
agdARGS - Declarative Hierarchical Command Line Interfaces

Guillaume Allais
gallais@cs.ru.nl

Radboud University Nijmegen

1. Introduction
If functional programmers using statically typed languages (broadly)
in the Hindley-Milner tradition have taken to boasting “If it type-
checks, ship it!”, the shared sentiment amongst the ones using de-
pendently typed languages seemed for a long while to be closer to
“Once it typechecks, shelve it!”.

Over the years, there has been some outliers not only using Type
Theory as a theorem proving tool but also demonstrating the prac-
tical benefits dependent types bring to the programmers’ table. The
nowadays classic definition of printf in a type-safe manner (Au-
gustsson 1998) is a prime example. Other notable contributions in
that vein include for instance parser DSLs and generators (Daniels-
son 2010; Stump 2016), and interactive systems (Brady 2014; Claret
and Régis-Gianas 2015).

When writing an application in Type Theory, it is reasonable
to expect the programmer to want to focus her attention on the core
algorithms i.e. the parts that can be fully certified, dealing with sani-
tised data enriched with all sorts of fancy invariants. The wrapper
code is not necessarily terribly exciting in comparison and tends
to be treated more as an afterthought. Tanter and Tabareau (2015)
have developed a nice library to facilitate the transition fromweakly
typed to strongly typed data whilst maintaining type safety. This po-
tentially removes one layer of boilerplate.

Command line interfaces are another one of these layers of wrap-
per code. We offer a solution: a dependently typed DSL for defin-
ing declaratively hierarchical command line interfaces available at
https://github.com/gallais/agdARGS.

2. Hierarchical Command Line Interfaces
A hierarchical command line interface is defined by:

• A description explaining the command’s purpose. It has no
influence on the implementation of the interface but is useful
documentation for the end-user.

• A list of subcommands. They are themselves fully-fledged
commands the user gets access to by mentioning a keyword.
This makes it possible to give the interface a hierarchical struc-
ture. E.g. git pull accesses the subcommand git-pull from
the main git interface with the keyword pull.

• A list of modifiers for the current command. They can be either
flags one may set or options taking a parameter.

[Copyright notice will appear here once ’preprint’ option is removed.]

• Finally, strings which are neither subcommand keywords nor
modifiers are considered arguments of the command.

With our library, the programmer can simply get an interface
by specifying this structure. For instance1, a command similar to
UNIX’s wc can be declared this way:

WordCount = record
{ description = ”Print each file’s counts”
; subcommands = noSubCommands
; arguments = lotsOf filePath
; modifiers =

, ”-l” ∷= flag ”Newline count”
⟨ ”-w” ∷= flag ”Word count”
⟨ ”–help” ∷= flag ”Display help”
⟨ ”–version” ∷= flag ”Version number” ⟨ ⟨⟩ }

Figure 1. The wc command’s interface

3. Implementation Details
If the general structure of a command is set in stone, it cannot be
the case for its subcommands and modifiers: they will vary from
application to application in number and nature. This means that
we need to design a first class representation of (extensible) records
amenable to generic programming to deal with them.

3.1 Extensible Records
A record type is characterised by two things: a list of distinct field
names and a type associated to each one of these fields. Given a
decidable strict order on the type of names, we can make use of
McBride’s design principles (2014) to define a structure of lists
sorted in strictly increasing order and thus only containing distinct
elements. These will be our lists of names. The types associated
to each one of these field names can be collected in a right-nested
tuple computed by recursion on the list. A record value is then a
right-nested tuple of values of the corresponding types.

Because there are so many computations at the type level, the
unification machinery can get stuck on meta-variables introduced
by implicit arguments. It is crucial for the usability of the library
defining extensible records that some of these notions (the fields’
types and the record value itself) are wrapped in an Agda record to
guide the type inference.

The combinators _∷=_⟨_ and ⟨⟩ one can see in Figure 1 are also
crucial to the library’s usability: they make it possible to define the
extensible record field by field without having to pay attention to
the underlying representation where all the invariants are enforced.

1Unfortunately we lack the space necessary to give an example of an inter-
face with subcommands

1 2016/12/1



3.2 Commands as Rose Trees
The structure described in Section 2 is reminiscent of a rose tree and
it is indeed implemented as one. It should now be folklore that rose
trees benefit a lot from being defined as sized types (Abel 2010).
It allows recursive traversals to weaponize higher-order functions
without having to spend a lot of efforts appeasing the termination
checker. An instance of such a higher order function we use to great
effect is the fold over an extensible record of subcommands.

We made Size an implicit index so that it does not add any extra
overhead from the programmer’s point of view in places where it
does not matter.

4. Generic Programming over Interfaces
The point of having a first order representation of Interfaces is, just
like for any deeply-embeddedDSL (Hudak 1996), to be able towrite
generic program against this representation.

