The Simply Typed Lambda Calculus ${\cal N}$ EUTypes Meeting in Nijmegen

S. Berardi (sp.), U. de' Liguoro

Torino University, Italy

January 23, 2018

S. Berardi (sp.), U. de' Liguoro The Simply Typed Lambda Calculus N

A First Order Reformulation of Polymorphism

- **1** We introduce a simply typed λ -calculus, **system** \mathcal{N}
- ② Our goal is representing in \mathcal{N} all well-founded trees and polymorphic maps on them which are definable in system \mathcal{F}
- So The main feature of \mathcal{N} is the possibility of extending at run-time the domain of a recursively defined map

・ 同 ト ・ ヨ ト ・ ヨ ト …

A First Order Reformulation of Polymorphism

- **1** We introduce a simply typed λ -calculus, **system** \mathcal{N}
- Our goal is representing in N all well-founded trees and polymorphic maps on them which are definable in system F
- So The main feature of \mathcal{N} is the possibility of extending at run-time the domain of a recursively defined map
- **9** Reduction of \mathcal{N} are:
 - algebraic reductions
 - reductions for primitive recursion on trees
 - reductions for adding one constructor to a recursive definition

ヘロン 人間 とくほ とくほとう

The result we already have about system \mathcal{N} are:

- normalization (with an intuitionistic proof)
- all trees denoted by some term t in some data type D of system N are well-founded.
- system N defines a Infinitary Proof System for second order intuitionistic arithmetic

(4回) (4回) (4回) (回)

The result we already have about system \mathcal{N} are:

- normalization (with an intuitionistic proof)
- all trees denoted by some term t in some data type D of system N are well-founded.
- system N defines a Infinitary Proof System for second order intuitionistic arithmetic

The results we are checking is:

- **()** equivalence between system $\mathcal N$ and polymorphism
- 2 There is a fully-abstract model of system \mathcal{N}

<ロ> (四) (四) (三) (三) (三) (三)

Plan of the Talk

- §1. Types of \mathcal{N} \blacksquare
- §2. Recursion in \mathcal{N}
- §3. Terms of \mathcal{N}
- §4. Semantics for Expandable Recursion
- §5. Conclusions

$\S1$. Types of system \mathcal{N}

- Let (D_1, \ldots, D_n) be the set of well-founded trees whose constructors have index sets among D_1, \ldots, D_n .
- ② In Martin-Lof notation [1], (D_1, \ldots, D_n) is the *W*-type $W(i : \{1, \ldots, n\})D_i$.

$\S1$. Types of system \mathcal{N}

- Let (D_1, \ldots, D_n) be the set of well-founded trees whose constructors have index sets among D_1, \ldots, D_n .
- ② In Martin-Lof notation [1], (D_1, \ldots, D_n) is the *W*-type $W(i : \{1, \ldots, n\})D_i$.
- So The set **Data** of data types of \mathcal{N} is the smallest set such that: if $D_1, \ldots, D_n \in \mathcal{D}$ then $(D_1, \ldots, D_n) \in \mathcal{D}$.
- Data includes the data types: Ø, Unit, Bool, Nat, finite binary trees, well-founded at most countable trees, and many more.

$\S1$. Types of system \mathcal{N}

- Let (D_1, \ldots, D_n) be the set of well-founded trees whose constructors have index sets among D_1, \ldots, D_n .
- ② In Martin-Lof notation [1], (D_1, \ldots, D_n) is the *W*-type $W(i : \{1, \ldots, n\})D_i$.
- So The set **Data** of data types of \mathcal{N} is the smallest set such that: if $D_1, \ldots, D_n \in \mathcal{D}$ then $(D_1, \ldots, D_n) \in \mathcal{D}$.
- Data includes the data types: Ø, Unit, Bool, Nat, finite binary trees, well-founded at most countable trees, and many more.
- **5** The set **Tp** of types of \mathcal{N} is inductively defined by $T ::= D|T \times T|T \rightarrow T$ for any data type $D \in D$ ata.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The general pattern for a Tree

