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Why consider random λ-terms?

I Random generation of structures containing scoped variables
with applications to so�ware testing. For instance, the

following random λ-term
1

exhibited a bug in GHC’s

strictness analizer:

(λa. seq a (seq a ⊥) tail)(λa. seq⊥ (+1))

were

⊥ seq a = ⊥
a seq b = b.

I Such structures are di�icult to analyse and inspire the

development of new combinatorial techniques.

1

M. Pałka. Random Structured Test Data Generation for Black-Box Testing. PhD thesis. 2014.
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How to represent λ-terms?

Let us focus on λ-terms with de Bruijn indices.

T ::= λT | T T | N
N ::= 0 | S N .

λxyz.xz(yz) ≡ λλλ20(10)

Benefits:

I We do not have to worry about α-equivalence.

I It is perhaps the simplest model we can start to analyse.

I (Some) techniques of analytic combinatorics are applicable
2
.

2

Requires some non-trivial extensions of well-known tools.
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Alternative representations?

What about a representation were only closed terms are allowed?

Also, how should we measure the term size?

Assume that abstractions, applications and variables contribute

some weight to the term size.

λ

@

λ

@

@

• •

@

• •

•

Variable weight options:

I No weight.

I Constant weight.

I Weight proportional

to the binder distance

(cf. de Bruijn indices).
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Counting λ-terms – how hard can it be?

Let’s start with the following counting problem. Given n, what is the

number Λn of λ-terms of size n? How does Λn change with n→∞?

Bodini, Gardy, Gi�enberger, Jacquot ’13

Assume that variables contribute constant weight one. For special

cases, such as linear or a�ine terms, the counting problem admits

asymptotic estimates. In general, the problem remains unsolved.

David, Grygiel, Kozik, Ra�alli, Theyssier, Zaionc ’13

Assume that variables contribute no weight. The counting problem

is still unsolved, however asymptotically almost all λ-terms are

shown to be strongly normalizing.
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Back to the de Bruijn representation

What if we assume that n ≡ S(n)
0 has natural weight n + 1?

Recall that in the de Bruijn representation we have

T ::= λT | T T | N
N ::= 0 | S N .

B., Grygiel, Lescanne, Zaionc ’16

In the de Bruijn representation, the counting problem admits

asymptotic estimates. More importantly, asymptotically almost all

λ-terms are not strongly normalising.
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What about closed λ-terms?

Let Tm denote the class of m-open λ-terms, i.e. terms which a�er

prepending m head abstractions become closed. Then, the set T0 of

closed terms satisfies the following infinite specification:

T0 ::= λT1 | T0T0

T1 ::= λT2 | T1T1 | 0
T2 ::= λT3 | T2T2 | 0 | 1

. . .

Tm ::= λTm+1 | TmTm | 0 | 1 | · · · | m-1

. . .

Bodini, Gi�enberger, Gołębiewski ’18

The counting problem for closed λ-terms admits asymptotic

estimates. Moreover, it is possible to sample (unformly) random,

closed λ-terms of large, target size n.
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Sampling closed, simply-typed λ-terms?

For some applications, sampling closed terms can be insu�icient.

Sometimes, we need stronger guarantees about the properties of

generated terms, such as termination.

B., Grygiel, Tarau ’17

Combining samplers for closed λ-terms and a careful use of

rejection, it is possible design practical samplers for closed,

simply-typed λ-terms for moderate target sizes.

Benchmark term sizes:
3

I Closed λ-terms: n ≤ 1 000 000 000.

I Closed, simply-typed λ-terms: n ≤ 250.

3

Using a standard PC as a reference point.
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Typical properties of λ-terms

B., Bodini, Dovgal ’18

Suppose that we sample a large, random (unrestricted) λ-term of

size n. What shape and properties should we expect?

Parameter Mean, ∼ Distribution
plain closed plain closed

Variables 0.307n Normal

Abstractions 0.258n Normal

Successors 0.129n Normal

Redexes 0.091n Normal

Index value 0.420 Geometric

Head abstractions 0.420 1.447 Geometric Discrete

m-openness 2.019 0 Discrete trivial

Free variables 5.722 0 Discrete trivial
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Even be�er control over generated λ-terms?

B., Bodini, Dovgal ’18

Using quite general tools
4
, it is possible to skew the uniform

distribution of generated λ-terms, and gain additional control over

some of their parameters. For instance, request more abstractions or

favour larger de Bruijn indices.

4

See also https://github.com/maciej-bendkowski/boltzmann-brain

https://github.com/maciej-bendkowski/boltzmann-brain
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Typical properties of λ-terms (II)

What about evaluation of large, random terms? For instance, how

long does it take on average to find the le�most-outermost redex in

a random term?

@

λ

@

@

0 @

1 0

λ

0

T

It is always a constant time

overhead:

I Plain terms ≈ 6.222,

I Closed terms ≈ 6.054.

What can be said about the

typical cost of substitution?
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Substitution resolution and explicit substitutions

It is possible to carry out substitutions in various ways,

e.g. substitutions can be carried out strictly or suspended

until truely required (i.e. resolved non-strictly).

Let us therefore consider a concrete implementation of substitution

resolution, say λυ5
— a λ-calculus with explicit substitutions — and

analyse substitution resolution therin, instead.

t ::= n | λt | � | t[s]

s ::= t/ | ⇑ (s) | ↑
n ::= 0 | Sn.

(λa)b→ a[b/] (Beta)

(ab)[s]→ a[s](b[s]) (App)

(λa)[s]→ λ(a[⇑ (s)]) (Lambda)

0[a/]→ a (FVar)

(Sn)[a/]→ n (RVar)

0[⇑ (s)]→ 0 (FVarLi�)

(Sn)[⇑ (s)]→ n[s][↑] (RVarLi�)

n[↑]→ Sn. (VarShi�)

5

P. Lescanne. From λσ to λυ – a journey through calculi of explicit substitutions. 1994.
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υ-reduction grammars

Instead of a single β rewriting rule, λυ consists of a (Beta) rule and

seven auxiliary υ rules governing the execution of substitutions.

Luckily, compared with classic λ-calculus they are much easier to

analyse in quantitative terms.

B. ’19

For all k ≥ 0, the set Gk of λυ-terms which reduce to their υ-normal

forms (i.e. pure forms without explicit substitutions) in k le�most-

outermost υ rewriting steps forms a regular tree language.

G0 → λG0 | G0G0 | n
G1 → λG1 | G0G1 | G1G0

| 0[(G0G0)/] | 0[λG0/] | 0[n/]

| (Sn)[t/] | 0[⇑ (s)] | n[↑]
...
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υ-reduction grammars (II)

(Gk)k admits a neat hierarchical structure and can be analysed

using standard techniques of analytic combinatorics. In particular,

for any fixed k ≥ 0, the fraction of terms υ-normalising in k steps

tends to a computable limit µk as the term size tends to infinity.
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Conclusions

I Depending on the representation, typical λ-terms admit

contrasting properties, e.g. strong normalisation or lack thereof.

I Representations using de Bruijn indices in unary notation are

now well-understood and admit e�ective tools for random

generation (at least in the untyped universe).

I Although the techniques of analytic combinatoric are quite

daunting, it is possible to use them in order to analyse the

operational costs of substitution in λ-calculus.
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