The Simply Typed Lambda Calculus N

EUTypes Meeting in Nijmegen

S. Berardi (sp.), U. de’ Liguoro

Torino University, Italy

January 23, 2018

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

A First Order Reformulation of Polymorphism

@ We introduce a simply typed A-calculus, system A/

© Our goal is representing in A all well-founded trees and
polymorphic maps on them which are definable in system
].'

© The main feature of A is the possibility of extending at
run-time the domain of a recursively defined map

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

A First Order Reformulation of Polymorphism

@ We introduce a simply typed A-calculus, system A/

© Our goal is representing in A all well-founded trees and
polymorphic maps on them which are definable in system
].'

© The main feature of A is the possibility of extending at
run-time the domain of a recursively defined map

© Reduction of A/ are:

e algebraic reductions

e reductions for primitive recursion on trees

e reductions for adding one constructor to a recursive
definition

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

This is an ongoing work!

The result we already have about system A are:
@ normalization (with an intuitionistic proof)

Q all trees denoted by some term t in some data type D of
system N are well-founded.

© system N defines a Infinitary Proof System for second
order intuitionistic arithmetic

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

This is an ongoing work!

The result we already have about system A are:
@ normalization (with an intuitionistic proof)

Q all trees denoted by some term t in some data type D of
system N are well-founded.

© system N defines a Infinitary Proof System for second
order intuitionistic arithmetic

The results we are checking is:

@ equivalence between system N and polymorphism
© There is a fully-abstract model of system N

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Plan of the Talk

@ §1. Types of N «—

@ §2. Recursion in

@ §3. Terms of \/

@ §4. Semantics for Expandable Recursion

@ §5. Conclusions

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

§1. Types of system

@ Let (Dy,...,Dp) be the set of well-founded trees whose
constructors have index sets among Dy, ..., Dy.

@ In Martin-Lof notation [1], (Ds, ..., Dp) is the W-type
W(@i:{1,...,n})D;.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

§1. Types of system

@ Let (Dy,...,Dp) be the set of well-founded trees whose
constructors have index sets among Dy, ..., Dy.

@ In Martin-Lof notation [1], (Ds, ..., Dp) is the W-type
W(@i:{1,...,n})D;.

© The set Data of data types of AV is the smallest set such
that: if Dy,..., D, € Dthen (Dy,...,D,) € D.

© Data includes the data types:), Unit, Bool, Nat, finite
binary trees, well-founded at most countable trees, and
many more.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

§1. Types of system

@ Let (Dy,...,Dp) be the set of well-founded trees whose
constructors have index sets among Dy, ..., Dy.

@ In Martin-Lof notation [1], (Ds, ..., Dp) is the W-type
W(@i:{1,...,n})D;.

© The set Data of data types of AV is the smallest set such
that: if Dy,..., D, € Dthen (Dy,...,D,) € D.

© Data includes the data types:), Unit, Bool, Nat, finite
binary trees, well-founded at most countable trees, and
many more.

© The set Tp of types of A is inductively defined by
T = D|T x T|T — T for any data type D € Data.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

The general pattern for a Tree

D= (D',D",D") is the set of well-founded trees whose nodes
have index set D' or D" or D"’. A tree in D is made of:
@ constructors ¢/, ¢”, ¢’ of index sets D', D", D"
@ index maps f,g,hoftype D' — D, D" — D,D" — D
©Q indexesy,z: D', tu:D", v,w:D"
Assume that f(y), f(y) have values c”’(g), ¢”’(h). Then
x = ¢/(f) : D denotes the tree:

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

The general pattern for a Tree

D= (D',D",D") is the set of well-founded trees whose nodes
have index set D' or D" or D"’. A tree in D is made of:
@ constructors ¢/, ¢”, ¢’ of index sets D', D", D"
@ index maps f,g,hoftype D' — D, D" — D,D" — D
©Q indexesy,z: D', tu:D", v,w:D"
Assume that f(y), f(y) have values c”’(g), ¢”’(h). Then
x = ¢/(f) : D denotes the tree:

x =c/(f)

W \Z:\Dl
7c///)
N D" Vv DV \V{/ D"

(v)

o |

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Road Map: §2

@ §1. Types of N

@ §2. Recursionin ' «—

@ §3. Terms of \/

@ §4. Semantics for Expandable Recursion

@ §5. Conclusions

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

§2. Recursion in \/

@ Informally, a primitive recursion of h: D — Aruns as
follows. Assume that D has a constructor ¢; with argument
listdi,...,dn,.... Wefirst apply htoeach dy,...,d,,...,
obtaining h(ds),...,h(dp), ... : A, then we define

h(Ci(d17 oo, dn, ..)) = l'i(h((:h)7 RN h(dn), ..)

