Leveraging monotonic state in F*

Danel Ahman @ INRIA Paris

joint work with

Cătălin Hrițcu and Kenji Maillard @ INRIA Paris Cédric Fournet, Aseem Rastogi, and Nikhil Swamy @ MSR

> EUTypes Working Meeting January 23, 2018

Global state + monotonicity is really useful!

Its essence can be captured very neatly!

Outline

- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see POPL'18 paper)
- First steps in mon. reification and reflection (see POPL'18 paper)
- Meta-theory and correctness results (see POPL'18 paper)

Outline

- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see POPL'18 paper)
- First steps in mon. reification and reflection (see POPL'18 paper)
- Meta-theory and correctness results (see POPL'18 paper)

- Consider a program operating on set-valued state
 insert v; complex_procedure(); assert (v ∈ get())
- To prove the assertion (say, in a Floyd-Hoare style logic), we could prove that the code maintains a **stateful invariant**

 $\{\lambda \, {f s} \, . \, {f v} \in {f s}\}$ complex_procedure() $\{\lambda \, {f s} \, . \, {f v} \in {f s}\}$

- likely that we have to carry λ s. v ∈ s through the proof of c_p
 does not guarantee that λ s. v ∈ s holds at every point in c_p
 sensitive to proving that c_p maintains λ s. w ∈ s for some other w
- However, if c_p never removes, then λ s . v ∈ s is stable, and we would like the program logic to give us v ∈ get() "for free"

• Consider a program operating on set-valued state

insert v; complex_procedure(); assert (v \in get())

• To prove the assertion (say, in a Floyd-Hoare style logic), we could prove that the code maintains a **stateful invariant**

 $\{\lambda \, \mathbf{s} \, . \, \mathbf{v} \in \mathbf{s}\}$ complex_procedure() $\{\lambda \, \mathbf{s} \, . \, \mathbf{v} \in \mathbf{s}\}$

- likely that we have to carry λ s. v ∈ s through the proof of c_p
 does not guarantee that λ s. v ∈ s holds at every point in c_p
 sensitive to proving that c_p maintains λ s. w ∈ s for some other w
- However, if c_p never removes, then λ s . v ∈ s is stable, and we would like the program logic to give us v ∈ get() "for free"

• Consider a program operating on **set-valued state**

insert v; complex_procedure(); assert (v \in get())

• To prove the assertion (say, in a Floyd-Hoare style logic), we could prove that the code maintains a **stateful invariant**

 $\{\lambda \mathbf{s} \cdot \mathbf{v} \in \mathbf{s}\}$ complex_procedure() $\{\lambda \mathbf{s} \cdot \mathbf{v} \in \mathbf{s}\}$

- likely that we have to carry $\lambda s \cdot v \in s$ through the proof of c_p
 - does not guarantee that $\lambda s \cdot v \in s$ holds at every point in c_p
 - \bullet sensitive to proving that c_p maintains $\lambda\, s\,.\, w\in s$ for some other w
- However, if c_p never removes, then λ s . v ∈ s is stable, and we would like the program logic to give us v ∈ get() "for free"

• Consider a program operating on set-valued state

insert v; complex_procedure(); assert (v \in get())

• To prove the assertion (say, in a Floyd-Hoare style logic), we could prove that the code maintains a **stateful invariant**

 $\{\lambda \mathbf{s} \cdot \mathbf{v} \in \mathbf{s}\}$ complex_procedure() $\{\lambda \mathbf{s} \cdot \mathbf{v} \in \mathbf{s}\}$

- likely that we have to carry $\lambda s \cdot v \in s$ through the proof of c_p
 - does not guarantee that $\lambda \mathbf{s} \cdot \mathbf{v} \in \mathbf{s}$ holds at every point in c_p
 - sensitive to proving that c_p maintains $\lambda s \cdot w \in s$ for some other w
- However, if c_p never removes, then λ s. v ∈ s is stable, and we would like the program logic to give us v ∈ get() "for free"

- **Programming** also relies on **monotonicity**, even if you don't realise it!
- Consider ML-style typed **references** r:ref a
 - r is a **proof of existence** of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation stores an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - 3) So, given a ref. r, it is guaranteed to point to an a-typed value
- Baked into the memory models of most languages
- We derive them from global state + general monotonicity

- **Programming** also relies on **monotonicity**, even if you don't realise it!
- Consider ML-style typed references r:ref a
 - r is a **proof of existence** of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation stores an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - 3) So, given a ref. r, it is guaranteed to point to an a-typed value
- Baked into the memory models of most languages
- We derive them from global state + general monotonicity

- **Programming** also relies on **monotonicity**, even if you don't realise it!
- Consider ML-style typed references r:ref a
 - r is a proof of existence of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation stores an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - 3) So, given a ref. r, it is guaranteed to point to an a-typed value
- Baked into the memory models of most languages
- We derive them from global state + general monotonicity

- **Programming** also relies on **monotonicity**, even if you don't realise it!
- Consider ML-style typed references r:ref a
 - r is a proof of existence of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation stores an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - 3) So, given a ref. r, it is guaranteed to point to an a-typed value
- Baked into the memory models of most languages
- We derive them from global state + general monotonicity

Monotonicity is really useful!

