

# The Simply Typed Lambda Calculus $\mathcal{N}$

## EUTypes Meeting in Nijmegen

S. Berardi (*sp.*), U. de' Liguoro

Torino University, Italy

January 23, 2018



- 1 We introduce a simply typed  $\lambda$ -calculus, **system  $\mathcal{N}$**
- 2 Our goal is representing in  $\mathcal{N}$  all well-founded trees and polymorphic maps on them which are definable in **system  $\mathcal{F}$**
- 3 The main feature of  $\mathcal{N}$  is the possibility of extending at run-time the domain of a recursively defined map

- 1 We introduce a simply typed  $\lambda$ -calculus, **system  $\mathcal{N}$**
- 2 Our goal is representing in  $\mathcal{N}$  all well-founded trees and polymorphic maps on them which are definable in **system  $\mathcal{F}$**
- 3 The main feature of  $\mathcal{N}$  is the possibility of extending at run-time the domain of a recursively defined map
- 4 Reduction of  $\mathcal{N}$  are:
  - **algebraic** reductions
  - reductions for **primitive recursion** on trees
  - reductions for **adding one constructor** to a recursive definition

# This is an ongoing work!

The result we already have about system  $\mathcal{N}$  are:

- ① **normalization** (with an intuitionistic proof)
- ② all trees denoted by some term  $t$  in some data type  $D$  of system  $\mathcal{N}$  are **well-founded**.
- ③ system  $\mathcal{N}$  defines a **Infinitary Proof System** for second order intuitionistic arithmetic

# This is an ongoing work!

The result we already have about system  $\mathcal{N}$  are:

- ① **normalization** (with an intuitionistic proof)
- ② all trees denoted by some term  $t$  in some data type  $D$  of system  $\mathcal{N}$  are **well-founded**.
- ③ system  $\mathcal{N}$  defines a **Infinitary Proof System** for second order intuitionistic arithmetic

The results we are checking is:

- ① **equivalence between system  $\mathcal{N}$  and polymorphism**
- ② There is a fully-abstract model of system  $\mathcal{N}$

- §1. Types of  $\mathcal{N}$  
- §2. Recursion in  $\mathcal{N}$
- §3. Terms of  $\mathcal{N}$
- §4. Semantics for Expandable Recursion
- §5. Conclusions

## §1. Types of system $\mathcal{N}$

- 1 Let  $(D_1, \dots, D_n)$  be the set of well-founded trees whose constructors have index sets among  $D_1, \dots, D_n$ .
- 2 In Martin-Lof notation [1],  $(D_1, \dots, D_n)$  is the  $W$ -type  $W(i : \{1, \dots, n\})D_i$ .

- 1 Let  $(D_1, \dots, D_n)$  be the set of well-founded trees whose constructors have index sets among  $D_1, \dots, D_n$ .
- 2 In Martin-Lof notation [1],  $(D_1, \dots, D_n)$  is the  $W$ -type  $W(i : \{1, \dots, n\})D_i$ .
- 3 The set **Data** of data types of  $\mathcal{N}$  is the smallest set such that: if  $D_1, \dots, D_n \in \mathcal{D}$  then  $(D_1, \dots, D_n) \in \mathcal{D}$ .
- 4 **Data** includes the data types:  $\emptyset$ , **Unit**, **Bool**, **Nat**, *finite binary trees*, *well-founded at most countable trees*, and many more.

- 1 Let  $(D_1, \dots, D_n)$  be the set of well-founded trees whose constructors have index sets among  $D_1, \dots, D_n$ .
- 2 In Martin-Lof notation [1],  $(D_1, \dots, D_n)$  is the  $W$ -type  $W(i : \{1, \dots, n\})D_i$ .
- 3 The set **Data** of data types of  $\mathcal{N}$  is the smallest set such that: if  $D_1, \dots, D_n \in \mathcal{D}$  then  $(D_1, \dots, D_n) \in \mathcal{D}$ .
- 4 **Data** includes the data types:  $\emptyset$ , **Unit**, **Bool**, **Nat**, *finite binary trees*, *well-founded at most countable trees*, and many more.
- 5 The set **Tp** of types of  $\mathcal{N}$  is inductively defined by  $T ::= D | T \times T | T \rightarrow T$  for any data type  $D \in \mathbf{Data}$ .