4.1 Parsing
The most important use case is to harness the Interface declaration
to make sense of the list of strings2 passed to the executable called
from the command line. The expected result of a successful parse
is a path down the hierarchical structure of the interface selecting
a subcommand together with a collection of recognized modifiers
and arguments specific to that subcommand. Dependent types allow
us to make this requirement explicit by indexing the path over the
command it corresponds to. We write ParsedCLI c for the type of
successful parses associated to the interface c. This parsing process
can be decomposed in three successive phases:

1. The subcommand selection phase goes down the hierarchical
interface picking subcommands based on the keywords provided
by the user. As soon as a modifier or an argument for the current
command in focus is found, the second phase starts.
2. The modifier and arguments collection phase now has settled
for a given subcommand and tries to parse each new string as either
one of its modifiers or, if that doesn’t succeed, an argument.
3. At any point the string “--” can make the parser switch to the
argument collection phase. It interprets each subsequent string as
an argument to the command in focus. It is useful when arguments
may look like modifiers e.g. ls -l -- -l lists (ls) in a long
listing format (-l) the information about the file “-l” (-- -l).

We provide the user with a combinator readily putting various
pieces together that should fit most use cases. Its takes an interface,
a continuation for a successful parse and returns an IO computation:
withCLI ∶ ∀ c (k ∶ ParsedCLI c → IO ⊤) → IO ⊤
Internally, withCLI performs a call to Haskell’s getArgs, attempts
to parse the list of strings it got back, and either prints the error to
stdout if the parse failed or calls the continuation otherwise.

It is currently very simple but fits our need.We can imaginemore
elaborate variations on it. We could for instance “patch” on the fly
the provided interface so that it supports all the common flags for
requesting help (e.g. -h, --help, -?, etc.) and responds to them by
displaying appropriate usage information.

4.2 Usage Information
It is indeed possible to exploit the available knowledge about the in-
terface’s hierarchical structure, the subcommands’ names and their
associated modifiers to generically produce usage information for
2 These are usually referred to as “command line arguments” e.g. in the
specification of getArgs in the Haskell 98 report’s “System Functions”
section. We refrain from using that expression to avoid confusion with our
Interface’s notion of arguments

the end-users’ consumption. Our usage function traverses the inter-
face tree in a depth-first manner: it starts by recursively displaying
all the subcommands (if any) at an increased indentation level and
then lists the modifiers for the current command. Ran on the wc-like
interface described in Figure 1, it yields the output in Figure 2.
WordCount Print each file’s counts

--help Display help
--version Version Number
-l Newline count
-w Word count

Figure 2. Usage Information for the Interface in Fig. 1

5. Current Limitations and Future Work
Writing the continuation passed to withCLI can be a bit verbose
when dealing with deeply nested interfaces. It ought to be possible
to define combinators that make it easier to combine together small,
self-contained subcommands each one handling its own branch of
the subcommands tree.

It is rather common for interfaces to allow the grouping of flags
which are one character long into compound flags (e.g. tar -xz
is understood as tar -x -z ) or to use the remainder of a one
character long option as its parameter (e.g. tar -xz -ffi is un-
derstood as tar -xz -f fi ). One can even mix the two e.g.
tar -xzffi . The current parser does not handle these shortcuts.

The usage information is generated in a rather crude manner by
putting raw strings together. A well-structured intermediate format
describing in a simple manner the dependencies between blocks of
text would be an ideal candidate for a refactoring. Wadler’s Prettier
Printer (2003) is a possible candidate.

Once the generation of usage information is well structured, it
would be interesting to be able to generate proper man pages. An
interesting problem to solve towards that goal is the generation of
compact yet informative examples of valid usages.

References
A. Abel. Miniagda: Integrating sized and dependent types. In Proceedings

Workshop on Partiality and Recursion in ITP, PAR, 2010.
L. Augustsson. Cayenne—a language with dependent types. In Interna-

tional School on Advanced Functional Programming, pages 240–267.
Springer, 1998.

E. Brady. Resource-dependent algebraic effects. In International Sym-
posium on Trends in Functional Programming, pages 18–33. Springer,
2014.

G. Claret and Y. Régis-Gianas. Mechanical verification of interactive pro-
grams specified by use cases. InProceedings of the Third FMEWorkshop
on Formal Methods in Software Engineering, pages 61–67. IEEE Press,
2015.

N. A. Danielsson. Total parser combinators. In ACM Sigplan Notices,
volume 45, pages 285–296. ACM, 2010.

P. Hudak. Building domain-specific embedded languages. ACMComputing
Surveys (CSUR), 28(4es):196, 1996.

C. T. McBride. How to keep your neighbours in order. In ACM SIGPLAN
Notices, volume 49, pages 297–309. ACM, 2014.

A. Stump. Verified Functional Programming in Agda. Association for
Computing Machinery and Morgan &#38; Claypool, New York, NY,
USA, 2016. ISBN 978-1-97000-127-3.

E. Tanter and N. Tabareau. Gradual certified programming in coq. In
Proceedings of the 11th Symposium on Dynamic Languages, pages 26–
40. ACM, 2015.

P. Wadler. A prettier printer. The Fun of Programming, Cornerstones of
Computing, pages 223–243, 2003.

2 2016/12/1