• In this talk

- our motivating example and monotonic counters
- typed references (ref t) and untyped references (uref)
- more flexibility with monotonic references (mref t rel)
- See our POPL 2018 paper for more
 - temporarily violating monotonicity via snapshots
 - two substantial case studies in F*
 - a secure file-transfer application
 - Ariadne state continuity protocol [Strackx, Piessens 2016]
 - pointers to other works in F* relying on monotonicity for
 - sophisticated region-based memory models [fstar-lang.org]
 - crypto and TLS verification [project-everest.github.io]

Monotonicity is really useful!

- In this talk
 - our motivating example and monotonic counters
 - typed references (ref t) and untyped references (uref)
 - more flexibility with monotonic references (mref t rel)

• See our POPL 2018 paper for more

- temporarily violating monotonicity via snapshots
- two substantial case studies in F*
 - a secure file-transfer application
 - Ariadne state continuity protocol [Strackx, Piessens 2016]
- pointers to other works in F* relying on monotonicity for
 - sophisticated region-based memory models [fstar-lang.org]
 - crypto and TLS verification [project-everest.github.io]

Monotonicity is really useful!

- In this talk
 - our motivating example and monotonic counters
 - typed references (ref t) and untyped references (uref)
 - more flexibility with monotonic references (mref t rel)
- See our POPL 2018 paper for more
 - temporarily violating monotonicity via snapshots
 - two substantial case studies in F*
 - a secure file-transfer application
 - Ariadne state continuity protocol [Strackx, Piessens 2016]
 - pointers to other works in F* relying on monotonicity for
 - sophisticated region-based memory models [fstar-lang.org]
 - crypto and TLS verification [project-everest.github.io]

Outline

- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see POPL'18 paper)
- First steps in mon. reification and reflection (see POPL'18 paper)
- Meta-theory and correctness results (see POPL'18 paper)

- We make use of monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is monotonic (wrt. rel) when
 ∀ s e' s'. (e, s) →* (e', s') ⇒ rel s s'
 - a stateful predicate p is stable (wrt. rel) when $\forall s s'. p s \land rel s s' \Longrightarrow p s'$
- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to **witness** the validity of p s in some state s
 - a means for turning a p into a state-independent proposition
 - a means to **recall** the validity of $\mathbf{p} \ \mathbf{s}'$ in any future state \mathbf{s}'
- Provides a unifying account of the existing ad hoc uses in F*

- We make use of monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states

• set inclusion, heap inclusion, increasing counter values, ...

a stateful program e is monotonic (wrt. rel) when
 ∀ s e' s'. (e, s) ↔* (e', s') ⇒ rel s s'

• a stateful predicate p is stable (wrt. rel) when $\forall s s'. p s \land rel s s' \Longrightarrow p s'$

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of p s in some state s
 - a means for turning a p into a state-independent proposition
 - a means to recall the validity of p s' in any future state s'
- Provides a **unifying account** of the existing *ad hoc* uses in F*

- We make use of monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is monotonic (wrt. rel) when
 ∀se's'. (e,s) ↔* (e',s') ⇒ rel s s'

• a stateful predicate p is stable (wrt. rel) when $\forall s s'. p s \land rel s s' \Longrightarrow p s'$

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of p s in some state s
 - a means for turning a p into a state-independent proposition
 - a means to **recall** the validity of $p \ s'$ in any future state s'
- Provides a **unifying account** of the existing *ad hoc* uses in F*

- We make use of monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is **monotonic** (wrt. **rel**) when

$$\forall \, \mathtt{s} \, \mathtt{e}' \, \mathtt{s}'. \, (\mathtt{e}, \mathtt{s}) \rightsquigarrow^* (\mathtt{e}', \mathtt{s}') \implies \texttt{rel} \, \mathtt{s} \, \mathtt{s}'$$

a stateful predicate p is stable (wrt. rel) when
 ∀ss'. ps ∧ rel ss' ⇒ ps'

• Our solution: extend Hoare-style program logics (e.g., F*) with

- a means to witness the validity of p s in some state s
- a means for turning a p into a state-independent proposition
- a means to recall the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- We make use of monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is **monotonic** (wrt. **rel**) when

$$\forall\, \mathtt{s}\, \mathtt{e}'\, \mathtt{s}'.\; (\mathtt{e}, \mathtt{s}) \rightsquigarrow^* (\mathtt{e}', \mathtt{s}') \implies \texttt{rel}\, \mathtt{s}\,\, \mathtt{s}'$$

• a stateful predicate p is stable (wrt. rel) when $\forall\,s\,s'.\,p\,s\,\wedge\,rel\,s\,s'\Longrightarrow\,p\,s'$

• Our solution: extend Hoare-style program logics (e.g., F*) with

- a means to witness the validity of p s in some state s
- a means for turning a p into a state-independent proposition
- a means to **recall** the validity of $p \ s'$ in any future state s'
- Provides a **unifying account** of the existing *ad hoc* uses in F*