The constructor c¢; disappear.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

§2. Recursion in \/

@ Informally, a primitive recursion of h: D — Aruns as
follows. Assume that D has a constructor ¢; with argument
listdi,...,dn,.... Wefirst apply htoeach dy,...,d,,...,
obtaining h(dy), ..., h(dn),...: A, then we define

h(Ci(d1, R 7dn7 ..)) = l'i(h((:h)7 ey h(dn), ..)
The constructor c¢; disappear.

@ Inany D c Data, the list d4, ..., dp, ... of arguments of ¢; is
expressed in NV by an index map f : D; — D such that
fler) =d,...,f(en) = dp,... forsomeey,...,ep,...: D,

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

§2. Recursion in \/

@ Informally, a primitive recursion of h: D — Aruns as
follows. Assume that D has a constructor ¢; with argument
listdi,...,dn,.... Wefirst apply htoeach dy,...,d,,...,
obtaining h(dy), ..., h(dn),...: A, then we define

h(Ci(d1, R 7dn7 ..)) = l'i(h((:h)7 ey h(dn), ..)
The constructor c¢; disappear.

@ Inany D c Data, the list d4, ..., dp, ... of arguments of ¢; is
expressed in NV by an index map f : D; — D such that
fler) =d,...,f(en) = dp,... forsomeey,...,ep,...: D,

© Thus, instead of forming h(dy), ..., h(dn),...: A, we form
hof : D; — A, an index map for h(dy) = h(f(e1)), ...,
h(dn) = h(f(ep)),...: A. Then we define in NV:

h(ci(f)) = ri(hof)

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Definition of Extendable Recursion

@ Extendable recursion on D in system N defines a map
h: D — A using one clause r; for each D;, and a single
extra clause r, : A — A, dealing with all possible
extensions of the data type D.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Definition of Extendable Recursion

@ Extendable recursion on D in system N defines a map
h: D — A using one clause r; for each D;, and a single
extra clause r, : A — A, dealing with all possible
extensions of the data type D.

Q Ift = ¢;(f), as usual we set

h(t) = r;(hof)

© The clause r, is used on trees t = future(f) : D built by
some new constructor future. We assume thath: D — A
is already defined on f(e) : D for all e : D;, we move the
recursive call to h to the children of ¢, forming
future(hof) : A, then we apply r, obtaining

h(t) = rn(future(hof))

The constructor future does not disappear.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Recursion with Extendable Domain in \/

In order to extend the domain of a recursive map at run-time,
our first step is to introduce an operation extending a data
type.
@ We define an operation (.)@E adding one index set
E < Data to a data type D = (Dy, ..., Dy_1):
DOE = (Do, oo, Dp_q, E) € Data.
@ DQE has one tree constructor ¢y, : (E — DOE) — DOE
more than D.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Recursion with Extendable Domain in \/

In order to extend the domain of a recursive map at run-time,
our first step is to introduce an operation extending a data
type.
@ We define an operation (.)@E adding one index set
E < Data to a data type D = (Dy, ..., Dy_1):
DOE = (Do, oo, Dp_q, E) € Data.
@ DQE has one tree constructor ¢y, : (E — DOE) — DOE
more than D.

© (.)@D is extended pointwise and componentwise to all
types in Tp by:
o (Ax B)QE = AQE x BOE < Tp
o (A— B)@E = A — BQE € Tp.

O We call the type A@E an extension of the type A.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Future constructors

In order to extend the domain of a recursive map at run-time,
our second step is to introduce constants
future,, £ p : (E — D) — D we call future constructors.

Q@ If D= (Dy,...,Dn_1), then future,, £ p representsin D a
constructor ¢, we may to D in a possible extension DOE =
(Do, ...,Dp_1,E).

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Future constructors

In order to extend the domain of a recursive map at run-time,
our second step is to introduce constants
future,, £ p : (E — D) — D we call future constructors.