# The general pattern for a Tree

$D = (D', D'', D''')$  is the set of well-founded trees whose nodes have index set  $D'$  or  $D''$  or  $D'''$ . A tree in  $D$  is made of:

- 1 constructors  $c', c'', c'''$  of index sets  $D', D'', D'''$
- 2 index maps  $f, g, h$  of type  $D' \rightarrow D, D'' \rightarrow D, D''' \rightarrow D$
- 3 indexes  $y, z : D', t, u : D'', v, w : D'''$

Assume that  $f(y), f(y)$  have values  $c''(g), c'''(h)$ . Then  $x = \mathbf{c}'(f) : D$  denotes the tree:

# The general pattern for a Tree

$D = (D', D'', D''')$  is the set of well-founded trees whose nodes have index set  $D'$  or  $D''$  or  $D'''$ . A tree in  $D$  is made of:

- 1 constructors  $c', c'', c'''$  of index sets  $D', D'', D'''$
- 2 index maps  $f, g, h$  of type  $D' \rightarrow D, D'' \rightarrow D, D''' \rightarrow D$
- 3 indexes  $y, z : D', t, u : D'', v, w : D'''$

Assume that  $f(y), f(y)$  have values  $c''(g), c'''(h)$ . Then  $x = \mathbf{c}'(f) : D$  denotes the tree:



- §1. Types of  $\mathcal{N}$
- §2. Recursion in  $\mathcal{N}$  
- §3. Terms of  $\mathcal{N}$
- §4. Semantics for Expandable Recursion
- §5. Conclusions

1 Informally, a primitive recursion of  $h : D \rightarrow A$  runs as follows. Assume that  $D$  has a constructor  $\mathbf{c}_i$  with argument list  $d_1, \dots, d_n, \dots$ . We first apply  $h$  to each  $d_1, \dots, d_n, \dots$ , obtaining  $h(d_1), \dots, h(d_n), \dots : A$ , then we define

$$h(\mathbf{c}_i(d_1, \dots, d_n, \dots)) = r_i(h(d_1), \dots, h(d_n), \dots)$$

The constructor  $\mathbf{c}_i$  disappear.

1 Informally, a primitive recursion of  $h : D \rightarrow A$  runs as follows. Assume that  $D$  has a constructor  $\mathbf{c}_i$  with argument list  $d_1, \dots, d_n, \dots$ . We first apply  $h$  to each  $d_1, \dots, d_n, \dots$ , obtaining  $h(d_1), \dots, h(d_n), \dots : A$ , then we define

$$h(\mathbf{c}_i(d_1, \dots, d_n, \dots)) = r_i(h(d_1), \dots, h(d_n), \dots)$$

The constructor  $\mathbf{c}_i$  disappear.

2 In any  $D \in \mathbf{Data}$ , the list  $d_1, \dots, d_n, \dots$  of arguments of  $\mathbf{c}_i$  is expressed in  $\mathcal{N}$  by an index map  $f : D_i \rightarrow D$  such that  $f(e_1) = d_1, \dots, f(e_n) = d_n, \dots$  for some  $e_1, \dots, e_n, \dots : D_i$ .

1 Informally, a primitive recursion of  $h : D \rightarrow A$  runs as follows. Assume that  $D$  has a constructor  $\mathbf{c}_i$  with argument list  $d_1, \dots, d_n, \dots$ . We first apply  $h$  to each  $d_1, \dots, d_n, \dots$ , obtaining  $h(d_1), \dots, h(d_n), \dots : A$ , then we define

$$\mathbf{h}(\mathbf{c}_i(\mathbf{d}_1, \dots, \mathbf{d}_n, \dots)) = \mathbf{r}_i(\mathbf{h}(\mathbf{d}_1), \dots, \mathbf{h}(\mathbf{d}_n), \dots)$$

The constructor  $\mathbf{c}_i$  disappear.

2 In any  $D \in \mathbf{Data}$ , the list  $d_1, \dots, d_n, \dots$  of arguments of  $\mathbf{c}_i$  is expressed in  $\mathcal{N}$  by an index map  $f : D_i \rightarrow D$  such that  $f(e_1) = d_1, \dots, f(e_n) = d_n, \dots$  for some  $e_1, \dots, e_n, \dots : D_i$ .