- We make use of monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is **monotonic** (wrt. **rel**) when

$$\forall\, \mathtt{s}\, \mathtt{e}'\, \mathtt{s}'.\; (\mathtt{e}, \mathtt{s}) \rightsquigarrow^* (\mathtt{e}', \mathtt{s}') \implies \mathtt{rel}\, \mathtt{s}\,\, \mathtt{s}'$$

- a stateful predicate p is stable (wrt. rel) when $\forall\,s\,s'.\,p\,s\,\wedge\,\text{rel}\,s\,s'\implies p\,s'$
- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of $p \ s$ in some state s
 - a means for turning a $\ensuremath{\mathbf{p}}$ into a state-independent proposition
 - a means to recall the validity of p s' in any future state s'

Provides a unifying account of the existing ad hoc uses in F*

- We make use of monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is **monotonic** (wrt. **rel**) when

$$\forall\, \mathtt{s}\, \mathtt{e}'\, \mathtt{s}'.\; (\mathtt{e}, \mathtt{s}) \rightsquigarrow^* (\mathtt{e}', \mathtt{s}') \implies \mathtt{rel}\, \mathtt{s}\,\, \mathtt{s}'$$

- a stateful predicate p is stable (wrt. rel) when $\forall\,s\,s'.\,p\,s\,\wedge\,\text{rel}\,s\,s'\implies p\,s'$
- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means to witness the validity of $p \ s$ in some state s
 - a means for turning a p into a state-independent proposition
 - a means to recall the validity of $p \ s'$ in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

Outline

- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see POPL'18 paper)
- First steps in mon. reification and reflection (see POPL'18 paper)
- Meta-theory and correctness results (see POPL'18 paper)

• F* supports Hoare-style reasoning about state via the **comp. type** ST_{state} t (requires **pre**) (ensures **post**)

 $\texttt{pre}:\texttt{state} \rightarrow \texttt{Type}_\texttt{0} \qquad \texttt{post}:\texttt{state} \rightarrow \texttt{t} \rightarrow \texttt{state} \rightarrow \texttt{Type}_\texttt{0}$

• ST is an abstract pre-postcondition refinement of

st t $\stackrel{\text{def}}{=}$ state \rightarrow t * state

- The global state **actions** have types get : unit \rightarrow ST state (requires (λ_-, \top)) (ensures $(\lambda s_0 s s_1, s_0 = s = s_1)$) put : s:state \rightarrow ST unit (requires (λ_-, \top)) (ensures $(\lambda_{--}s_1, s_1 = s)$)
- Refs. and local state are defined in F* using monotonicity

• F* supports Hoare-style reasoning about state via the **comp. type**

ST_{state} t (requires pre) (ensures post)

where

• ST is an abstract pre-postcondition refinement of

 $\texttt{st t} \stackrel{\texttt{def}}{=} \texttt{state} \rightarrow \texttt{t} * \texttt{state}$

• The global state **actions** have types get : unit \rightarrow ST state (requires (λ_- . \top)) (ensures ($\lambda s_0 s s_1 . s_0 = s = s_1$)) put : s:state \rightarrow ST unit (requires ($\lambda_- . \top$)) (ensures ($\lambda_- - s_1 . s_1 = s$))

• Refs. and local state are defined in F* using monotonicity

• F* supports Hoare-style reasoning about state via the **comp. type**

ST_{state} t (requires pre) (ensures post)

where

• ST is an abstract pre-postcondition refinement of

 $\texttt{st t} \stackrel{\texttt{def}}{=} \texttt{state} \rightarrow \texttt{t} * \texttt{state}$

- The global state **actions** have types get: unit \rightarrow ST state (requires $(\lambda_{-}.\top)$) (ensures $(\lambda s_0 s s_1 . s_0 = s = s_1)$) put: s:state \rightarrow ST unit (requires $(\lambda_{-}.\top)$) (ensures $(\lambda_{--}s_1 . s_1 = s)$)
- Refs. and local state are defined in F* using monotonicity

• F* supports Hoare-style reasoning about state via the **comp. type**

ST_{state} t (requires pre) (ensures post)

where

• ST is an abstract pre-postcondition refinement of

 $\texttt{st t} \; \stackrel{\texttt{def}}{=} \; \texttt{state} \to \texttt{t} * \texttt{state}$

- The global state **actions** have types get: unit \rightarrow ST state (requires $(\lambda_{-}.\top)$) (ensures $(\lambda s_0 s s_1 . s_0 = s = s_1)$) put: s:state \rightarrow ST unit (requires $(\lambda_{-}.\top)$) (ensures $(\lambda_{--}s_1 . s_1 = s)$)
- Refs. and local state are defined in F* using monotonicity

• We capture monotonic state with a new computational type

 $MST_{state,rel} t (requires pre) (ensures post)$

The get action is typed as in ST
 get : unit → MST state (requires (λ _ . . T))
 (ensures (λ s₀ s s₁ . s₀ = s = s₁))

 To ensure monotonicity, the put action gets a precondition put : s:state → MST unit (requires (λ s₀.rel s₀ s)) (ensures (λ - s₁.s₁ = s))

• So intuitively, MST is an **abstract** pre-postcondition refinement of mst t $\stackrel{\text{def}}{=}$ s₀:state \rightarrow t * s₁:state{rel s₀ s₁}

