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Why consider random A-terms?

» Random generation of structures containing scoped variables
with applications to software testing. For instance, the
following random \-term! exhibited a bug in GHC’s
strictness analizer:

(Aa.seqa (seqa L) tail)(Aa.seq L (+1))
were

lseqa=_1
aseq b=bh.

]
M. Patka. Random Structured Test Data Generation for Black-Box Testing. PhD thesis. 2014.
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following random \-term! exhibited a bug in GHC’s
strictness analizer:

(Aa.seqa (seqa L) tail)(Aa.seq L (+1))
were

lseqa=_1
aseq b=bh.

» Such structures are difficult to analyse and inspire the
development of new combinatorial techniques.

]
M. Patka. Random Structured Test Data Generation for Black-Box Testing. PhD thesis. 2014.
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Let us focus on A-terms with de Bruijn indices.

T:=AT|TT|N
N:=0|SN.

Axyz.xz(yz) = AAN20(10)

Benefits:
> We do not have to worry about a-equivalence.
> |t is perhaps the simplest model we can start to analyse.

» (Some) techniques of analytic combinatorics are applicable?.

’Requires some non-trivial extensions of well-known tools.
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Alternative representations?

What about a representation were only closed terms are allowed?
Also, how should we measure the term size?

Assume that abstractions, applications and variables contribute
some weight to the term size.

Variable weight options:
> No weight.
> Constant weight.

> Weight proportional
to the binder distance
(cf. de Bruijn indices).
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Let’s start with the following counting problem. Given n, what is the
number A, of A-terms of size n? How does A, change with n — oo?

Bodini, Gardy, Gittenberger, Jacquot ’13

Assume that variables contribute constant weight one. For special
cases, such as linear or affine terms, the counting problem admits
asymptotic estimates. In general, the problem remains unsolved.

David, Grygiel, Kozik, Raffalli, Theyssier, Zaionc ’13

Assume that variables contribute no weight. The counting problem
is still unsolved, however asymptotically almost all A-terms are
shown to be strongly normalizing.
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Back to the de Bruijn representation

What if we assume that n = $("0 has natural weight n + 1?
Recall that in the de Bruijn representation we have

T:=AT|TTI|N
N:=0]|SN.

B.; Grygiel, Lescanne, Zaionc ’16

In the de Bruijn representation, the counting problem admits
asymptotic estimates. More importantly, asymptotically almost all
A-terms are not strongly normalising.




What about closed \-terms?

Let T,, denote the class of m-open A-terms, i.e. terms which after
prepending m head abstractions become closed. Then, the set T of
closed terms satisfies the following infinite specification:

T() = )\T1 ‘ T(]To
T1 = )\Tz | T]T] ’Q
T2 = )\T3 | T2T2 ’Q|l

Tmz)\Tm_H‘Tme’Q‘l’ ‘;1

Bodini, Gittenberger, Gotebiewski 18

The counting problem for closed A-terms admits asymptotic
estimates. Moreover, it is possible to sample (unformly) random, 2
closed A-terms of large, target size n.



Sampling closed, simply-typed \-terms?

For some applications, sampling closed terms can be insufficient.
Sometimes, we need stronger guarantees about the properties of
generated terms, such as termination.

B., Grygiel, Tarau '17
Combining samplers for closed A-terms and a careful use of
rejection, it is possible design practical samplers for closed,

simply-typed A-terms for moderate target sizes.

Benchmark term sizes:3

3Using a standard PC as a reference point.
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Sampling closed, simply-typed \-terms?

For some applications, sampling closed terms can be insufficient.
Sometimes, we need stronger guarantees about the properties of
generated terms, such as termination.

B., Grygiel, Tarau '17
Combining samplers for closed A-terms and a careful use of
rejection, it is possible design practical samplers for closed,

simply-typed A-terms for moderate target sizes.

Benchmark term sizes:3
» Closed A\-terms: n < 1000 000 000.

» Closed, simply-typed A-terms: n < 250.

3Using a standard PC as a reference point.



Typical properties of A\-terms

B., Bodini, Dovgal ’18

Suppose that we sample a large, random (unrestricted) A-term of
size n. What shape and properties should we expect?

Mean, ~ Distribution
Parameter - .
plain closed plain closed
Variables 0.307n Normal
Abstractions 0.258n Normal
Successors 0.129n Normal
Redexes 0.091n Normal
Index value 0.420 Geometric
Head abstractions  0.420 1.447  Geometric Discrete
m-openness 2.019 0 Discrete trivial
Free variables 5.722 0 Discrete trivial



Even better control over generated \-terms?

B., Bodini, Dovgal 18

Using quite general tools?, it is possible to skew the uniform
distribution of generated A-terms, and gain additional control over
some of their parameters. For instance, request more abstractions or
favour larger de Bruijn indices.

Boltzman,
Build tis
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Jagielonian University

4 . .. . .
Seealso https://github.com/maciej-bendkowski/boltzmann-brain


https://github.com/maciej-bendkowski/boltzmann-brain

Typical properties of A-terms (ll)

What about evaluation of large, random terms? For instance, how
long does it take on average to find the leftmost-outermost redex in
a random term?

It is always a constant time
overhead:

» Plain terms ~ 6.222,
» Closed terms = 6.054.

What can be said about the
typical cost of substitution?




Substitution resolution and explicit substitutions

It is possible to carry out substitutions in various ways,
e.g. substitutions can be carried out strictly or suspended
until truely required (i.e. resolved non-strictly).

Let us therefore consider a concrete implementation of substitution
resolution, say Av° — a A-calculus with explicit substitutions — and
analyse substitution resolution therin, instead.

to=n|At|t]s] (Aa)b — a[b/] (Beta)
su=t/{ ()] T (ab)[s] — a[s](b[s]) (App)
n g A (A@)[s] = A(alt ()])  (Lambda)
0la/] — a (FVar)
(Sn)a/] = n (RVar)
o[t (s)] — 0 (FVarLift)
(Sn)[fr (s)] = ns][1] (RVarlLift)

n[t] — Sn. (VarShift) @

5
P. Lescanne. From Ao to Av — a journey through calculi of explicit substitutions. 1994.



v-reduction grammars

Instead of a single (5 rewriting rule, Av consists of a (Beta) rule and
seven auxiliary v rules governing the execution of substitutions.
Luckily, compared with classic A-calculus they are much easier to
analyse in quantitative terms.

B. 19

For all kK > 0, the set Gg of Av-terms which reduce to their v-normal
forms (i.e. pure forms without explicit substitutions) in k leftmost-
outermost v rewriting steps forms a regular tree language.

Go — AGy | GoGy | n

Gi = A\G1 | GGy | GGy
| 0[(GoGo)/] | 0[AGo/] | 0[n/]
| (Sm)[t/11 o ()] [ n[t]



v-reduction grammars (11)

(Gk)« admits a neat hierarchical structure and can be analysed
using standard techniques of analytic combinatorics. In particular,
for any fixed k > 0, the fraction of terms v-normalising in k steps
tends to a computable limit 1 as the term size tends to infinity.
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Conclusions

» Depending on the representation, typical A-terms admit
contrasting properties, e.g. strong normalisation or lack thereof.

> Representations using de Bruijn indices in unary notation are
now well-understood and admit effective tools for random
generation (at least in the untyped universe).

P Although the techniques of analytic combinatoric are quite
daunting, it is possible to use them in order to analyse the
operational costs of substitution in A-calculus.