3 Thus, instead of forming  $h(d_1), \dots, h(d_n), \dots : A$ , we form  $h \circ f : D_i \rightarrow A$ , an index map for  $h(d_1) = h(f(e_1)), \dots, h(d_n) = h(f(e_n)), \dots : A$ . Then we define in  $\mathcal{N}$ :

$$\mathbf{h}(\mathbf{c}_i(\mathbf{f})) = \mathbf{r}_i(\mathbf{h} \circ \mathbf{f})$$

# Definition of Extendable Recursion

- 1 Extendable recursion on  $D$  in system  $\mathcal{N}$  defines a map  $h : D \rightarrow A$  using one clause  $r_i$  for each  $D_i$ , and a **single extra clause**  $r_n : A \rightarrow A$ , dealing with all possible extensions of the data type  $D$ .

# Definition of Extendable Recursion

- 1 Extendable recursion on  $D$  in system  $\mathcal{N}$  defines a map  $h : D \rightarrow A$  using one clause  $r_i$  for each  $D_i$ , and a **single extra clause**  $r_n : A \rightarrow A$ , dealing with all possible extensions of the data type  $D$ .
- 2 If  $t \equiv c_i(f)$ , as usual we set

$$h(t) = r_i(h \circ f)$$

- 3 The clause  $r_n$  is used on trees  $t \equiv \text{future}(f) : D$  built by some new constructor **future**. We assume that  $h : D \rightarrow A$  is already defined on  $f(e) : D$  for all  $e : D_i$ , we move the recursive call to  $h$  to the children of  $t$ , forming  $\text{future}(h \circ f) : A$ , then we apply  $r_n$  obtaining

$$h(t) = r_n(\text{future}(h \circ f))$$

The constructor **future** does **not** disappear.

In order to extend the domain of a recursive map at run-time, our **first step** is to introduce an operation extending a data type.

- ① We define an operation  $(.)@E$  adding one index set  $E \in \mathbf{Data}$  to a data type  $D = (D_0, \dots, D_{n-1})$ :  
$$D@E = (D_0, \dots, D_{n-1}, E) \in \mathbf{Data}.$$
- ②  $D@E$  has one tree constructor  $\mathbf{c}_n : (E \rightarrow D@E) \rightarrow D@E$  more than  $D$ .

In order to extend the domain of a recursive map at run-time, our **first step** is to introduce an operation extending a data type.

- ① We define an operation  $(.)@E$  adding one index set  $E \in \mathbf{Data}$  to a data type  $D = (D_0, \dots, D_{n-1})$ :  
$$D@E = (D_0, \dots, D_{n-1}, E) \in \mathbf{Data}.$$
- ②  $D@E$  has one tree constructor  $\mathbf{c_n} : (E \rightarrow D@E) \rightarrow D@E$  more than  $D$ .
- ③  $(.)@D$  is extended pointwise and componentwise to all types in  $\mathbf{Tp}$  by:
  - $(A \times B)@E \equiv A@E \times B@E \in \mathbf{Tp}$
  - $(A \rightarrow B)@E \equiv A \rightarrow B@E \in \mathbf{Tp}.$
- ④ We call the type  $A@E$  an *extension* of the type  $A$ .

# Future constructors

In order to extend the domain of a recursive map at run-time, our **second step** is to introduce constants  $\mathbf{future}_{m,E,D} : (E \rightarrow D) \rightarrow D$  we call **future constructors**.

- 1 If  $D = (D_0, \dots, D_{n-1})$ , then  $\mathbf{future}_{m,E,D}$  represents in  $D$  a constructor  $\mathbf{c}_n$  we may to  $D$  in a possible extension  $D@E = (D_0, \dots, D_{n-1}, E)$ .

# Future constructors

In order to extend the domain of a recursive map at run-time, our **second step** is to introduce constants  $\mathbf{future}_{m,E,D} : (E \rightarrow D) \rightarrow D$  we call **future constructors**.

- ① If  $D = (D_0, \dots, D_{n-1})$ , then  $\mathbf{future}_{m,E,D}$  represents in  $D$  a constructor  $\mathbf{c}_n$  we may to  $D$  in a possible extension  $D@E = (D_0, \dots, D_{n-1}, E)$ .
- ② We add a unary **term operator**  $\mathbf{Forth}_{m,E}$ , executing a possible extension of  $D$  with  $E$ .

