Radboud University g5t

>
MiNes©

agdARGS

Declarative Hierarchical Command Line Interfaces

Guillaume Allais
Type Theory based Tools 2017 - Paris

Radboud University

Motivation: When it typechecks...

Ship it? More like shelve it! :(

Core algorithm

= Data structures with strong invariants

= Fully certified
+ Boilerplate

= Validation of unsafe data

= (Command Line / Graphical) Interface

= Executable

Case study: a minimal grep

No access to the program’s command-line arguments

= Add postulate + COMPILED pragma for getArgs
= Wrap in the I0 monad

Ad-hoc parsing function

"Hand-crafted” solution

Now that we have access to the arguments, we just have to make
sense of them. We use a type of options:

record grepOptions : Set where

field
-V : Bool -- invert match
-1 : Bool -- 1ignore case
regexp : Maybe String -- regular expression
files : List FilePath -— list of files to process

And "hand-craft” a function populating it:

parseOptions

parseOptions args =

: List String -> grepOptions

record result { files = reverse (files result) }

where
cons
cons
cons
cons
if

then record opt { regexp

else record opt { files

result

: grepOptions -> String

Opt Ny =
Opt n_qn =
Opt str =

is-nothing

record opt {
record opt {

(regexp opt)

: grepOptions

-> grepOptions

-v =

_i=

just

str ::

true }

true }

str }
files opt }

result = foldl cons defaultGrepOptions args

What is the specification of a CLI?

Types: What is a command-line interface?

What is a Command-Line Interface?

= A description
= A list of subcommands
= A list of modifiers (flags & options)

= Default arguments
What should we get from declaring one?

= The corresponding parser

= Usage information

Types: Example of a CLI

Grep = record

{ description "Print lines matching a regexp"

; subcommands = noSubCommands
; arguments = lots0Of filePath
; modifiers =
, "-v! = flag "Invert match"
< "-it = flag "Ignore case"
< "-e" = option "Regexp" regexp
< <>

Internal representation

Extensible records

Represent field names as sorted lists

= guaranteed uniqueness of commands / modifiers

= easy to lookup values

= easy to extend

= first class citizens (generic programming possible!)
Associate a type to each field name
Generate record types by recursion on the list of field names

Remark: Drive type inference

The type of extensible records

McBride to the rescue: "How to keep your neighbours in order”
tells us how to build in the invariant stating that a tree's leaves are

sorted.

In the special case of linked lists, using a strict total order, we

move from:

[22]e}—{s8 o} {18 [e}—iX

To the proven ordered:

e < Ba[e}—{Z < B[e} {5 < TB[e] {12 < o]

Extend any ordered set with + /-infinity:

data [_] (A : Set) : Set where

-infty : [A]
emb_ : (a: A) > [A]
+infty : [A]

Define a type of ordered lists:

data USL' (b ub : [A]) : Set where

[l : 1b < ub -> USL' 1b ub
,_::_: hd -> 1b < emb hd -> USL' (emb hd) ub ->
USL' 1b ub

Top level type: relax the bounds as much as possible!

type USL A = USL' (-infty : [A]) +infty
10

CLI

data Modifier name where
mkFlag : Record _ Flag -> Modifier name
mkOption : Record _ Option -> Modifier name

record Command name : Set where

inductive; constructor mkCommand

field

description :
: names ** Record names Command

subcommands
modifiers

arguments

String

: names ** Record names Modifier

: Arguments

11

Design a nice interface

We can run an awful lot at compile time

Fully-explicit, invariant-heavy structures internally

vs. Decidability on concrete instances externally (smart

constructors)
Remember:
, "-v" ::= flag "Invert match"
< '-it = flag "Ignore case"
< "-g" = option "Regexp" regexp
< <>

12

We can run an awful lot at compile time

Fully-explicit, invariant-heavy structures internally

vs. Decidability on concrete instances externally (smart

constructors)
Remember:
, "-v" ::= flag "Invert match"
< '-it = flag "Ignore case"
< "-g" = option "Regexp" regexp
< <>

Using the smart constructors:

<> : Record []
=_<_ : forall n -> S -> Record nms fields ->

Record (insert n nms) (Finsert n nms S)

12

Generic Programming over
Interfaces

Parsing is decomposed in 3 phases

= subcommand selection
= modifier and arguments collection

= argument collection (triggered by “--")
And the returned result is guaranteed to respect the CLI:

parseCLI : (c : CLI) -> List String -> Error (ParsedCLI c)
withCLI : (c : CLI) (k : ParsedCLI c -> I0 a) -> I0 a

13

Usage information

We know a lot about the structure of the interface. Let's use it!

usage : CLI -> String

e.g.
grep Print lines matching a regexp
-e Regexp
-i Ignore case
-v Invert match

14

Conclusion

Conclusion

s Declarative

= Hierarchical

= Type-inference friendly

= Size-indexed internal representation

= Parser & Usage

ii5

= Validation DSL (cf. Jon Sterling’s Vinyl)

= Syntactic sugar for writing the continuation
(k : ParsedCLI c -> I0 a)

= Compound flags
= Other types of documentation (e.g. man pages)
= More parsers for base types

= Set level issues

16

	Motivation: When it typechecks...
	What is the specification of a CLI?
	Internal representation
	Types - Keep your neighbours in order

	Design a nice interface
	Generic Programming over Interfaces
	Conclusion