• We capture monotonic state with a new computational type

MST_{state,rel} t (requires pre) (ensures post)

• The get action is typed as in ST get : unit \rightarrow MST state (requires ($\lambda _$.T)) (ensures ($\lambda \le s_1 \le s_1 \le s_1 \le s_1$))

 To ensure monotonicity, the put action gets a precondition put : s:state → MST unit (requires (λ s₀.rel s₀ s)) (ensures (λ - s₁.s₁ = s))

• So intuitively, MST is an **abstract** pre-postcondition refinement of mst t $\stackrel{\text{def}}{=}$ s_0:state \rightarrow t * s_1:state{rel s_0 s_1}

• We capture monotonic state with a new computational type

MST_{state,rel} t (requires pre) (ensures post)

• The get action is typed as in ST get : unit \rightarrow MST state (requires (λ_{-}, \top)) (ensures $(\lambda s_0 s s_1 . s_0 = s = s_1)$)

 To ensure monotonicity, the put action gets a precondition put : s:state → MST unit (requires (λ s₀.rel s₀ s)) (ensures (λ - s₁.s₁ = s))

• So intuitively, MST is an abstract pre-postcondition refinement of

$$\texttt{mst t} \stackrel{\texttt{def}}{=} \mathbf{s}_0 \texttt{:state} \rightarrow \texttt{t} \ast \mathbf{s}_1 \texttt{:state} \{\texttt{rel } \mathbf{s}_0 \ \mathbf{s}_1\}$$

• We capture monotonic state with a new computational type

MST_{state,rel} t (requires pre) (ensures post)

• The get action is typed as in ST get : unit \rightarrow MST state (requires (λ_{-}, \top)) (ensures $(\lambda s_0 s s_1, s_0 = s = s_1)$)

• To ensure monotonicity, the put action gets a precondition

 $\texttt{put}: \texttt{s}:\texttt{state} \to \texttt{MST} \texttt{ unit } (\texttt{requires } (\lambda \texttt{s}_0 \, . \, \texttt{rel s}_0 \, \texttt{s}))$ $(\texttt{ensures } (\lambda_{--}\texttt{s}_1 \, . \, \texttt{s}_1 = \texttt{s}))$

• So intuitively, MST is an abstract pre-postcondition refinement of

 $\texttt{mst t} \stackrel{\texttt{def}}{=} \texttt{s}_0 : \texttt{state} \to \texttt{t} * \texttt{s}_1 : \texttt{state} \{\texttt{rel s}_0 \texttt{s}_1\}$

• We capture monotonic state with a new computational type

MST_{state,rel} t (requires pre) (ensures post)

• The get action is typed as in ST get : unit \rightarrow MST state (requires (λ_{-}, \top)) (ensures $(\lambda s_0 s s_1, s_0 = s = s_1)$)

• To ensure monotonicity, the put action gets a precondition

 $\texttt{put}: \texttt{s}:\texttt{state} \to \texttt{MST} \texttt{ unit } (\texttt{requires } (\lambda \texttt{s}_0 \, . \, \texttt{rel s}_0 \, \texttt{s}))$ $(\texttt{ensures } (\lambda_{--}\texttt{s}_1 \, . \, \texttt{s}_1 = \texttt{s}))$

• So intuitively, MST is an abstract pre-postcondition refinement of

$$\texttt{mst t} \stackrel{\texttt{def}}{=} \texttt{s}_0 \texttt{:state} \rightarrow \texttt{t} * \texttt{s}_1 \texttt{:state} \{\texttt{rel } \texttt{s}_0 \texttt{ s}_1 \}$$

• We extend F* with a logical capability

 $\texttt{witnessed}: (\texttt{state} \rightarrow \texttt{Type}_0) \rightarrow \texttt{Type}_0$

together with a weakening principle (functoriality) wk:p,q:(state \rightarrow Type₀) \rightarrow Lemma (requires (\forall s.p s \implies q s))

• Intuitively, a lot like the necessity modality

 $\llbracket \texttt{witnessed p} \rrbracket(\texttt{s}) \stackrel{\text{\tiny def}}{=} \forall \texttt{s}' . \texttt{rel s s}' \implies \llbracket \texttt{p s}' \rrbracket(\texttt{s})$

As usual, for natural deduction, need world-indexed sequents
Oh, wait a minute . . .

• We extend F* with a logical capability

 $\texttt{witnessed}: (\texttt{state} \rightarrow \texttt{Type}_0) \rightarrow \texttt{Type}_0$

together with a weakening principle (functoriality)

$$\begin{split} \texttt{wk}:\texttt{p},\texttt{q}:(\texttt{state} \to \texttt{Type}_0) \to \texttt{Lemma} \; (\texttt{requires} \; (\forall \, \texttt{s} \, . \, \texttt{p} \; \texttt{s} \implies \texttt{q} \; \texttt{s})) \\ & (\texttt{ensures} \; (\texttt{witnessed} \; \texttt{p} \implies \texttt{witnessed} \; \texttt{q})) \end{split}$$

• Intuitively, a lot like the **necessity modality**

 $\llbracket \texttt{witnessed p} \rrbracket(\texttt{s}) \stackrel{\texttt{def}}{=} \forall \texttt{s}' . \texttt{rel s s}' \implies \llbracket \texttt{p s}' \rrbracket(\texttt{s})$

- As usual, for natural deduction, need world-indexed sequents
- Oh, wait a minute . . .

