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Global state + monotonicity is really useful!

Its essence can be captured very neatly!
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Outline

• Monotonic state by example

• Key ideas behind our general framework

• Accommodating monotonic state in F*

• Some examples of monotonic state at work

• More examples of monotonic state at work (see POPL’18 paper)

• First steps in mon. reification and reflection (see POPL’18 paper)

• Meta-theory and correctness results (see POPL’18 paper)
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Monotonicity in verification

• Consider a program operating on set-valued state

insert v; complex procedure(); assert (v ∈ get())

• To prove the assertion (say, in a Floyd-Hoare style logic),

we could prove that the code maintains a stateful invariant

{λ s . v ∈ s} complex procedure() {λ s . v ∈ s}

• likely that we have to carry λ s . v ∈ s through the proof of c p

• does not guarantee that λ s . v ∈ s holds at every point in c p

• sensitive to proving that c p maintains λ s . w ∈ s for some other w

• However, if c p never removes, then λ s . v ∈ s is stable, and

we would like the program logic to give us v ∈ get() “for free”
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Monotonicity in programming

• Programming also relies on monotonicity,

even if you don’t realise it!

• Consider ML-style typed references r:ref a

• r is a proof of existence of an a-typed value in the heap

• Correctness relies on monotonicity!

1) Allocation stores an a-typed value in the heap

2) Writes don’t change type and there is no deallocation

3) So, given a ref. r, it is guaranteed to point to an a-typed value

• Baked into the memory models of most languages

• We derive them from global state + general monotonicity
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Monotonicity is really useful!

• In this talk

• our motivating example and monotonic counters

• typed references (ref t) and untyped references (uref)

• more flexibility with monotonic references (mref t rel)

• See our POPL 2018 paper for more

• temporarily violating monotonicity via snapshots

• two substantial case studies in F*

• a secure file-transfer application

• Ariadne state continuity protocol [Strackx, Piessens 2016]

• pointers to other works in F* relying on monotonicity for

• sophisticated region-based memory models [fstar-lang.org]

• crypto and TLS verification [project-everest.github.io]
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Key ideas behind our general framework

• We make use of monotonic programs and stable predicates

• per verification task, we choose a preorder rel on states

• set inclusion, heap inclusion, increasing counter values, . . .

• a stateful program e is monotonic (wrt. rel) when

∀ s e′ s′. (e, s) ∗ (e′, s′) =⇒ rel s s′

• a stateful predicate p is stable (wrt. rel) when

∀ s s′. p s ∧ rel s s′ =⇒ p s′

• Our solution: extend Hoare-style program logics (e.g., F*) with

• a means to witness the validity of p s in some state s

• a means for turning a p into a state-independent proposition

• a means to recall the validity of p s′ in any future state s′

• Provides a unifying account of the existing ad hoc uses in F*
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Recap: Ordinary global state in F*

• F* supports Hoare-style reasoning about state via the comp. type

STstate t (requires pre) (ensures post)

where

pre : state→ Type0 post : state→ t→ state→ Type0

• ST is an abstract pre-postcondition refinement of

st t
def
= state→ t ∗ state

• The global state actions have types

get : unit→ ST state (requires (λ .>)) (ensures (λ s0 s s1 . s0 = s = s1))

put : s:state→ ST unit (requires (λ .>)) (ensures (λ s1 . s1 = s))

• Refs. and local state are defined in F* using monotonicity
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New: Monotonic global state in F*

• We capture monotonic state with a new computational type

MSTstate,rel t (requires pre) (ensures post)

• The get action is typed as in ST

get : unit→ MST state (requires (λ .>))

(ensures (λ s0 s s1 . s0 = s = s1))

• To ensure monotonicity, the put action gets a precondition

put : s:state→ MST unit (requires (λ s0 . rel s0 s))

(ensures (λ s1 . s1 = s))

• So intuitively, MST is an abstract pre-postcondition refinement of

mst t
def
= s0:state→ t ∗ s1:state{rel s0 s1}
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New: Recalling a Witness

• We extend F* with a logical capability

witnessed : (state→ Type0)→ Type0

together with a weakening principle (functoriality)

wk : p,q:(state→ Type0)→ Lemma (requires (∀ s . p s =⇒ q s))

(ensures (witnessed p =⇒ witnessed q))

• Intuitively, a lot like the necessity modality �

Jwitnessed pK(s)
def
= ∀ s′ . rel s s′ =⇒ Jp s′K(s)

