.
(2) Indeed, if we choose $X \subseteq E_{\mathcal{A}}$ and we add the new constant j_{X} to \mathcal{A}, then we may define new terms $e \in E_{\mathcal{A}}$ from them.
(3) e is defined after X, thus we may have $e \notin X$, hence $X \neq E$ and future ${ }_{E} \neq j_{x}$.

A second vicious cycle

(1) Unfortunately, we cannot have future $E_{E}=j_{X}$ in \mathcal{A}.
(2) Indeed, if we choose $X \subseteq E_{\mathcal{A}}$ and we add the new constant j_{X} to \mathcal{A}, then we may define new terms $e \in E_{\mathcal{A}}$ from them.
(0) e is defined after X, thus we may have $e \notin X$, hence $X \neq E$ and future ${ }_{E} \neq j_{X}$.
(1) If we try to force $X=E_{\mathcal{A}}$ in \mathcal{A}, we find a vicious cycle similar to the vicious cycle in the definition of constructor.
(0) This second vicious cycle, however, is easier to break.

Breaking the vicious cycle

(1) For any model \mathcal{A} there is a model $\mathcal{A}^{E} \supset \mathcal{A}$ including the approximated constructor $j_{E_{\mathcal{A}}}$.
(2) \mathcal{N} cannot distinguish between future ${ }_{E}$ and $j_{E_{\mathcal{A}}}$: thus, the behavior of future ${ }_{E}$ in \mathcal{A} may be described from the behavior of $j_{E_{\mathcal{A}}}$ in \mathcal{A}^{E}, without any vicious cycle.

Breaking the vicious cycle

(1) For any model \mathcal{A} there is a model $\mathcal{A}^{E} \supset \mathcal{A}$ including the approximated constructor ${ }_{j_{E_{\mathcal{A}}}}$.
(2) \mathcal{N} cannot distinguish between future E_{E} and $j_{E_{\mathcal{A}}}$: thus, the behavior of future ${ }_{E}$ in \mathcal{A} may be described from the behavior of $j_{E_{\mathcal{A}}}$ in \mathcal{A}^{E}, without any vicious cycle.
(3) By exploiting this idea we may adapt Tait's notion of reducibility ([3]) to system \mathcal{N}.
(3) We express Tait's reducibility w.r.t. a countable family of models of \mathcal{N}, closed under the operation $\mathcal{A} \mapsto \mathcal{A}^{E}$.
(6) This proof cannot be expressed in a second order arithmetic, unless we bound the number of nesting in a data type and in a type.

- §1. Types of \mathcal{N}
- §2. Recursion in \mathcal{N}
- §3. Terms of \mathcal{N}
- §4. Semantics for Expandable Recursion
- §5. Conclusions

§5: Conclusions

The main feature of \mathcal{N} is: the domain of a map of \mathcal{N} is extendable at run-time, yet all maps are total.

§5: Conclusions

The main feature of \mathcal{N} is: the domain of a map of \mathcal{N} is extendable at run-time, yet all maps are total.

Theorem (Totality and Expressive Power of \mathcal{N})

- All terms of \mathcal{N} normalize
(2) All trees denoted by some term $t: D \in$ Data of system \mathcal{N} are well-founded.
(3) (Expressive Power) We may define in \mathcal{N} an Infinitary Proof System for second order intuitionistic arithmetic HA^{2}

Summary of the Talk

(1) We defined a simply typed λ-calculus \mathcal{N} in which primitive recursive definitions on trees may be extended to a larger domain at run-time.
(2) System \mathcal{N} is defined in term of concrete tree operations and aims to be equivalent to polymorphism.

Summary of the Talk

(1) We defined a simply typed λ-calculus \mathcal{N} in which primitive recursive definitions on trees may be extended to a larger domain at run-time.
(2) System \mathcal{N} is defined in term of concrete tree operations and aims to be equivalent to polymorphism.
(3) What we proved: System \mathcal{N} has the usual properties of Subject Reduction, Confluence and Normalization, and defines a Infinitary Proof System for Second Order Arithmetic.

Summary of the Talk

(1) We defined a simply typed λ-calculus \mathcal{N} in which primitive recursive definitions on trees may be extended to a larger domain at run-time.
(2) System \mathcal{N} is defined in term of concrete tree operations and aims to be equivalent to polymorphism.
(3) What we proved: System \mathcal{N} has the usual properties of Subject Reduction, Confluence and Normalization, and defines a Infinitary Proof System for Second Order Arithmetic.
(4) What we are checking: whether well-founded trees and the definable maps on them are the same in system \mathcal{N} and system \mathcal{F}, and whether \mathcal{N} defines a denotation system for ordinals of second order analysis.

References

© P. Martin-Lof, Intuitionistic Type Theory, June 1980, Bibliopolis.
(2) H. Barendregt, Lambda Calculus with Types. Cambridge University Press, 2013.
(3) William W. Tait: Intensional Interpretations of Functionals of Finite Type I. J. Symb. Log. 32(2): 198-212 (1967)

A research report about system \mathcal{N} may be found at:

> www.di.unito.it/~stefano/
> SistemaN-definizioni-14-Luglio-2017.pdf

A Century of Constructive Reasoning ...