• We extend F* with a logical capability

$$\texttt{witnessed}: (\texttt{state} \rightarrow \texttt{Type}_0) \rightarrow \texttt{Type}_0$$

together with a weakening principle (functoriality)

$$\begin{split} \texttt{wk}:\texttt{p},\texttt{q}:(\texttt{state} \to \texttt{Type}_0) \to \texttt{Lemma} \; (\texttt{requires} \; (\forall \, \texttt{s} \, . \, \texttt{p} \; \texttt{s} \implies \texttt{q} \; \texttt{s})) \\ & (\texttt{ensures} \; (\texttt{witnessed} \; \texttt{p} \implies \texttt{witnessed} \; \texttt{q})) \end{split}$$

• Intuitively, a lot like the necessity modality \Box

$$[\![\texttt{witnessed p}]\!](\mathbf{s}) \stackrel{\texttt{def}}{=} \forall \, \mathbf{s}' \, . \, \texttt{rel } \mathbf{s} \, \mathbf{s}' \implies [\![\texttt{p} \, \mathbf{s}']\!](\mathbf{s})$$

As usual, for natural deduction, need world-indexed sequents
Oh, wait a minute sequence of the sequence of t

• We extend F* with a logical capability

$$\texttt{witnessed}: (\texttt{state} \rightarrow \texttt{Type}_0) \rightarrow \texttt{Type}_0$$

together with a weakening principle (functoriality)

$$\begin{split} \texttt{wk}:\texttt{p},\texttt{q}:(\texttt{state} \to \texttt{Type}_0) \to \texttt{Lemma} \; (\texttt{requires} \; (\forall \, \texttt{s} \, . \, \texttt{p} \; \texttt{s} \implies \texttt{q} \; \texttt{s})) \\ & (\texttt{ensures} \; (\texttt{witnessed} \; \texttt{p} \implies \texttt{witnessed} \; \texttt{q})) \end{split}$$

• Intuitively, a lot like the necessity modality \Box

$$\llbracket \texttt{witnessed p} \rrbracket(\texttt{s}) \stackrel{\texttt{def}}{=} \forall \texttt{s}' . \texttt{rel } \texttt{s} \; \texttt{s}' \implies \llbracket \texttt{p} \; \texttt{s}' \rrbracket(\texttt{s})$$

As usual, for natural deduction, need world-indexed sequents
Oh, wait a minute

• We extend F* with a logical capability

$$\texttt{witnessed}: (\texttt{state} \rightarrow \texttt{Type}_0) \rightarrow \texttt{Type}_0$$

together with a weakening principle (functoriality)

$$\begin{split} \texttt{wk}:\texttt{p},\texttt{q}:(\texttt{state} \to \texttt{Type}_0) \to \texttt{Lemma} \; (\texttt{requires} \; (\forall \, \texttt{s} \, . \, \texttt{p} \; \texttt{s} \implies \texttt{q} \; \texttt{s})) \\ & (\texttt{ensures} \; (\texttt{witnessed} \; \texttt{p} \implies \texttt{witnessed} \; \texttt{q})) \end{split}$$

• Intuitively, a lot like the necessity modality \Box

$$\llbracket \texttt{witnessed p} \rrbracket(\texttt{s}) \stackrel{\texttt{def}}{=} \forall \texttt{s}' . \texttt{rel } \texttt{s} \; \texttt{s}' \implies \llbracket \texttt{p} \; \texttt{s}' \rrbracket(\texttt{s})$$

- As usual, for natural deduction, need world-indexed sequents
- Oh, wait a minute . . .

- ... Hoare-style logics are essentially world/state-indexed, so
- we include a stateful introduction rule for witnessed

```
witness : p:(state \rightarrow Type_0)

\rightarrow MST unit (requires (\lambda s_0.p 'stable_from' s_0))

(ensures (\lambda s_0 \_ s_1 . s_0 = s_1 \land witnessed p))
```

• and a stateful elimination rule for witnessed

```
\begin{array}{lll} \texttt{recall} & : & \texttt{p:(state} \to \texttt{Type_0}) \\ & \to \texttt{MST unit} \ (\texttt{requires} \ (\lambda\_.\texttt{witnessed} \ \texttt{p})) \\ & & (\texttt{ensures} \ (\lambda \texttt{s_0}\_\texttt{s_1}.\texttt{s_0}=\texttt{s_1} \land \texttt{p} \ \texttt{'stable\_from'} \ \texttt{s_1})) \end{array}
```

- ... Hoare-style logics are essentially world/state-indexed, so
- we include a stateful introduction rule for witnessed

```
 \begin{array}{ll} \texttt{witness} &: \ \texttt{p:}(\texttt{state} \to \texttt{Type}_0) \\ & \to \texttt{MST} \texttt{ unit} (\texttt{requires} (\lambda \texttt{s}_0 . \texttt{p} `\texttt{stable\_from}` \texttt{s}_0)) \\ & & (\texttt{ensures} (\lambda \texttt{s}_0 \_ \texttt{s}_1 . \texttt{s}_0 = \texttt{s}_1 \land \texttt{witnessed} \texttt{p})) \end{array}
```