# Future constructors

In order to extend the domain of a recursive map at run-time, our **second step** is to introduce constants  $\mathbf{future}_{m,E,D} : (E \rightarrow D) \rightarrow D$  we call **future constructors**.

- ① If  $D = (D_0, \dots, D_{n-1})$ , then  $\mathbf{future}_{m,E,D}$  represents in  $D$  a constructor  $\mathbf{c}_n$  we may to  $D$  in a possible extension  $D@E = (D_0, \dots, D_{n-1}, E)$ .
- ② We add a unary **term operator**  $\mathbf{Forth}_{m,E}$ , executing a possible extension of  $D$  with  $E$ .
- ③  $\mathbf{Forth}_{m,E}$  replaces  $\mathbf{future}_{m,E,D}$  with  $\mathbf{c}_n$ :
$$\mathbf{Forth}_{m,E} \cdot \mathbf{future}_{m,E,D}(f) = \mathbf{c}_n(\mathbf{Forth}_{m,E}(f))$$
- ④  $\mathbf{future}_{m,E,D}$ ,  $\mathbf{Forth}_{m,E}$  are extended to all types point-wise and component-wise.

## An example: one uniform extension of negation

- 1 Let **Bool** = {0, 1}. **Bool** with future constructors is a set of trees whose leaves are booleans.
- 2 Let  $\neg(0) = 1$ ,  $\neg(1) = 0$ . We uniformly extend  $\neg$  to any future constructor of **Bool** with the clause  
 $\neg(\mathbf{future}(f)) = \mathbf{future}(\neg \circ f)$ .

# An example: one uniform extension of negation

- 1 Let **Bool** = {0, 1}. **Bool** with future constructors is a set of trees whose leaves are booleans.
- 2 Let  $\neg(0) = 1$ ,  $\neg(1) = 0$ . We uniformly extend  $\neg$  to any future constructor of **Bool** with the clause  
 $\neg(\mathbf{future}(f)) = \mathbf{future}(\neg \circ f)$ .
- 3 The result is a map negating all leaves of a tree.



- §1. Types of  $\mathcal{N}$
- §2. Recursion in  $\mathcal{N}$
- §3. Terms of  $\mathcal{N}$  
- §4. Semantics for Expandable Recursion
- §5. Conclusions

### §3. Terms of $\mathcal{N}$

- 1 Terms of  $\mathcal{N}$  of type  $A$  are defined w.r.t. a list  $\Gamma \equiv E_0, \dots, E_{m-1}$  of data types, denoting *possible extensions* of  $A$ .
- 2 Terms of  $\mathcal{N}$  include all algebraic combinators, pairing, projections, tree constructors, future constructors  
**future** :  $(E \rightarrow A) \rightarrow A$  for  $E \in \Gamma$ , uniform application  
**u** :  $D, (D \rightarrow D) \rightarrow D$  and for each  $D = (D_0, \dots, D_{n-1})$  a constant **r**  $\equiv \mathbf{r}_{D,A}$  denoting recursion on trees of  $D$  with result in  $A$ .
- 3 **r** has one recursive clause  $r_i : (D_i \rightarrow A) \rightarrow A$  for each index set  $D_i$ , and one extra clause  $r_n : A \rightarrow A$ , dealing with extensions of  $A$ .
- 4 Terms are closed under application, and under the unary operator **Forth** $_{m,E}$ , which removes the type  $E$  in position  $m$  from a context.
- 5 We write  $\Gamma \vdash t : A$  for “ $t : A$  in the context  $\Gamma$ ”.

## Definition (Terms of $\mathcal{N}$ )

Let  $n, m \in \mathbf{Nat}$ ,  $i < n, j < m$ ,  $D = (D_0, \dots, D_{n-1})$ ,  $E \in \mathbf{Data}$ ,  $A, B \in \mathbf{Tp}$ , and  $\Gamma = E_0, \dots, E_{m-1}$  any context :

- 1  $\Gamma \vdash C : A$ . If  $C(\vec{x}) = \alpha[\vec{x}]$  is a combinator of type  $A$
- 2  $\Gamma \vdash \langle \_, \_ \rangle : A, B \rightarrow A_1 \times A_2$  and  $\Gamma \vdash \pi_i : A_1 \times A_2 \rightarrow A_i$
- 3 (constructors)  $\Gamma \vdash \mathbf{cons}_{i,D} : (D_i \rightarrow D) \rightarrow D$
- 4 If  $\Gamma \vdash t : A \rightarrow B$  and  $\Gamma \vdash u : A$ , then  $\Gamma \vdash t(u) : B$ .

