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reverse is natural

List : Set — Set
rev : [Na.setList A — List A
f:A—=B

List A =45 List A

List fl lList f
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-
Proof by ...-induction

List f [ag, a1, ..., an-1] = [f a0, f a1, .., an-1]
revalag, a1, ..., an-1] = [an-1,- .., a1, 0]
(revp o List f) [ag, a1, . . ., an—1] = revg (List f [ag, a1, . . ., an—1])

=revg|[fao,fal,...,fan1])
= [fa,,,l,...,fal,fao])

= List [a,,_l, e, a1, ao]
= List f (reva[ao, a1, ..., an-1])
= (List f oreva)[a0, a1, - - -, an—1]
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Everything is natural . ..

F,G : Set — Set
a:MpasetFA— GA
f:A—=B

FA-22,GA

Fr| ler

FB—> GB
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... but we can’t prove it.

@ We know that all families of functions are natural.
@ But we cannot prove it.

@ It should be a free theorem.
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|
The hint (HoTT)

F,G : Set — Set
a:MNasetFA>=GA
f:A~B

FA-24, GA

e

B

e A~ B means isomorphism (for sets).
@ This is provable in HoTT.

o |t follows from univalence + J.
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Summary

@ The set-level fragment of HoTT can be interpreted using the
groupoid model (Hofmann & Streicher).

@ This interpretation also gives rise to a univalent, truncated universe of
sets (but it doesn't classify hsets).

@ Can we replace groupoids by categories?
@ Yes, but we need to take care of polarities.

@ And some places we do need groupoids, hence we need an operation
calculating the groupoid associated to a category (the core).

@ | am going to derive a type theory guided by the semantics.
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The category with families of categories

Contexts | Con : Set I: Con rJ: Cat

Types Ty : Con — Set A: Tyl Al : [Tl — Cat
Terms Tm: (I:Con) — Tyl — Set | a: Tml A al: ...

Subst Tms : Con — Con — Set v:TmsT A | [+]: 071 — [A]
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Operations on contexts

ATyl
e : Con A: Con

[[e]l =1
fel(x,y) =1

0T ADJ = O - (D7) < (DA x|
[T-Al((x, @), (v, b)) = (£ - [TT(x, ¥)) x (TALy)(TAD f a, b)

Grothendieck construction
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|
Opposites

I: Con ATyl
[P : Con A% Tyl

[r”) = Ir1”
[A47]x = ([A] %)

@ Note that _°P : Cat — Cat is covariant!

e But what is ([.A)°P 7

@ It cannot be P A°P
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|
Opfibrations

A:Tyl°P
[°PA: Con

0T PADl = O = [ITT) > [[AT |
[F-*PAl((x, a), (v, b)) = (F - [T1(x, ¥)) x ([A] x)(a, [AD f )

(F.A)°P = [°P P AP
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B
2> -types, undirected

A: Tyl B:Tyl.A
YAB:Tyrl

AB=T.(ZAB)

On objects:
(XAB)x = (Ax).(Bx)
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BN
> -types with polarities

A:Tyls B:TylSA
SSAB: Tyl

FfA*B~T.HZ°AB)
On objects:
(Z*AB)x = (Ax).5(Bx)

(ZAB)°P = o A°P BoP
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B
[-types, undirected

A: Tyl B:Tyl.A
MAB: Tyl

Tml.AB = TmT (MAB)
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BN
[l-types with polarities

A: Tyl B:Tyl.%PAS
MSAB: Tyl

Tml.PA* B = Tm[ (M°AB)

(MAB)°P = [1°P A% BoP
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The universe of sets

a:TmlU
U:Tyl Ela: Tyl

I[U] x| = Set
([UIx)(A,B) = A — B

[[Ela] x| = [a] x
([ELa] x)(y,2) = (v = 2)
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-
The hom type

ATyl
_Ca_-:Tml (A% - A— 1)

[aCa b x = Ax(ax, bx)

e But what about id (aka refl)?

o We would like to say
id:Ma:AalCya

but this doesn't type check!
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The core type

f:Tml (aCx b)

P : Tml (bCx a)
I Tml (f o £ C id,)
A: Tyl 5 -TmTl A r:Tml (fP o f Cid,)
A: Tyl 3:TmlA f for [ r.Tml (3 C4 b)

2-TmrA f:Tml(aCgb)
a:TmlA* f:Tml(aCab)
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|
Directed Path induction (J)

id: Tml(Ma: AaCx a)

M:Tml (Ma: AP, b: Aalxab—U)
miq - Tml (MNa: AMaa(id a))
JMmyg: Tml (MNa: AP, b: Af:aC b.Mabf)

Thorsten Altenkirch jww Dirk Pattinson (AN Naturality for Free February 24, 2019 19 / 22



-
The homtypes of sets

Homtypes of sets are symmetric
a:TmlA

Ela~Ela

Homtypes of sets are proof irrelevant

a:TmlA
K,:Tml(Na:Ap:aChaapCida)

Directed univalence
coe: Tmrl (Ma,b:U.aCy b— (Ela — Elb))

coe is an isomorphism.
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-
Everything is natural, provably!

F,G : Set — Set
a:MaseFA— GA
f.A>B

FA-2 s GA

e

o It follows from directed univalence + directed J.
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Further work

@ Filippo is formalizing the calculus and its semantics in Agda.
@ What is the relation to logical relations?
e Can we do higher categories (full directed HoTT)?
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