D = (D', D'', D''') is the set of well-founded trees whose nodes have index set D' or D'' or D'''. A tree in D is made of:

- constructors c', c'', c''' of index sets D', D'', D'''
- 2 index maps f, g, h of type $D' \rightarrow D, D'' \rightarrow D, D''' \rightarrow D$

o indexes y, z : D', t, u : D'', v, w : D'''

Assume that f(y), f(y) have values c''(g), c'''(h). Then $x = \mathbf{c}'(f) : D$ denotes the tree:

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

The general pattern for a Tree

D = (D', D'', D''') is the set of well-founded trees whose nodes have index set D' or D'' or D'''. A tree in D is made of:

- Constructors c', c'', c''' of index sets D', D'', D'''
- 2 index maps f, g, h of type $D' \rightarrow D, D'' \rightarrow D, D''' \rightarrow D$

indexes y, z : D', t, u : D", v, w : D""

Assume that f(y), f(y) have values c''(g), c'''(h). Then $x = \mathbf{c}'(f) : D$ denotes the tree:

- §1. Types of $\mathcal N$
- §2. Recursion in \mathcal{N}
- §3. Terms of $\mathcal N$
- §4. Semantics for Expandable Recursion
- §5. Conclusions

§2. Recursion in \mathcal{N}

Informally, a primitive recursion of *h* : *D* → *A* runs as follows. Assume that *D* has a constructor **c**_i with argument list *d*₁,..., *d*_n,.... We first apply *h* to each *d*₁,..., *d*_n,..., obtaining *h*(*d*₁),..., *h*(*d*_n),...: *A*, then we define

 $h(c_i(d_1,\ldots,d_n,\ldots))=r_i(h(d_1),\ldots,h(d_n),\ldots)$

The constructor **c**_i disappear.

§2. Recursion in \mathcal{N}

Informally, a primitive recursion of *h* : *D* → *A* runs as follows. Assume that *D* has a constructor **c**_i with argument list *d*₁,..., *d*_n,.... We first apply *h* to each *d*₁,..., *d*_n,..., obtaining *h*(*d*₁),..., *h*(*d*_n),...: *A*, then we define

 $h(c_i(d_1,\ldots,d_n,\ldots))=r_i(h(d_1),\ldots,h(d_n),\ldots)$

The constructor c_i disappear.

② In any *D* ∈ **Data**, the list $d_1, ..., d_n, ...$ of arguments of **c**_i is expressed in \mathcal{N} by an index map $f : D_i \to D$ such that $f(e_1) = d_1, ..., f(e_n) = d_n, ...$ for some $e_1, ..., e_n, ... : D_i$.

§2. Recursion in \mathcal{N}

Informally, a primitive recursion of *h* : *D* → *A* runs as follows. Assume that *D* has a constructor **c**_i with argument list *d*₁,..., *d*_n,.... We first apply *h* to each *d*₁,..., *d*_n,..., obtaining *h*(*d*₁),..., *h*(*d*_n),...: *A*, then we define

 $h(\textbf{c}_i(d_1,\ldots,d_n,\ldots))=r_i(h(d_1),\ldots,h(d_n),\ldots)$

The constructor c_i disappear.

② In any *D* ∈ **Data**, the list $d_1, ..., d_n, ...$ of arguments of **c**_i is expressed in \mathcal{N} by an index map $f : D_i \to D$ such that $f(e_1) = d_1, ..., f(e_n) = d_n, ...$ for some $e_1, ..., e_n, ... : D_i$.

Solution Thus, instead of forming $h(d_1), \ldots, h(d_n), \ldots : A$, we form $h \circ f : D_i \to A$, an index map for $h(d_1) = h(f(e_1)), \ldots, h(d_n) = h(f(e_n)), \ldots : A$. Then we define in \mathcal{N} :

$$h(\textbf{c}_i(f)) = r_i(h \circ f)$$

Definition of Extendable Recursion

Extendable recursion on *D* in system *N* defines a map *h* : *D* → *A* using one clause *r_i* for each *D_i*, and a single extra clause *r_n* : *A* → *A*, dealing with all possible extensions of the data type *D*.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

э.