• As usual, for natural deduction, need world-indexed sequents

• Oh, wait a minute . . .
13/21
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New: Recalling a Witness

• . . . Hoare-style logics are essentially world/state-indexed, so

• we include a stateful introduction rule for witnessed

witness : p:(state→ Type0)

→ MST unit (requires (λ s0 . p ‘stable from‘ s0))

(ensures (λ s0 s1 . s0 = s1 ∧ witnessed p))

• and a stateful elimination rule for witnessed

recall : p:(state→ Type0)

→ MST unit (requires (λ . witnessed p))

(ensures (λ s0 s1 . s0 = s1 ∧ p ‘stable from‘ s1))
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The motivating example revisited

• Recall the program operating on the set-valued state

insert v; complex procedure(); assert (v ∈ get())

• We pick set inclusion ⊆ as our preorder rel on states

• We prove the assertion by inserting a witness and recall

insert v; witness (λ s . v ∈ s); c p(); recall (λ s . v ∈ s); assert (v ∈ get())

• For any other w, wrapping

insert w; [ ]; assert (w ∈ get())

around the program is handled similarly easily by

insert w; witness (λ s . w ∈ s); [ ]; recall (λ s . w ∈ s); assert (w ∈ get())

• Monotonic counters are analogous, by picking N and ≤, e.g.,

create 0; incr(); witness (λ c . c > 0); c p(); recall (λ c . c > 0)
16/21
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• For any other w, wrapping

insert w; [ ]; assert (w ∈ get())

around the program is handled similarly easily by

insert w; witness (λ s . w ∈ s); [ ]; recall (λ s . w ∈ s); assert (w ∈ get())

• Monotonic counters are analogous, by picking N and ≤, e.g.,

create 0; incr(); witness (λ c . c > 0); c p(); recall (λ c . c > 0)
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ML-style typed references (local state)

• First, we define a type of heaps as a finite map

type heap =

| H : h:(N→ cell)→ ctr:N{∀ n . ctr ≤ n =⇒ h n = Unused} → heap

where

type cell =

| Unused : cell

| Used : a:Type0 → v:a→ cell

• Next, we define a preorder on heaps (heap inclusion)

let heap inclusion (H h0 ) (H h1 ) = ∀ id . match h0 id , h1 id with

| Used a , Used b → a = b

| Unused , Used → >

| Unused , Unused → >

| Used , Unused → ⊥
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ML-style typed references (local state)

• As a result, we can define new local state effect

MLST t pre post
def
= MSTheap,heap inclusion t pre post

• Next, we define the type of references using monotonicity

abstract type ref a = id:N{witnessed (λ h . contains h id a)}

where

let contains (H h ) id a =

match h id with

| Used b → a = b

| Unused → ⊥

• Important: contains is stable wrt. heap inclusion
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ML-style typed references (local state)

• Finally, we define MLST’s actions using MST’s actions

• let alloc (a:Type0) (v:a) : MLST (ref a) . . . = . . .

• get the current heap
• create a fresh ref., and add it to the heap
• put the updated heap back
• witness that the created ref. is in the heap

• let read (r:ref a) : MLST t . . . = . . .

• recall that the given ref. is in the heap
• get the current heap
• select the given reference from the heap

• let write (r:ref a) (v:a) : MLST unit . . . = . . .

• recall that the given ref. is in the heap
• get the current heap
• update the heap with the given value at the given ref.
• put the updated heap back
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Adding untyped and monotonic references

• Untyped references (uref) with strong updates

• Used heap cells are extended with tags

| Used : a:Type0 → v:a→ t:tag→ cell
where

type tag = Typed : tag | Untyped : tag

• actions corresponding to urefs have weaker types than for refs

• Monotonic references (mref a rel)

• Used heap cells are extended with typed tags

| Used : a:Type0 → v:a→ t:tag a→ cell
where

type tag a = Typed : rel:preorder a→ tag a | Untyped : tag a

• mrefs provide more flexibility with ref.-wise monotonicity

• Further, all three can be extended with manually managed refs.
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Conclusion

• Monotonicity

• can be distilled into a simple and general framework

• is useful for programming (refs.) and verification (Prj. Everest)

• See our POPL 2018 paper for

• further examples and case studies

• meta-theory and total correctness for MST

• based on an instrumented operational semantics

(witness x .ϕ , s , W )  (return () , s , W ∪ {x .ϕ})

• and cut elimination for the witnessed-logic

• first steps towards monadic reification for MST

• useful for extrinsic reasoning, e.g., for relational properties

• but have to be careful when breaking abstraction
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