Figure: Hilbert Constructivization Conjecture (Courtesy from Goettingen State and University Library, Germany. Thanks to Benedikt Ahrens for translating).

Probably the first version (around 1917) of the following conjecture by Hilbert:
"Prove the following theorem: When a proof of existence has been concluded in mathematics, then also the decision (in a finite number of steps, as one says) is always possible."

Appendix: the complete set of reductions for \mathcal{N}

Definition (Algebraic Reductions for \mathcal{N})
(1) Let $C(\vec{x})=\alpha[\vec{x}]$ be any combinator.
(1) $C(\vec{t}) \rightsquigarrow \alpha[\vec{t} / \vec{x}]$.
(2) $\pi_{i}\left(<a_{1}, a_{2}>\right) \rightsquigarrow a_{i}$ for $i=1,2$
(3) If $a \rightsquigarrow b$ then $\pi_{i}(a) \rightsquigarrow \pi_{i}(b)$.
(4) If $f \rightsquigarrow g$ then $f a \rightsquigarrow g a$
(2) Let $c \equiv$ future $_{i, E}$ and P be the combinator postponing an application, defined by $P(x, y)=y(x)$

- $c(f)(e) \rightsquigarrow c(P e \circ f)$
(2) $\pi_{i}(c(f)) \rightsquigarrow c\left(\pi_{i} \circ f\right)$ for $i=1,2$

Definition (Reductions on \mathbf{u}, \mathbf{r} for \mathcal{N})

(1) Let $c \equiv$ future $_{i, E, D}$, cons $_{i, D}$ and $g: D \rightarrow D$ and $c(f): D$.
(1) $\mathbf{u}(c(f))(g) \rightsquigarrow c(g \circ f): B$
(2) If $d \rightsquigarrow e: D$ then $\mathbf{u}(d)(g) \rightsquigarrow \mathbf{u}(e)(g)$
(2) Assume $D=\left(D_{0}, \ldots, D_{n-1}\right), \vec{r}=r_{0}, \ldots, r_{n}$.
(1) If $d \equiv c(f)$ and $c \equiv$ cons $_{i}$ then $\mathbf{r} \vec{r} d \rightsquigarrow r_{i}(\mathbf{r}(\vec{r}) \circ f)$
(2) If $d \equiv c(f)$ and $c \equiv$ future then $\mathbf{r} \vec{r} d \rightsquigarrow r_{n}(c(\mathbf{r}(\vec{r}) \circ f))$
(3) If $d \rightsquigarrow e$ then $r \vec{r} d \rightsquigarrow \vec{r} \vec{e}$
(1) Forth upgrades a term from the context Γ, E, Δ to the context Γ, Δ, executing the extension of index set E.
(2) Forth requires the operation $a^{i, E}$ of context lifting (defined in the next slide).

Definition (Reductions for Forth)

Assume $D=\left(D_{0}, \ldots, D_{n-1}\right)$.
(1) (up-grading) Forth.future ${ }_{i, E, D}(f) \rightsquigarrow \mathbf{c}_{\mathrm{n}, \mathrm{D} \subseteq}$ (Forth.f)
(2) Forth.future ${ }_{j+1, E, D}(f) \rightsquigarrow$ future $_{j, E, D ® E}($ Forth. $f)$ for $j \geq i$
(3) Forth. $c(f) \rightsquigarrow c$ (Forth. f) for any other (future) constructor
(1) If $d: D \in$ Data and $d \rightsquigarrow e: D$ then Forth $d \rightsquigarrow$ Forthe.
(6) (Forth. f) (a) \rightsquigarrow Forth. $f\left(a^{i, E}\right)$
(0) π_{i} (Forth.a) \rightsquigarrow Forth. $\left.\pi_{i}(a)\right)$ for $i=1,2$.

Context Lifting $t^{i, E}$

(1) Context Lifting downgrades a term from the context Γ, Δ to the context Γ, E, Δ, adding the extension of index set E to the list of future extensions.
(2) Context lifting adds 1 to the subscripts of future constructors with index in Δ.

Definition (The term $t^{i, E}$)

Assume $\Gamma \vdash t: A$ is a term of \mathcal{N}, c is any constant. We define $t^{i, E}$ by induction on t.
(1) (down-grading) (future $\left.{ }_{j, F}\right)^{i, E} \equiv$ future $_{j+1, F}$ for all $j \geq i$
(2) $c^{i, E} \equiv c$ in all other cases.
(3) Forth $_{j, F}(u)^{i, E} \equiv \operatorname{Forth}_{j+1, F}\left(u^{i, E}\right)$ for all $j \geq i$.
(4) Forth ${ }_{j, F}(u)^{i, E} \equiv$ Forth $_{j, F}\left(u^{i+1, E}\right)$ in all other cases.
(5) $t(u)^{i, E} \equiv t^{i, E}\left(u^{i, E}\right)$