Definition of Extendable Recursion

- Extendable recursion on *D* in system *N* defines a map *h* : *D* → *A* using one clause *r_i* for each *D_i*, and a single extra clause *r_n* : *A* → *A*, dealing with all possible extensions of the data type *D*.
- 2 If $\mathbf{t} \equiv \mathbf{c_i}(\mathbf{f})$, as usual we set

 $h(t) = r_i(h {\circ} f)$

3 The clause r_n is used on trees $\mathbf{t} \equiv \mathbf{future}(\mathbf{f}) : \mathbf{D}$ built by some new constructor **future**. We assume that $h : \mathbf{D} \rightarrow A$ is already defined on $f(e) : \mathbf{D}$ for all $e : D_i$, we move the recursive call to h to the children of t, forming **future**($h \circ f$) : A, then we apply r_n obtaining

 $h(t) = r_n(future(h \circ f))$

The constructor future does not disappear.

Recursion with Extendable Domain in \mathcal{N}

In order to extend the domain of a recursive map at run-time, our **first step** is to introduce an operation extending a data type.

- We define an operation (.)@*E* adding one index set $E \in \mathbf{Data}$ to a data type $D = (D_0, \ldots, D_{n-1})$: $D@E = (D_0, \ldots, D_{n-1}, E) \in \mathbf{Data}$.
- ② D@E has one tree constructor $c_n : (E \to D@E) \to D@E$ more than D.

▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Recursion with Extendable Domain in \mathcal{N}

In order to extend the domain of a recursive map at run-time, our **first step** is to introduce an operation extending a data type.

- We define an operation (.)@*E* adding one index set $E \in \mathbf{Data}$ to a data type $D = (D_0, \ldots, D_{n-1})$: $D@E = (D_0, \ldots, D_{n-1}, E) \in \mathbf{Data}$.
- ② D@E has one tree constructor $c_n : (E \to D@E) \to D@E$ more than D.
- (.)@D is extended pointwise and componentwise to all types in **Tp** by:
 - $(A \times B)$ @ $E \equiv A$ @ $E \times B$ @ $E \in$ Tp
 - $(A \rightarrow B)$ @ $E \equiv A \rightarrow B$ @ $E \in$ Tp.
- We call the type A@E an extension of the type A.

ヘロン 人間 とくほど くほとう

Future constructors

In order to extend the domain of a recursive map at run-time, our **second step** is to introduce constants **future**_{*m*,*E*,*D*} : $(E \rightarrow D) \rightarrow D$ we call **future constructors**.

• If $D = (D_0, ..., D_{n-1})$, then **future**_{*m*,*E*,*D*} represents in *D* a constructor **c**_n we may to *D* in a possible extension $D@E = (D_0, ..., D_{n-1}, E)$.

Future constructors

In order to extend the domain of a recursive map at run-time, our **second step** is to introduce constants **future**_{*m*,*E*,*D*} : $(E \rightarrow D) \rightarrow D$ we call **future constructors**.

- If $D = (D_0, \ldots, D_{n-1})$, then **future**_{*m*,*E*,*D*} represents in *D* a constructor **c**_{**n**} we may to *D* in a possible extension $D@E = (D_0, \ldots, D_{n-1}, E)$.
- We add a unary term operator Forth_{m,E}, executing a possible extension of D with E.

Future constructors

In order to extend the domain of a recursive map at run-time, our **second step** is to introduce constants **future**_{*m*,*E*,*D*} : $(E \rightarrow D) \rightarrow D$ we call **future constructors**.