• and a stateful elimination rule for witnessed

```
\begin{array}{lll} \texttt{recall} & : & \texttt{p:}(\texttt{state} \rightarrow \texttt{Type}_0) \\ & \rightarrow \texttt{MST unit} (\texttt{requires} (\lambda\_.\texttt{witnessed p})) \\ & & (\texttt{ensures} (\lambda \texttt{s}_0\_\texttt{s}_1.\texttt{s}_0=\texttt{s}_1 \land \texttt{p} \ \texttt{'stable.from'} \ \texttt{s}_1)) \end{array}
```

- ... Hoare-style logics are essentially world/state-indexed, so
- we include a stateful introduction rule for witnessed

```
 \begin{array}{ll} \texttt{witness} &: \ \texttt{p:}(\texttt{state} \to \texttt{Type}_0) \\ & \to \texttt{MST} \texttt{ unit} (\texttt{requires} (\lambda \texttt{s}_0 . \texttt{p} `\texttt{stable\_from}` \texttt{s}_0)) \\ & & (\texttt{ensures} (\lambda \texttt{s}_0 \_ \texttt{s}_1 . \texttt{s}_0 = \texttt{s}_1 \land \texttt{witnessed} \texttt{p})) \end{array}
```

• and a stateful elimination rule for witnessed

$$\begin{array}{rl} \texttt{recall} & : & \texttt{p:}(\texttt{state} \to \texttt{Type}_0) \\ & \to \texttt{MST} \texttt{ unit} (\texttt{requires} (\lambda_.\texttt{witnessed } \texttt{p})) \\ & & (\texttt{ensures} (\lambda \texttt{s}_0_\texttt{s}_1.\texttt{s}_0=\texttt{s}_1 \land \texttt{p} \texttt{`stable_from'} \texttt{s}_1)) \end{array}$$

Outline

- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see POPL'18 paper)
- First steps in mon. reification and reflection (see POPL'18 paper)
- Meta-theory and correctness results (see POPL'18 paper)

- Recall the program operating on the set-valued state insert v; complex_procedure(); assert (v ∈ get())
 - We pick **set inclusion** \subseteq as our preorder rel on states
- We **prove the assertion** by inserting a witness and recall insert v; witness $(\lambda s . v \in s)$; c_p(); recall $(\lambda s . v \in s)$; assert $(v \in get())$
 - For any other w, wrapping

insert w; []; assert (w \in get())

around the program is handled **similarly easily** by

 $\texttt{insert w; witness } (\lambda \texttt{s.w} \in \texttt{s})\texttt{; []; recall } (\lambda \texttt{s.w} \in \texttt{s})\texttt{; assert } (\texttt{w} \in \texttt{get}())$

 Monotonic counters are analogous, by picking N and ≤, e.g., create 0; incr(); witness (λ c.c > 0); c_p(); recall (λ c.c > 0)

• Recall the program operating on the set-valued state

insert v; complex_procedure(); assert (v \in get())

- We pick set inclusion \subseteq as our preorder rel on states
- We prove the assertion by inserting a witness and recall insert v; witness (λs.v∈s); c_p(); recall (λs.v∈s); assert (v∈get())
 For any other w, wrapping insert w; []; assert (w∈get())

around the program is handled **similarly easily** by

 $\texttt{insert w; witness } (\lambda \texttt{s.w} \in \texttt{s})\texttt{; []; recall } (\lambda \texttt{s.w} \in \texttt{s})\texttt{; assert } (\texttt{w} \in \texttt{get}())$

 Monotonic counters are analogous, by picking N and ≤, e.g., create 0; incr(); witness (λ c. c > 0); c_p(); recall (λ c. c > 0)

• Recall the program operating on the **set-valued state**

insert v; complex_procedure(); assert (v \in get())

- We pick set inclusion \subseteq as our preorder rel on states
- We prove the assertion by inserting a witness and recall insert v; witness (λ s.v ∈ s); c_p(); recall (λ s.v ∈ s); assert (v ∈ get())
 For any other w, wrapping insert w; []: assert (w ∈ get())

 $\texttt{insert w; witness } (\lambda \texttt{s.w} \in \texttt{s})\texttt{; []; recall } (\lambda \texttt{s.w} \in \texttt{s})\texttt{; assert } (\texttt{w} \in \texttt{get}())$

 Monotonic counters are analogous, by picking N and ≤, e.g., create 0; incr(); witness (λ c.c > 0); c_p(); recall (λ c.c > 0)

• Recall the program operating on the set-valued state

insert v; complex_procedure(); assert (v \in get())

- We pick **set inclusion** ⊆ as our preorder rel on states
- We prove the assertion by inserting a witness and recall

insert v; witness $(\lambda s.v \in s)$; c_p(); recall $(\lambda s.v \in s)$; assert $(v \in get())$

• For any other w, wrapping

```
insert w; []; assert (w \in get())
```

around the program is handled **similarly easily** by

insert w; witness $(\lambda s.w \in s)$; []; recall $(\lambda s.w \in s)$; assert $(w \in get())$