## Definition (Terms of $\mathcal{N}$ )

Let  $n, m \in \mathbf{Nat}$ ,  $i < n, j < m$ ,  $D = (D_0, \dots, D_{n-1})$ ,  $E \in \mathbf{Data}$ ,  $A, B \in \mathbf{Tp}$ , and  $\Gamma = E_0, \dots, E_{m-1}$  any context :

- ①  $\Gamma \vdash C : A$ . If  $C(\vec{x}) = \alpha[\vec{x}]$  is a combinator of type  $A$
- ②  $\Gamma \vdash \langle \_, \_ \rangle : A, B \rightarrow A_1 \times A_2$  and  $\Gamma \vdash \pi_i : A_1 \times A_2 \rightarrow A_i$
- ③ (constructors)  $\Gamma \vdash \mathbf{cons}_{i,D} : (D_i \rightarrow D) \rightarrow D$
- ④ If  $\Gamma \vdash t : A \rightarrow B$  and  $\Gamma \vdash u : A$ , then  $\Gamma \vdash t(u) : B$ .
  
- ⑤ (future constructors)  $\Gamma \vdash \mathbf{future}_{j,E_j,A} : (E_j \rightarrow A) \rightarrow A$
- ⑥ (uniform application)  $\Gamma \vdash \mathbf{u}_D : D, (D \rightarrow D) \rightarrow D$
- ⑦ (recursion)  $\Gamma \vdash \mathbf{r}_{D,A} : \vec{R}, D \rightarrow A$ , with  $R_i = (D_i \rightarrow A) \rightarrow A$  for all  $i < n$ , and  $R_n = (A \rightarrow A)$
- ⑧ (Forth) If  $\Gamma, E, \Delta \vdash t : A$ , then  $\Gamma, \Delta \vdash \mathbf{Forth}_{m,E}.t : A @ E$

## Definition (Reductions on $\mathbf{u}$ , $\mathbf{r}$ for $\mathcal{N}$ )

- ① Let  $c \equiv \mathbf{future}_{i,E,D}$ ,  $\mathbf{cons}_i$  and  $g : D \rightarrow D$  and  $c(f) : D$ .
  - ①  $\mathbf{u}(c(f))(g) \rightsquigarrow c(g \circ f) : B$
  - ② If  $d \rightsquigarrow e : D$  then  $\mathbf{u}(d)(g) \rightsquigarrow \mathbf{u}(e)(g)$
- ② Assume  $D = (D_0, \dots, D_{n-1})$ ,  $\vec{r} = r_0, \dots, r_n$ .
  - ① If  $d \equiv c(f)$  and  $c \equiv \mathbf{cons}_i$  then  $\mathbf{r}\vec{r}d \rightsquigarrow r_i(\mathbf{r}(\vec{r}) \circ f)$
  - ② If  $d \equiv c(f)$  and  $c \equiv \mathbf{future}$  then  $\mathbf{r}\vec{r}d \rightsquigarrow r_n(c(\mathbf{r}(\vec{r}) \circ f))$
  - ③ If  $d \rightsquigarrow e$  then  $\mathbf{r}\vec{r}d \rightsquigarrow \mathbf{r}\vec{r}e$

The remaining reductions for  $\mathcal{N}$  are given in Appendix.

- §1. Types of  $\mathcal{N}$
- §2. Recursion in  $\mathcal{N}$
- §3. Terms of  $\mathcal{N}$
- §4. Semantics for Expandable Recursion 
- §5. Conclusions

In order to define a model of system  $\mathcal{N}$  we face the following vicious cycle.

- ① The definition of a term  $E \vdash t : D$  may include a future constructor  $\mathbf{future}_E$  of index set  $E$ .
- ②  $\mathbf{future}_E$  has type  $:(E \rightarrow D) \rightarrow D$ , and has domain all maps  $E \rightarrow D$ .
- ③ If  $E = D$ , defining these maps requires to define  $D$  **before completing the definition** of any  $t : D$ .
- ④ Thus, the definition of  $\mathbf{future}_E$  is not stratified.