- If $D = (D_0, ..., D_{n-1})$, then **future**_{*m*,*E*,*D*} represents in *D* a constructor **c**_{**n**} we may to *D* in a possible extension $D@E = (D_0, ..., D_{n-1}, E)$.
- We add a unary term operator Forth_{m,E}, executing a possible extension of D with E.
- Forth_{m,E} replaces future_{m,E,D} with c_n:

 $Forth_{m,E}$.future_{m,E,D}(f) = c_n(Forth_{m,E}(f))

future_{m,E,D}, Forth_{m,E} are extended to all types point-wise and component-wise.

An example: one uniform extension of negation

- Let Bool = {0, 1}. Bool with future constructors is a set of trees whose leaves are booleans.
- 2 Let $\neg(0) = 1$, $\neg(1) = 0$. We uniformly extend \neg to any future constructor of **Bool** with the clause

 \neg (future(*f*)) = future($\neg \circ f$).

An example: one uniform extension of negation

- Let Bool = {0, 1}. Bool with future constructors is a set of trees whose leaves are booleans.
- Let ¬(0) = 1, ¬(1) = 0. We uniformly extend ¬ to any future constructor of Bool with the clause ¬(future(f)) = future(¬◦f).
- The result is a map negating all leaves of a tree.

- §1. Types of $\mathcal N$
- §2. Recursion in \mathcal{N}
- §4. Semantics for Expandable Recursion
- §5. Conclusions

\S 3. Terms of $\mathcal N$

- Terms of N of type A are defined w.r.t. a list $\Gamma \equiv E_0, \ldots, E_{m-1}$ of data types, denoting *possible extensions* of A.
- **②** Terms of *N* include all algebraic combinators, pairing, projections, tree constructors, future constructors future : (*E* → *A*) → *A* for *E* ∈ Γ, uniform application **u** : *D*, (*D* → *D*) → *D* and for each *D* = (*D*₀, ..., *D*_{*n*-1}) a constant **r** ≡ **r**_{*D*,*A*} denoting recursion on trees of *D* with result in *A*.
- In this one recursive clause r_i : (D_i → A) → A for each index set D_i, and one extra clause r_n : A → A, dealing with extensions of A.
- Terms are closed under application, and under the unary operator Forth_{m,E}, which removes the type E in position m from a context.
- So We write $\Gamma \vdash t : A$ for "t : A in the context Γ ".

Typing rules of ${\cal N}$

Definition (Terms of \mathcal{N})

Let $n, m \in Nat$, i < n, j < m, $D = (D_0, \dots, D_{n-1})$, $E \in Data$, $A, B \in \mathbf{Tp}$, and $\Gamma = E_0, \dots, E_{m-1}$ any context :

• $\Gamma \vdash C : A$. If $C(\vec{x}) = \alpha[\vec{x}]$ is a combinator of type A

- **③** (constructors) Γ ⊢ **cons**_{*i*,*D*} : ($D_i \rightarrow D$) → D
- If $\Gamma \vdash t : A \rightarrow B$ and $\Gamma \vdash u : A$, then $\Gamma \vdash t(u) : B$.

ヘロン ヘアン ヘビン ヘビン

ъ

Typing rules of ${\cal N}$

Definition (Terms of \mathcal{N})

Let $n, m \in Nat$, i < n, j < m, $D = (D_0, \dots, D_{n-1})$, $E \in Data$, $A, B \in Tp$, and $\Gamma = E_0, \dots, E_{m-1}$ any context :

1 $\Gamma \vdash C : A$. If $C(\vec{x}) = \alpha[\vec{x}]$ is a combinator of type A

- **③** (constructors) Γ ⊢ **cons**_{*i*,*D*} : ($D_i \rightarrow D$) → D
- If $\Gamma \vdash t : A \rightarrow B$ and $\Gamma \vdash u : A$, then $\Gamma \vdash t(u) : B$.
- **⑤** (future constructors) $\Gamma \vdash$ future_{*j*,*E_j*,*A* : (*E_j* → *A*) → *A*}
- **(uniform application)** $\Gamma \vdash \mathbf{u}_D : D, (D \rightarrow D) \rightarrow D$
- **②** (recursion) $\Gamma \vdash \mathbf{r}_{D,A} : \vec{R}, D \rightarrow A$, with $R_i = (D_i \rightarrow A) \rightarrow A$ for all *i* < *n*, and $R_n = (A \rightarrow A)$
- **(Forth)** If Γ , E, $\Delta \vdash t : A$, then Γ , $\Delta \vdash Forth_{m,E} \cdot t : A@E$