 Monotonic counters are analogous, by picking N and ≤, e.g., create 0; incr(); witness (λ c.c > 0); c.p(); recall (λ c.c > 0)

• Recall the program operating on the set-valued state

insert v; complex_procedure(); assert (v \in get())

- We pick **set inclusion** ⊆ as our preorder rel on states
- We prove the assertion by inserting a witness and recall

insert v; witness $(\lambda s.v \in s)$; c_p(); recall $(\lambda s.v \in s)$; assert $(v \in get())$

• For any other w, wrapping

```
insert w; []; assert (w \in get())
```

around the program is handled similarly easily by

insert w; witness $(\lambda s.w \in s)$; []; recall $(\lambda s.w \in s)$; assert $(w \in get())$

 Monotonic counters are analogous, by picking N and ≤, e.g., create 0; incr(); witness (λc.c > 0); c_p(); recall (λc.c > 0)

• First, we define a type of **heaps** as a finite map

```
type heap =
```

```
\mid 	extsf{H}: 	extsf{h}: (\mathbb{N} 
ightarrow 	extsf{cell}) 
ightarrow 	extsf{cell} 	extsf{tr}: \mathbb{N} \{ orall 	extsf{n} . 	extsf{ctr} \leq 	extsf{n} \implies 	extsf{h} 	extsf{n} = 	extsf{Unused} \} 
ightarrow 	extsf{heap} where
```

```
type cell =
```

```
Unused : cell
```

```
\texttt{Used}: \texttt{a}{:}\texttt{Type}_0 \rightarrow \texttt{v}{:}\texttt{a} \rightarrow \texttt{cell}
```

```
Next, we define a preorder on heaps (heap inclusion)
let heap_inclusion (H h<sub>0</sub> _) (H h<sub>1</sub> _) = ∀id.match h<sub>0</sub> id, h<sub>1</sub> id with
| Used a _, Used b _ → a = b
| Unused, Used _ → T
| Unused, Unused → T
| Used _ _, Unused → ⊥
```

 First, we define a type of heaps as a finite map type heap =

 | H : h:(N → cell) → ctr:N{∀n.ctr ≤ n ⇒ h n = Unused} → heap

where

type cell =

Unused : cell

 $\mid \texttt{Used}: \underline{a}\texttt{:}\texttt{Type}_0 \rightarrow \underline{v}\texttt{:} \underline{a} \rightarrow \texttt{cell}$

Next, we define a preorder on heaps (heap inclusion)
let heap_inclusion (H h₀ _) (H h₁ _) = ∀id.match h₀ id, h₁ id with
| Used a _, Used b _ → a = b
| Unused, Used _ _ → T
| Unused, Unused → T
| Used _ _ , Unused → ⊥

 First, we define a type of heaps as a finite map type heap =

 | H : h:(N → cell) → ctr:N{∀n.ctr ≤ n ⇒ h n = Unused} → heap

where

type cell =

Unused : cell

 $\mid \texttt{Used}: \texttt{a}{:}\texttt{Type}_0 \rightarrow \texttt{v}{:}\texttt{a} \rightarrow \texttt{cell}$

• Next, we define a preorder on heaps (heap inclusion)

let heap_inclusion (H h_0 _) (H h_1 _) = $\forall id.match h_0 id, h_1 id with$ | Used a _,Used b _ \rightarrow a = b

 \mid Unused , Used _ _ ightarrow o o

 \mid Unused , Unused \rightarrow \top

 \mid Used _ _ , Unused \rightarrow \perp

• As a result, we can define new local state effect

MLST t pre post $\stackrel{\text{def}}{=}$ MST_{heap,heap_inclusion} t pre post

Next, we define the type of references using monotonicity
 abstract type ref a = id:N{witnessed (λh.contains h id a)}
 where

```
let contains (H h _) id a =
match h id with
| Used b _ \rightarrow a = b
| Unused \rightarrow \perp
```

• Important: contains is stable wrt. heap_inclusion

• As a result, we can define new local state effect

MLST t pre post $\stackrel{\text{def}}{=}$ MST_{heap,heap_inclusion} t pre post

• Next, we define the type of **references** using monotonicity abstract type ref a = id: \mathbb{N} {witnessed (λ h.contains h id a)} where

```
let contains (H h _) id a =
match h id with
| Used b _ \rightarrow a = b
| Unused \rightarrow \perp
```

Important: contains is stable wrt. heap_inclusion

• As a result, we can define new local state effect

MLST t pre post $\stackrel{\text{def}}{=}$ MST_{heap,heap_inclusion} t pre post

• Next, we define the type of **references** using monotonicity abstract type ref a = id: \mathbb{N} {witnessed (λ h.contains h id a)} where

```
let contains (H h _) id a =
match h id with
| Used b _ \rightarrow a = b
| Unused \rightarrow \perp
```