# Candidates and Approximated Constructors

Let  $E \in \mathbf{Data}$ , and  $\mathcal{A}$  be any model of  $\mathcal{N}$ , and  $E_{\mathcal{A}}$  be the interpretation of the type  $E$  in  $\mathcal{A}$ , and  $X \subseteq E_{\mathcal{A}}$ .

- 1 We call  $X$  a **candidate** for  $E_{\mathcal{A}}$ .
- 2 In the models of  $\mathcal{N}$  we add constants  $\mathfrak{j}_X : (X \rightarrow D) \rightarrow D$ .
- 3 We call  $\mathfrak{j}_X$  an **approximation** of the future constructor **future** $_E : (E \rightarrow D) \rightarrow D$ .

# Candidates and Approximated Constructors

Let  $E \in \mathbf{Data}$ , and  $\mathcal{A}$  be any model of  $\mathcal{N}$ , and  $E_{\mathcal{A}}$  be the interpretation of the type  $E$  in  $\mathcal{A}$ , and  $X \subseteq E_{\mathcal{A}}$ .

- ① We call  $X$  a **candidate** for  $E_{\mathcal{A}}$ .
- ② In the models of  $\mathcal{N}$  we add constants  $\mathsf{j}_X : (X \rightarrow D) \rightarrow D$ .
- ③ We call  $\mathsf{j}_X$  an **approximation** of the future constructor  $\mathbf{future}_E : (E \rightarrow D) \rightarrow D$ .
- ④ The branching of  $\mathsf{j}_X(f)$  is a **restriction** of the branching of  $\mathbf{future}_E(f)$ .
- ⑤ The definition of  $\mathsf{j}_X$  is stratified, therefore if we may interpret  $\mathbf{future}_E = \mathsf{j}_X$  we would be done.

Unfortunately . . . (see next slide)

## A second vicious cycle

- ➊ Unfortunately, we cannot have  $\mathbf{future}_E = j_X$  in  $\mathcal{A}$ .
- ➋ Indeed, if we choose  $X \subseteq E_{\mathcal{A}}$  and we add the new constant  $j_X$  to  $\mathcal{A}$ , then we may define new terms  $e \in E_{\mathcal{A}}$  from them.
- ➌  $e$  is defined after  $X$ , thus we may have  $e \notin X$ , hence  $X \neq E$  and  $\mathbf{future}_E \neq j_X$ .

# A second vicious cycle

- 1 Unfortunately, we cannot have  $\mathbf{future}_E = j_X$  in  $\mathcal{A}$ .
- 2 Indeed, if we choose  $X \subseteq E_{\mathcal{A}}$  and we add the new constant  $j_X$  to  $\mathcal{A}$ , then we may define new terms  $e \in E_{\mathcal{A}}$  from them.
- 3  $e$  is defined after  $X$ , thus we may have  $e \notin X$ , hence  $X \neq E$  and  $\mathbf{future}_E \neq j_X$ .
  
- 4 If we try to **force**  $X = E_{\mathcal{A}}$  in  $\mathcal{A}$ , we find a vicious cycle similar to the vicious cycle in the definition of constructor.
- 5 This second vicious cycle, however, is easier to break.

# Breaking the vicious cycle

- 1 For any model  $\mathcal{A}$  there is a model  $\mathcal{A}^E \supset \mathcal{A}$  including the approximated constructor  $\mathsf{j}_{E_A}$ .
- 2  $\mathcal{N}$  cannot distinguish between  $\mathbf{future}_E$  and  $\mathsf{j}_{E_A}$ : thus, the behavior of  $\mathbf{future}_E$  in  $\mathcal{A}$  may be described from the behavior of  $\mathsf{j}_{E_A}$  in  $\mathcal{A}^E$ , without any vicious cycle.

# Breaking the vicious cycle

- 1 For any model  $\mathcal{A}$  there is a model  $\mathcal{A}^E \supset \mathcal{A}$  including the approximated constructor  $j_{E_A}$ .
- 2  $\mathcal{N}$  cannot distinguish between  $\text{future}_E$  and  $j_{E_A}$ : thus, the behavior of  $\text{future}_E$  in  $\mathcal{A}$  may be described from the behavior of  $j_{E_A}$  in  $\mathcal{A}^E$ , without any vicious cycle.
- 3 By exploiting this idea we may adapt Tait's notion of reducibility ([3]) to system  $\mathcal{N}$ .
- 4 We express Tait's reducibility w.r.t. a countable family of models of  $\mathcal{N}$ , closed under the operation  $\mathcal{A} \mapsto \mathcal{A}^E$ .
- 5 This proof cannot be expressed in a **second order arithmetic**, unless **we bound** the number of nesting in a data type and in a type.