Q@ If D= (Dy,...,Dn_1), then future,, £ p representsin D a
constructor ¢, we may to D in a possible extension DOE =
(Do, ...,Dp_1,E).

@ We add a unary term operator Forth,, g, executing a
possible extension of D with E.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Future constructors

In order to extend the domain of a recursive map at run-time,
our second step is to introduce constants
future,, £ p : (E — D) — D we call future constructors.

Q@ If D= (Dy,...,Dn_1), then future,, £ p representsin D a
constructor ¢, we may to D in a possible extension DOE =
(Do, ...,Dp_1,E).

@ We add a unary term operator Forth,, g, executing a
possible extension of D with E.

© Forth, £ replaces future, £ p with cy:
Forth,, £ .future,, £ p(f) = cn(Forth, £(f))

Q future, £ p, Forth,,, £ are extended to all types point-wise
and component-wise.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

An example: one uniform extension of negation

@ Let Bool = {0, 1}. Bool with future constructors is a set of
trees whose leaves are booleans.

Q Let —(0) =1, —(1) = 0. We uniformly extend - to any
future constructor of Bool with the clause
—(future(f)) = future(—of).

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

An example: one uniform extension of negation

@ Let Bool = {0, 1}. Bool with future constructors is a set of
trees whose leaves are booleans.

Q Let —(0) =1, —(1) = 0. We uniformly extend - to any
future constructor of Bool with the clause
—(future(f)) = future(—of).

© The result is a map negating all leaves of a tree.
x = future(id)

0: Bog/ 1 : Bool

1d(0) =0 id(1) =

~» =(x) = future(—oid)

o o

~(14(0)) =

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Road Map: §3

@ §1. Types of N

@ §2. Recursion in

@ §3. Terms of N «—

@ §4. Semantics for Expandable Recursion

@ §5. Conclusions

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

§3. Terms of A/

@ Terms of NV of type A are defined w.r.t. a list
=E,...,Ey_q of data types, denoting possible
extensions of A.

@ Terms of NV include all algebraic combinators, pairing,
projections, tree constructors, future constructors
future : (E — A) — Afor E € T, uniform application
u:D,(D— D)— Dandforeach D= (Dy,...,D,1) a
constant r = rp 4 denoting recursion on trees of D with
result in A.

© r has one recursive clause r; : (D; — A) — A for each index
set D;, and one extra clause r, : A — A, dealing with
extensions of A.

© Terms are closed under application, and under the unary
operator Forth,, £, which removes the type E in position m
from a context.

© We write I -t : Afor “t : Ain the context "

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Typing rules of A/

Definition (Terms of \)
Letn,meNat,i<n,j<m,D=(Dy,...,Dy1), E € Data,
A BeTp,andl = Ey,..., E,_1 any context :
Q - C: A If C(X) = a[X] is a combinator of type A
QrlF<_,_>AB—s A xAandTl k7 Ay x Ay — A
@ (constructors) I'-cons,p: (D; — D) — D
QIlfir-t:A—-Bandltu: A thenTl - t(u): B.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Typing rules of A/

Definition (Terms of \)
Letn,meNat,i<n,j<m,D=(Dy,...,Dy1), E € Data,
A BeTp,andl = Ey,..., E,_1 any context :
Q - C: A If C(X) = a[X] is a combinator of type A
QrlF<_,_>AB—s A xAandTl k7 Ay x Ay — A
@ (constructors) I'-cons,p: (D; — D) — D
QIlfir-t:A—-Bandltu: A thenTl - t(u): B.

Q@ (future constructors) I' - future,-,EpA (EfE—A) — A

Q (uniform application) F'~up: D,(D — D) — D

@ (recursion) Trp4: R, D — A, with R = (D; — A) — A
foralli < n,and R, = (A — A)

Q (Forth) If T E, A+ t: A thenT,AF Forthp, .t : AGE

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Definition (Reductions on u, r for \V)

@ Let c = future; g p,cons;pand g: D — D and ¢(f) : D.

@ u(c(f))(g)~c(gof) - B
@ If d~e: Dthenu(d)(g)~u(e)(g)

@ Assume D= (Dy,...,Dp 1), F=ro,...,In

@ If d = ¢(f) and ¢ = cons; then rid~~r;(r(r)of)
@ If d = ¢(f) and ¢ = future then rid~r,(c(r(F)of))
@ If d~ethenrrd~rre

The remaining reductions for A/ are given in Appendix.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Road Map: §4

@ §1. Types of \/
@ §2. Recursion in
@ §3. Terms of \/

@ §4. Semantics for Expandable Recursion «—

@ §5. Conclusions

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

4. Semantics for Expandable Recursion

In order to define a model of system A we face the following
vicious cycle.