ヘロト 人間 とくほとくほとう

ъ

Definition (Reductions on \mathbf{u} , \mathbf{r} for \mathcal{N})

• Let $c \equiv \text{future}_{i,E,D}$, $\text{cons}_{i,D}$ and $g : D \rightarrow D$ and c(f) : D. • $u(c(f))(g) \rightsquigarrow c(g \circ f) : B$ • If $d \rightsquigarrow e : D$ then $u(d)(g) \rightsquigarrow u(e)(g)$

The remaining reductions for \mathcal{N} are given in Appendix.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- §1. Types of $\mathcal N$
- §2. Recursion in \mathcal{N}
- §3. Terms of \mathcal{N}
- §4. Semantics for Expandable Recursion 🧼 🦛
- §5. Conclusions

|▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ○ ○ ○

In order to define a model of system $\ensuremath{\mathcal{N}}$ we face the following vicious cycle.

- The definition of a term $E \vdash t : D$ may include a future constructor **future**_{*E*} of index set *E*.
- **2** future *E* has type : $(E \rightarrow D) \rightarrow D$, and has domain all maps $E \rightarrow D$.
- If E = D, defining these maps requires to define D before completing the definition of any t : D.
- Thus, the definition of future_E is not stratified.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Candidates and Approximated Constructors

Let $E \in \mathbf{Data}$, and \mathcal{A} be any model of \mathcal{N} , and $E_{\mathcal{A}}$ be the interpretation of the type E in \mathcal{A} , and $X \subseteq E_{\mathcal{A}}$.

- We call X a **candidate** for E_A .
- 2 In the models of \mathcal{N} we add constants $j_X : (X \to D) \to D$.
- ^③ We call j_X an **approximation** of the future constructor future_{*E*} : (*E* → *D*) → *D*.

Candidates and Approximated Constructors

Let $E \in \mathbf{Data}$, and \mathcal{A} be any model of \mathcal{N} , and $E_{\mathcal{A}}$ be the interpretation of the type E in \mathcal{A} , and $X \subseteq E_{\mathcal{A}}$.

- We call X a **candidate** for E_A .
- 2 In the models of \mathcal{N} we add constants $j_X : (X \to D) \to D$.
- ^③ We call j_X an **approximation** of the future constructor future_{*E*} : (*E* → *D*) → *D*.
- The branching of j_X(f) is a restriction of the branching of future_E(f).
- So The definition of j_X is stratified, therefore if we may interpret **future**_{*E*} = j_X we would be done.

Unfortunately ... (see next slide)

A second vicious cycle

- **O** Unfortunately, we cannot have $future_E = j_X$ in A.
- 2 Indeed, if we choose $X \subseteq E_A$ and we add the new constant j_X to A, then we may define new terms $e \in E_A$ from them.
- is defined after X, thus we may have $e \notin X$, hence $X \neq E$ and future $E \neq j_X$.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

A second vicious cycle

- **O** Unfortunately, we cannot have $future_E = j_X$ in A.
- 2 Indeed, if we choose $X \subseteq E_A$ and we add the new constant j_X to A, then we may define new terms $e \in E_A$ from them.
- *e* is defined after *X*, thus we may have $e \notin X$, hence $X \neq E$ and **future**_{*E*} $\neq j_X$.
- If we try to force $X = E_A$ in A, we find a vicious cycle similar to the vicious cycle in the definition of constructor.
- 5 This second vicious cycle, however, is easier to break.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Breaking the vicious cycle

- For any model A there is a model A^E ⊃ A including the approximated constructor j_{E_A}.
- ² \mathcal{N} cannot distinguish between **future**_{*E*} and $j_{E_{\mathcal{A}}}$: thus, the behavior of **future**_{*E*} in \mathcal{A} may be described from the behavior of $j_{E_{\mathcal{A}}}$ in \mathcal{A}^{E} , without any vicious cycle.