- §1. Types of  $\mathcal{N}$
- §2. Recursion in  $\mathcal{N}$
- §3. Terms of  $\mathcal{N}$
- §4. Semantics for Expandable Recursion
- §5. Conclusions 

The main feature of  $\mathcal{N}$  is: the domain of a map of  $\mathcal{N}$  is extendable at run-time, yet all maps are total.

The main feature of  $\mathcal{N}$  is: the domain of a map of  $\mathcal{N}$  is extendable at run-time, yet all maps are total.

### Theorem (Totality and Expressive Power of $\mathcal{N}$ )

- 1 *All terms of  $\mathcal{N}$  normalize*
- 2 *All trees denoted by some term  $t : D \in \mathbf{Data}$  of system  $\mathcal{N}$  are well-founded.*
- 3 *(Expressive Power) We may define in  $\mathcal{N}$  an Infinitary Proof System for second order intuitionistic arithmetic  $\text{HA}^2$*

# Summary of the Talk

- 1 We defined a simply typed  $\lambda$ -calculus  $\mathcal{N}$  in which primitive recursive definitions on trees may be extended to a larger domain at run-time.
- 2 System  $\mathcal{N}$  is defined in term of **concrete tree operations** and aims to be **equivalent to polymorphism**.

- 1 We defined a simply typed  $\lambda$ -calculus  $\mathcal{N}$  in which primitive recursive definitions on trees may be extended to a larger domain at run-time.
- 2 System  $\mathcal{N}$  is defined in term of **concrete tree operations** and aims to be **equivalent to polymorphism**.
  
- 3 **What we proved**: System  $\mathcal{N}$  has the usual properties of Subject Reduction, Confluence and Normalization, and defines a Infinitary Proof System for Second Order Arithmetic.

- 1 We defined a simply typed  $\lambda$ -calculus  $\mathcal{N}$  in which primitive recursive definitions on trees may be extended to a larger domain at run-time.
- 2 System  $\mathcal{N}$  is defined in term of **concrete tree operations** and aims to be **equivalent to polymorphism**.
- 3 **What we proved**: System  $\mathcal{N}$  has the usual properties of Subject Reduction, Confluence and Normalization, and defines a Infinitary Proof System for Second Order Arithmetic.
- 4 **What we are checking**: whether well-founded trees and the definable maps on them are the same in system  $\mathcal{N}$  and system  $\mathcal{F}$ , and whether  $\mathcal{N}$  defines a denotation system for ordinals of second order analysis.

# References

- ① P. Martin-Lof, Intuitionistic Type Theory, June 1980, Bibliopolis.
- ② H. Barendregt, Lambda Calculus with Types. Cambridge University Press, 2013.
- ③ William W. Tait: Intensional Interpretations of Functionals of Finite Type I. J. Symb. Log. 32(2): 198-212 (1967)

A research report about system  $\mathcal{N}$  may be found at:

[www.di.unito.it/~stefano/  
SistemaN-definizioni-14-Luglio-2017.pdf](http://www.di.unito.it/~stefano/SistemaN-definizioni-14-Luglio-2017.pdf)

# A Century of Constructive Reasoning ...



Figure: **Hilbert Constructivization Conjecture** (Courtesy from Goettingen State and University Library, Germany. Thanks to Benedikt Ahrens for translating).

Probably the first version (around 1917) of the following conjecture by Hilbert:

**"Prove the following theorem: When a proof of existence has been concluded in mathematics, then also the decision (in a finite number of steps, as one says) is always possible."**

## Definition (Algebraic Reductions for $\mathcal{N}$ )

- 1 Let  $C(\vec{x}) = \alpha[\vec{x}]$  be any combinator.
  - 1  $C(\vec{t}) \rightsquigarrow \alpha[\vec{t}/\vec{x}]$ .
  - 2  $\pi_i(< a_1, a_2 >) \rightsquigarrow a_i$  for  $i = 1, 2$
  - 3 If  $a \rightsquigarrow b$  then  $\pi_i(a) \rightsquigarrow \pi_i(b)$ .
  - 4 If  $f \rightsquigarrow g$  then  $fa \rightsquigarrow ga$
- 2 Let  $c \equiv \text{future}_{i,E}$  and  $P$  be the combinator postponing an application, defined by  $P(x, y) = y(x)$ 
  - 1  $c(f)(e) \rightsquigarrow c(Pe \circ f)$
  - 2  $\pi_i(c(f)) \rightsquigarrow c(\pi_i \circ f)$  for  $i = 1, 2$