Important: contains is stable wrt. heap_inclusion

- Finally, we define MLST's actions using MST's actions
 - let alloc (a:Type₀) (v:a) : MLST (ref a) $\dots = \dots$
 - get the current heap
 - create a fresh ref., and add it to the heap
 - put the updated heap back
 - witness that the created ref. is in the heap
 - let read (r:ref a) : MLST t ... = ...
 - recall that the given ref. is in the heap
 - get the current heap
 - select the given reference from the heap
 - let write (r:ref a) (v:a) : MLST unit ... = ...
 - recall that the given ref. is in the heap
 - get the current heap
 - update the heap with the given value at the given ref.
 - put the updated heap back

- Finally, we define MLST's actions using MST's actions
 - let alloc (a:Type₀) (v:a) : MLST (ref a) $\dots = \dots$
 - get the current heap
 - create a fresh ref., and add it to the heap
 - put the updated heap back
 - witness that the created ref. is in the heap
 - let read (r:ref a) : MLST t \ldots = \ldots
 - recall that the given ref. is in the heap
 - get the current heap
 - select the given reference from the heap
 - let write (r:ref a) (v:a) : MLST unit ... = ...
 - recall that the given ref. is in the heap
 - get the current heap
 - update the heap with the given value at the given ref.
 - put the updated heap back

• Untyped references (uref) with strong updates

• Used heap cells are extended with tags

```
Used : a:Type<sub>0</sub> \rightarrow v:a \rightarrow t:tag \rightarrow cell
```

where

```
type tag = Typed:tag | Untyped:tag
```

- actions corresponding to urefs have weaker types than for refs
- Monotonic references (mref a rel)
 - Used heap cells are extended with typed tags

| Used : a:Type₀ \rightarrow v:a \rightarrow t:tag a \rightarrow cell

where

type tag a = Typed : rel:preorder a \rightarrow tag a | Untyped : tag a

- mrefs provide more flexibility with ref.-wise monotonicity
- Further, all three can be extended with manually managed refs.

- Untyped references (uref) with strong updates
 - Used heap cells are extended with tags

```
Used : a:Type<sub>0</sub> \rightarrow v:a \rightarrow t:tag \rightarrow cell
```

where

```
type tag = Typed:tag | Untyped:tag
```

- actions corresponding to urefs have weaker types than for refs
- Monotonic references (mref a rel)
 - Used heap cells are extended with typed tags

Used : a:Type_0 ightarrow v:a ightarrow t:tag a ightarrow cell

where

type tag a = Typed : rel:preorder a \rightarrow tag a \mid Untyped : tag a

- mrefs provide more flexibility with ref.-wise monotonicity
- Further, all three can be extended with manually managed refs.

- Untyped references (uref) with strong updates
 - Used heap cells are extended with tags

```
Used : a:Type<sub>0</sub> \rightarrow v:a \rightarrow t:tag \rightarrow cell
```

where

```
type tag = Typed : tag | Untyped : tag
```

- actions corresponding to urefs have weaker types than for refs
- Monotonic references (mref a rel)
 - Used heap cells are extended with typed tags

```
| Used : a:Type<sub>0</sub> \rightarrow v:a \rightarrow t:tag a \rightarrow cell
```

where

```
type tag a = Typed : rel:preorder a \rightarrow tag a \mid Untyped : tag a
```

• mrefs provide more flexibility with ref.-wise monotonicity

• Further, all three can be extended with manually managed refs.

- Untyped references (uref) with strong updates
 - Used heap cells are extended with tags

```
Used : a:Type<sub>0</sub> \rightarrow v:a \rightarrow t:tag \rightarrow cell
```

where

```
type tag = Typed : tag | Untyped : tag
```

- actions corresponding to urefs have weaker types than for refs
- Monotonic references (mref a rel)
 - Used heap cells are extended with typed tags

```
| Used : a:Type<sub>0</sub> \rightarrow v:a \rightarrow t:tag a \rightarrow cell
```

where

```
type tag a = Typed : rel:preorder a \rightarrow tag a \mid Untyped : tag a
```

- mrefs provide more flexibility with ref.-wise monotonicity
- Further, all three can be extended with manually managed refs.

Conclusion

- Monotonicity
 - can be distilled into a simple and general framework
 - is useful for programming (refs.) and verification (Prj. Everest)

• See our POPL 2018 paper for

- further examples and case studies
- meta-theory and total correctness for MST
 - based on an instrumented operational semantics

 $(\texttt{witness } x.\varphi, s, W) \rightsquigarrow (\texttt{return} (), s, W \cup \{x.\varphi\})$

- and cut elimination for the witnessed-logic
- first steps towards monadic reification for MST
 - useful for extrinsic reasoning, e.g., for relational properties
 - but have to be careful when breaking abstraction

Conclusion

- Monotonicity
 - can be distilled into a simple and general framework
 - is useful for programming (refs.) and verification (Prj. Everest)
- See our POPL 2018 paper for
 - further examples and case studies
 - meta-theory and total correctness for MST
 - based on an instrumented operational semantics

(witness $x.\varphi, s, W$) \rightsquigarrow (return (), $s, W \cup \{x.\varphi\}$)

- and cut elimination for the witnessed-logic
- first steps towards monadic reification for $\ensuremath{\texttt{MST}}$
 - useful for extrinsic reasoning, e.g., for relational properties
 - but have to be careful when breaking abstraction