< 回 > < 回 > < 回 > .

Breaking the vicious cycle

- For any model A there is a model A^E ⊃ A including the approximated constructor j_{E_A}.
- ⁽²⁾ \mathcal{N} cannot distinguish between **future**_{*E*} and $j_{E_{\mathcal{A}}}$: thus, the behavior of **future**_{*E*} in \mathcal{A} may be described from the behavior of $j_{E_{\mathcal{A}}}$ in \mathcal{A}^{E} , without any vicious cycle.
- By exploiting this idea we may adapt Tait's notion of reducibility ([3]) to system N.
- We express Tait's reducibility w.r.t. a countable family of models of \mathcal{N} , closed under the operation $\mathcal{A} \mapsto \mathcal{A}^{\mathcal{E}}$.
- This proof cannot be expressed in a second order arithmetic, unless we bound the number of nesting in a data type and in a type.

ヘロン 人間 とくほ とくほとう

- §1. Types of \mathcal{N}
- §2. Recursion in \mathcal{N}
- §3. Terms of \mathcal{N}
- §4. Semantics for Expandable Recursion
- §5. Conclusions «

▲冊▶▲≣▶▲≣▶ ≣ 釣�?

The main feature of \mathcal{N} is: the domain of a map of \mathcal{N} is extendable at run-time, yet all maps are total.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

The main feature of ${\cal N}$ is: the domain of a map of ${\cal N}$ is extendable at run-time, yet all maps are total.

Theorem (Totality and Expressive Power of \mathcal{N})

- All terms of \mathcal{N} normalize
- ② All trees denoted by some term t : D ∈ Data of system N are well-founded.
- (Expressive Power) We may define in N an Infinitary
 Proof System for second order intuitionistic arithmetic HA²

ヘロン 人間 とくほ とくほ とう

Summary of the Talk

- We defined a simply typed λ-calculus N in which primitive recursive definitions on trees may be extended to a larger domain at run-time.
- System N is defined in term of concrete tree operations and aims to be equivalent to polymorphism.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Summary of the Talk

- We defined a simply typed λ-calculus N in which primitive recursive definitions on trees may be extended to a larger domain at run-time.
- System N is defined in term of concrete tree operations and aims to be equivalent to polymorphism.
- What we proved: System N has the usual properties of Subject Reduction, Confluence and Normalization, and defines a Infinitary Proof System for Second Order Arithmetic.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Summary of the Talk

- We defined a simply typed λ-calculus N in which primitive recursive definitions on trees may be extended to a larger domain at run-time.
- System N is defined in term of concrete tree operations and aims to be equivalent to polymorphism.
- What we proved: System N has the usual properties of Subject Reduction, Confluence and Normalization, and defines a Infinitary Proof System for Second Order Arithmetic.
- What we are checking: whether well-founded trees and the definable maps on them are the same in system N and system F, and whether N defines a denotation system for ordinals of second order analysis.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- P. Martin-Lof, Intuitionistic Type Theory, June 1980, Bibliopolis.
- H. Barendregt, Lambda Calculus with Types. Cambridge University Press, 2013.
- William W. Tait: Intensional Interpretations of Functionals of Finite Type I. J. Symb. Log. 32(2): 198-212 (1967)

A research report about system \mathcal{N} may be found at:

www.di.unito.it/~stefano/ SistemaN-definizioni-14-Luglio-2017.pdf

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

A Century of Constructive Reasoning

Trevence den folge den Vata: Henn ein Existensbereis in der Att. geführt under itt, wich stehr auch die En trite dung (demt und iste Lill on I tritter, ise men a sage folge), ab ... möglich.