## Definition (Reductions on $\mathbf{u}$ , $\mathbf{r}$ for $\mathcal{N}$ )

- 1 Let  $c \equiv \mathbf{future}_{i,E,D}$ ,  $\mathbf{cons}_i$  and  $g : D \rightarrow D$  and  $c(f) : D$ .
  - 1  $\mathbf{u}(c(f))(g) \rightsquigarrow c(g \circ f) : B$
  - 2 If  $d \rightsquigarrow e : D$  then  $\mathbf{u}(d)(g) \rightsquigarrow \mathbf{u}(e)(g)$
- 2 Assume  $D = (D_0, \dots, D_{n-1})$ ,  $\vec{r} = r_0, \dots, r_n$ .
  - 1 If  $d \equiv c(f)$  and  $c \equiv \mathbf{cons}_i$  then  $\mathbf{r}\vec{r}d \rightsquigarrow r_i(\mathbf{r}(\vec{r}) \circ f)$
  - 2 If  $d \equiv c(f)$  and  $c \equiv \mathbf{future}$  then  $\mathbf{r}\vec{r}d \rightsquigarrow r_n(c(\mathbf{r}(\vec{r}) \circ f))$
  - 3 If  $d \rightsquigarrow e$  then  $\mathbf{r}\vec{r}d \rightsquigarrow \mathbf{r}\vec{r}e$

- ① **Forth** upgrades a term from the context  $\Gamma, E, \Delta$  to the context  $\Gamma, \Delta$ , executing the extension of index set  $E$ .
- ② **Forth** requires the operation  $a^{i, E}$  of context lifting (*defined in the next slide*).

### Definition (Reductions for **Forth**)

Assume  $D = (D_0, \dots, D_{n-1})$ .

- ① **(up-grading) Forth.future**  $i, E, D(f) \rightsquigarrow \mathbf{c}_{\mathbf{n}, D @ E}(\mathbf{Forth}.f)$
- ② **Forth.future**  $j+1, E, D(f) \rightsquigarrow \mathbf{future}_{j, E, D @ E}(\mathbf{Forth}.f)$  for  $j \geq i$
- ③ **Forth.c**  $(f) \rightsquigarrow c(\mathbf{Forth}.f)$  for any other (future) constructor
- ④ If  $d : D \in \mathbf{Data}$  and  $d \rightsquigarrow e : D$  then **Forth**  $d \rightsquigarrow \mathbf{Forth}e$ .
- ⑤ **(Forth.f)(a)**  $\rightsquigarrow \mathbf{Forth}.f(a^{i, E})$
- ⑥  $\pi_i(\mathbf{Forth}.a) \rightsquigarrow \mathbf{Forth}.\pi_i(a)$  for  $i = 1, 2$ .

- 1 Context Lifting downgrades a term from the context  $\Gamma, \Delta$  to the context  $\Gamma, E, \Delta$ , adding the extension of index set  $E$  to the list of future extensions.
- 2 Context lifting adds 1 to the subscripts of future constructors with index in  $\Delta$ .

### Definition (The term $t^{i,E}$ )

Assume  $\Gamma \vdash t : A$  is a term of  $\mathcal{N}$ ,  $c$  is any constant. We define  $t^{i,E}$  by induction on  $t$ .

- 1 **(down-grading)**  $(\mathbf{future}_{j,F})^{i,E} \equiv \mathbf{future}_{j+1,F}$  for all  $j \geq i$
- 2  $c^{i,E} \equiv c$  in all other cases.
- 3  $\mathbf{Forth}_{j,F}(u)^{i,E} \equiv \mathbf{Forth}_{j+1,F}(u^{i,E})$  for all  $j \geq i$ .
- 4  $\mathbf{Forth}_{j,F}(u)^{i,E} \equiv \mathbf{Forth}_{j,F}(u^{i+1,E})$  in all other cases.
- 5  $t(u)^{i,E} \equiv t^{i,E}(u^{i,E})$