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reverse is natural

List : Set→ Set

rev : ΠA:SetListA→ ListA

f : A→ B

ListA ListA

ListB ListB

revA

List f List f

revB
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Proof by . . . -induction

List f [a0, a1, . . . , an−1] = [f a0, f a1, . . . , f an−1]

revA [a0, a1, . . . , an−1] = [an−1, . . . , a1, a0]

(revB ◦ List f ) [a0, a1, . . . , an−1] = revB (List f [a0, a1, . . . , an−1])

= revB [f a0, f a1, . . . , f an−1])

= [f an−1, . . . , f a1, f a0])

= List f [an−1, . . . , a1, a0]

= List f (revA [a0, a1, . . . , an−1])

= (List f ◦ revA) [a0, a1, . . . , an−1]
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Everything is natural . . .

F ,G : Set→ Set

α : ΠA:SetF A→ G A

f : A→ B

F A G A

F B G B

αA

F f G f

αB
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. . . but we can’t prove it.

We know that all families of functions are natural.

But we cannot prove it.

It should be a free theorem.
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The hint (HoTT)

F ,G : Set→ Set

α : ΠA:SetF A ' G A

f : A ' B

F A G A

F B G B

αA

F f G f

αB

A ' B means isomorphism (for sets).

This is provable in HoTT.

It follows from univalence + J.
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Summary

The set-level fragment of HoTT can be interpreted using the
groupoid model (Hofmann & Streicher).

This interpretation also gives rise to a univalent, truncated universe of
sets (but it doesn’t classify hsets).

Can we replace groupoids by categories?

Yes, but we need to take care of polarities.

And some places we do need groupoids, hence we need an operation
calculating the groupoid associated to a category (the core).

I am going to derive a type theory guided by the semantics.
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The category with families of categories

Contexts Con : Set Γ : Con [[Γ]] : Cat
Types Ty : Con→ Set A : Ty Γ [[A]] : [[Γ]]→ Cat
Terms Tm : (Γ : Con)→ Ty Γ→ Set a : Tm ΓA [[a]] : . . .
Subst Tms : Con→ Con→ Set γ : Tms Γ ∆ [[γ]] : [[Γ]]→ [[∆]]

[[Γ.A]]

[[Γ]]

[[A]] [[a]]
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Operations on contexts

• : Con

A : Ty Γ

Γ.A : Con

|[[•]]| = 1

[[•]](x , y) = 1

|[[Γ.A]]| = (x : |[[Γ]]|)× |[[A]] x |
[[Γ.A]]((x , a), (y , b)) = (f : [[Γ]](x , y))× ([[A]] y)([[A]] f a, b)

Grothendieck construction
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Opposites

Γ : Con
Γop : Con

A : Ty Γ

Aop : Ty Γ

[[Γop]] = [[Γ]]op

[[Aop]] x = ([[A]] x)op

Note that op : Cat→ Cat is covariant!

But what is (Γ.A)op ?

It cannot be Γop.Aop
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Opfibrations

A : Ty Γop

Γ.opA : Con

|[[Γ.opA]]| = (x : |[[Γ|]])× |[[A]] x |
[[Γ.opA]]((x , a), (y , b)) = (f : [[Γ]](x , y))× ([[A]] x)(a, [[A]] f b)

(Γ.A)op = Γop.opAop
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Σ-types, undirected

A : Ty Γ B : Ty Γ.A

ΣAB : Ty Γ

Γ.A.B ∼= Γ.(ΣAB)

On objects:
(ΣAB) x = (Ax).(B x)
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Σ-types with polarities

A : Ty Γs B : Ty Γ.sA

Σs AB : Ty Γ

Γ.tA.sB ∼= Γ.t(Σs AB)

On objects:
(Σs AB) x = (Ax).s(B x)

(ΣAB)op = Σop Aop Bop
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Π-types, undirected

A : Ty Γ B : Ty Γ.A

ΠAB : Ty Γ

Tm Γ.AB ∼= Tm Γ (ΠAB)
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Π-types with polarities

A : Ty Γop B : Ty Γ.opAs

Πs AB : Ty Γ

Tm Γ.opAs B ∼= Tm Γ (Πs AB)

(ΠAB)op = Πop Aop Bop
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The universe of sets

U : Ty Γ
a : Tm ΓU
El a : Ty Γ

|[[U]] x | = Set

([[U]] x)(A,B) = A→ B

|[[El a]] x | = [[a]] x

([[El a]] x)(y , z) = (y = z)
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The hom type

A : Ty Γ

vA : Tm Γ (Aop → A→ U)

[[a vA b]] x = Ax(a x , b x)

But what about id (aka refl)?

We would like to say
id : Πa : A.a vA a

but this doesn’t type check!
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The core type

A : Ty Γ

Ā : Ty Γ
a : Tm ΓA
ā : Tm Γ Ā

f : Tm Γ (a vA b)
f op : Tm Γ (b vA a)

l : Tm Γ (f ◦ f op v ida)
r : Tm Γ (f op ◦ f v ida)

f , f op, l , r : Tm Γ (ā vĀ b̄)

a : Tm Γ Ā
a : Tm ΓAs

f : Tm Γ (a vĀ b)

f : Tm Γ (a vA b)
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Directed Path induction (J)

id : Tm Γ (Πa : Ā.a vA a)

M : Tm Γ (Πa : Aop, b : A.a vA b → U)
mid : Tm Γ (Πa : Ā.M a a (id a))

J M mid : Tm Γ (Πa : Aop, b : A, f : a v b.M ab f )
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The homtypes of sets

Homtypes of sets are symmetric
a : Tm ΓA

El a ' El a

Homtypes of sets are proof irrelevant

a : Tm ΓA
Ka : Tm Γ (Πa : Ā, p : a vA a.p v id a)

Directed univalence

coe : Tm Γ (Πa, b : U.a vU b → (El a→ El b))

coe is an isomorphism.
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Everything is natural, provably!

F ,G : Set→ Set

α : ΠA:SetF A→ G A

f : A→ B

F A G A

F B G B

αA

F f G f

αB

It follows from directed univalence + directed J.
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Further work

Filippo is formalizing the calculus and its semantics in Agda.

What is the relation to logical relations?

Can we do higher categories (full directed HoTT)?
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