Figure: Hilbert Constructivization Conjecture (Courtesy from Goettingen State and University Library, Germany. Thanks to Benedikt Ahrens for translating).

Probably the first version (around 1917) of the following conjecture by Hilbert:

"Prove the following theorem: When a proof of existence has been concluded in mathematics, then also the decision (in a finite number of steps, as one says) is always possible. "

Appendix: the complete set of reductions for \mathcal{N}

Definition (Algebraic Reductions for \mathcal{N})

• Let
$$C(\vec{x}) = \alpha[\vec{x}]$$
 be any combinator.

1
$$C(t) \rightsquigarrow \alpha[t/\vec{x}].$$

2 $\pi_i (< a_1, a_2 >) \rightsquigarrow a_i \text{ for } i = 1, 2$

3 If
$$a \rightarrow b$$
 then $\pi_i(a) \rightarrow \pi_i(b)$.

2 Let $c \equiv \text{future}_{i,E}$ and *P* be the combinator postponing an application, defined by P(x, y) = y(x)

$$c(f)(e) \rightsquigarrow c(Pe \circ f)$$

2
$$\pi_i(c(f)) \rightsquigarrow c(\pi_i \circ f)$$
 for $i = 1, 2$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Definition (Reductions on \mathbf{u}, \mathbf{r} for \mathcal{N})

• Let $c \equiv \text{future}_{i,E,D}$, $\text{cons}_{i,D}$ and $g: D \rightarrow D$ and c(f): D. • $u(c(f))(g) \rightarrow c(g \circ f): B$

2 If $d \rightarrow e : D$ then $\mathbf{u}(d)(g) \rightarrow \mathbf{u}(e)(g)$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Forth upgrades a term from the context Γ, E, Δ to the context Γ, Δ, executing the extension of index set E.

Forth requires the operation a^{i,E} of context lifting (defined in the next slide).

Definition (Reductions for **Forth**)

Assume $D = (D_0, ..., D_{n-1})$.

- **(up-grading)** Forth.future_{*i*,*E*,*D*}(*f*) \rightarrow **c**_{n,D@E}(Forth.*f*)
- **②** Forth.future_{*j*+1,*E*,*D*}(*f*) \rightsquigarrow future_{*j*,*E*,*D*@*E*}(Forth.*f*) for *j* \geq *i*
- So Forth. $c(f) \rightarrow c(Forth.f)$ for any other (future) constructor
- If $d : D \in D$ at a and $d \rightarrow e : D$ then Forth $d \rightarrow F$ or the.
- **(Forth**.f)(a) \rightsquigarrow **Forth**. $f(a^{i,E})$
- **(b)** $\pi_i(\text{Forth.}a) \rightsquigarrow \text{Forth.}\pi_i(a))$ for i = 1, 2.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Context Lifting *t^{i,E}*

- Context Lifting downgrades a term from the context Γ, Δ to the context Γ, E, Δ, adding the extension of index set E to the list of future extensions.
- Context lifting adds 1 to the subscripts of future constructors with index in Δ.

Definition (The term $t^{i,E}$)

Assume $\Gamma \vdash t : A$ is a term of \mathcal{N} , *c* is any constant. We define $t^{i,E}$ by induction on *t*.

- **(down-grading)** (future_{*j*,*F*})^{*i*,*E*} \equiv future_{*j*+1,*F*} for all *j* \geq *i*
- 2 $c^{i,E} \equiv c$ in all other cases.
- So $\operatorname{Forth}_{j,F}(u)^{i,E} \equiv \operatorname{Forth}_{j+1,F}(u^{i,E})$ for all $j \ge i$.
- Forth_{*j*,*F*}(*u*)^{*i*,*E*} = Forth_{*j*,*F*}($u^{i+1,E}$) in all other cases.
- $(u)^{i,E} \equiv t^{i,E}(u^{i,E})$

ヘロマ ヘビマ ヘビマ