@ The definition of a term E + t : D may include a future
constructor futureg of index set E.

@ futureg has type : (E — D) — D, and has domain all
maps E — D.

© If E = D, defining these maps requires to define D before
completing the definition of any t : D.

© Thus, the definition of futureg is not stratified.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Candidates and Approximated Constructors

Let E € Data, and A be any model of A/, and E_4 be the
interpretation of the type E in A, and X C E4.

@ We call X a candidate for E 4.
@ In the models of /' we add constants j, : (X — D) — D.

© We call j, an approximation of the future constructor
futurecz : (E — D) — D.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Candidates and Approximated Constructors

Let E € Data, and A be any model of A/, and E_4 be the
interpretation of the type E in A, and X C E4.

@ We call X a candidate for E 4.
@ In the models of /' we add constants j, : (X — D) — D.

© We call j, an approximation of the future constructor
futurecz : (E — D) — D.

@ The branching of j,(f) is a restriction of the branching of
futurec(f).

© The definition of 5, is stratified, therefore if we may
interpret futurez = j, we would be done.

Unfortunately ... (see next slide)

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

A second vicious cycle

@ Unfortunately, we cannot have futurez = j, in A.
@ Indeed, if we choose X C E4 and we add the new constant
jx to A, then we may define new terms e ¢ E4 from them.
© eis defined after X, thus we may have e ¢ X, hence
X # E and futureg # j,.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

A second vicious cycle

@ Unfortunately, we cannot have futurez = j, in A.

@ Indeed, if we choose X C E4 and we add the new constant
jx to A, then we may define new terms e ¢ E4 from them.

© eis defined after X, thus we may have e ¢ X, hence
X # E and futureg # j,.

© If we try to force X = E4 in A, we find a vicious cycle
similar to the vicious cycle in the definition of constructor.

©@ This second vicious cycle, however, is easier to break.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Breaking the vicious cycle

@ For any model A there is a model AE > A including the
approximated constructor j g, .

@ N cannot distinguish between futureg and JE,:
thus, the behavior of futureg in A may be described from
the behavior of 5, in A, without any vicious cycle.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Breaking the vicious cycle

@ For any model A there is a model AE > A including the
approximated constructor j g, .

@ N cannot distinguish between futureg and JE,:
thus, the behavior of futureg in A may be described from
the behavior of 5, in A, without any vicious cycle.

© By exploiting this idea we may adapt Tait’s notion of
reducibility ([3]) to system N/.

@ We express Tait’s reducibility w.r.t. a countable family of
models of \V, closed under the operation A — AFE.

@ This proof cannot be expressed in a second order
arithmetic, unless we bound the number of nesting in a
data type and in a type.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Road Map: §5

@ §1. Types of N

@ §2. Recursion in

@ §3. Terms of \/

@ §4. Semantics for Expandable Recursion

@ §5. Conclusions «—

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

§5: Conclusions

The main feature of A\ is: the domain of a map of N is
extendable at run-time, yet all maps are total.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

§5: Conclusions

The main feature of A\ is: the domain of a map of N is
extendable at run-time, yet all maps are total.

Theorem (Totality and Expressive Power of \)

@ Al terms of N' normalize

©Q All trees denoted by some term t : D € Data of system N
are well-founded.

© (Expressive Power) We may define in N” an Infinitary
Proof System for second order intuitionistic arithmetic HA?

v

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Summary of the Talk

@ We defined a simply typed \-calculus N in which
primitive recursive definitions on trees may be extended to
a larger domain at run-time.

@ System N is defined in term of concrete tree operations
and aims to be equivalent to polymorphism.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Summary of the Talk

@ We defined a simply typed \-calculus N in which
primitive recursive definitions on trees may be extended to
a larger domain at run-time.

@ System N is defined in term of concrete tree operations
and aims to be equivalent to polymorphism.

© What we proved: System N has the usual properties of
Subject Reduction, Confluence and Normalization, and
defines a Infinitary Proof System for Second Order
Arithmetic.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Summary of the Talk

@ We defined a simply typed \-calculus N in which
primitive recursive definitions on trees may be extended to
a larger domain at run-time.

@ System N is defined in term of concrete tree operations
and aims to be equivalent to polymorphism.

© What we proved: System N has the usual properties of
Subject Reduction, Confluence and Normalization, and
defines a Infinitary Proof System for Second Order
Arithmetic.

© What we are checking: whether well-founded trees and
the definable maps on them are the same in system A and
system F, and whether N defines a denotation system for
ordinals of second order analysis.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

References

@ P Martin-Lof, Intuitionistic Type Theory, June 1980,
Bibliopolis.

@ H. Barendregt, Lambda Calculus with Types. Cambridge
University Press, 2013.

© William W. Tait: Intensional Interpretations of Functionals
of Finite Type I. J. Symb. Log. 32(2): 198-212 (1967)

A research report about system A/ may be found at:

www.di.unito.it/~stefano/
SistemaN-definizioni-14-Luglio—-2017.pdf

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

www.di.unito.it/~stefano/SistemaN-definizioni-14-Luglio-2017.pdf
www.di.unito.it/~stefano/SistemaN-definizioni-14-Luglio-2017.pdf

A Century of Constructive Reasoning ...

T Y|

MWI&*W?‘J#VLM,}MM{M&//& M

'(" e

Figure: Hilbert Constructivization Conjecture (Courtesy from
Goettingen State and University Library, Germany. Thanks to
Benedikt Ahrens for translating).

Probably the first version (around 1917) of the following
conjecture by Hilbert:

”Prove the following theorem: When a proof of existence
has been concluded in mathematics, then also the
decision (in a finite number of steps, as one says) is
always possible. ”

S. Berardi (sp.), U. de’ Liguoro

The Simply Typed Lambda Calculus N

Appendix: the complete set of reductions for A/

Definition (Algebraic Reductions for \/)

@ Let C(X) = a[X] be any combinator.
0 C(D)~alf/A].
Q@ 7i(< ay,a >)wajfori=1,2
@ If a~bthen mi(a)~mi(b).
Q If f~~gthen fa~~ga

@ Let c = future; £ and P be the combinator postponing an
application, defined by P(x, y) = y(x)

Q c(f)(e)~c(Peof)
@ mj(c(f))~c(mjof) fori=1,2

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Definition (Reductions on u, r for)

@ Let c =future;cp,cons;pand g: D — Dand ¢(f) : D.

©Q u(c(f)(g)~c(gef) - B
@ If d~e: Dthenu(d)(g)~u(e)(g)

©Q Assume D= (Dy,...,Dn_ 1), F=ro,...,0n.

@ If d = ¢(f) and ¢ = cons; then rrd~~r;(r(r)of)
@ If d = ¢(f) and ¢ = future then rFd~ry(c(r(r)of))
@ If d~ethen rid~rre

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

@ Forth upgrades a term from the context I', E, A to the
context I', A, executing the extension of index set E.

@ Forth requires the operation a"f of context lifting (defined
in the next slide).

Definition (Reductions for Forth)
Assume D = (Dy,...,Dp_1).

@ (up-grading) Forth future; £ p(f)~~cn pee(Forth.f)

Q Forth.future; 1 £ p(f)~future; £ poc(Forth.f) for j > i
© Forth.c(f)~c(Forth.f) for any other (future) constructor
Q If d: D € Data and d~e : D then Forthd~~Forthe.

@ (Forth.f)(a)~Forth.f(a"F)

Q ri(Forth.a)~~Forth.7;(a)) fori =1,2.

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

Context Lifting t"£

@ Context Lifting downgrades a term from the context I', A to
the context I, E, A, adding the extension of index set E to
the list of future extensions.

© Context lifting adds 1 to the subscripts of future
constructors with index in A.

Definition (The term t"£)
Assume ' t: Ais aterm of V, cis any constant. We define
t"E by induction on t.
@ (down-grading) (future; £)'F = future;, | ¢ for all j > i
@ ¢'F = cin all other cases.
@ Forth; £(u)"E = Forth; 1 £(u"E) for all j > i.
Q Forth; £(u)"E = Forth; £(u'*1E) in all other cases.

e t()/E = tIE(UI E)

S. Berardi (sp.), U. de’ Liguoro The Simply Typed Lambda Calculus N

