
25th International Conference on
Types for Proofs and Programs

TYPES 2019

Oslo, Norway, 11 June - 14 June 2019

Abstracts

Centre for Advanced Study (CAS),
The Norwegian Academy of Science and Letters

Oslo, 2019

25th International Conference on Types for Proofs and Programs,
TYPES 2019
Oslo, Norway, 11 June - 14 June 2019
Abstracts
https://cas.oslo.no/types2019/

Edited by Marc Bezem, Niels van der Weide

Centre for Advanced Study (CAS),
The Norwegian Academy of Science and Letters
Drammensveien 78, 0271 Oslo, Norway
cas@cas.oslo.no

c© 2019 the editor and authors

Preface

This volume contains the abstracts of the talks presented at the 25th International Conference
on Types for Proofs and Programs, TYPES 2019 in Oslo, Norway, 11–14 June 2019.

The TYPES meetings are a forum to present new and on-going work in all aspects of
type theory and its applications, especially in formalised and computer assisted reasoning and
computer programming. The meetings from 1990 to 2008 were annual workshops of a sequence
of five EU funded networking projects. Since 2009, TYPES has been run as an independent
conference series. Previous TYPES meetings were held in Antibes (1990), Edinburgh (1991),
B̊astad (1992), Nijmegen (1993), B̊astad (1994), Torino (1995), Aussois (1996), Kloster Irsee
(1998), Lökeberg (1999), Durham (2000), Berg en Dal near Nijmegen (2002), Torino (2003),
Jouy-en-Josas near Paris (2004), Nottingham (2006), Cividale del Friuli (2007), Torino (2008),
Aussois (2009), Warsaw (2010), Bergen (2011), Toulouse (2013), Paris (2014), Tallinn (2015),
Novi Sad (2016), Budapest (2017), and Braga (2018).

The TYPES areas of interest include, but are not limited to: foundations of type theory and
constructive mathematics; applications of type theory; dependently typed programming; indus-
trial uses of type theory technology; meta-theoretic studies of type systems; proof assistants
and proof technology; automation in computer-assisted reasoning; links between type theory
and functional programming; formalizing mathematics using type theory.

The TYPES conferences are of open and informal character. Selection of contributed talks is
based on short abstracts; reporting work in progress and work presented or published elsewhere
is welcome. A formal post-proceedings volume is prepared after the conference; papers submitted
to that volume must represent unpublished work and are subjected to a full peer-review process.

TYPES 2019 was held in parallel with HoTT-UF, the workshop on Homotopy Type Theory
and Univalent Foundations, 12–14 June 2019, in Oslo (cas.oslo.no/hott-uf). Wednesday 12 June
the two events had a joint programme. Both events were part of the Special Year 2018/19 on
Homotopy Type Theory and Univalent Foundations at the Centre for Advanced Study (CAS)
at the Norwegian Academy of Science and Letters (cas.oslo.no/research-groups/homotopy-type-
theory-and-univalent-foundations-article2083-827.html).

CAS provided generous support, both administrative and financial, which we gratefully
acknowledge. We are also grateful for the support of COST Action CA15123 EUTypes. Finally,
TYPES 2019 and HoTT-UF are also part of the project Computational Aspects of Univalence
2015-2020, led by Bezem and Dundas, and supported by the Research Council of Norway. We
want to express our gratitude for the support by the RCN, which has been indispensable for
establishing these research activities in Norway.

The combined events TYPES 2019 and HoTT-UF gathered 115 participants from almost
20 countries. The contributed part of the TYPES 2019 programme consisted of 50 talks. In
addition, TYPES 2019 had four invited lectures, and three more from HoTT-UF on the day
with the joint programme. (HoTT-UF had two days of additional invited lectures.)

Similarly to the 2011 and the 2013-2018 editions of the conference, the post-proceedings
of TYPES 2019 will appear in Dagstuhl’s Leibniz International Proceedings in Informatics
(LIPIcs) series.

June 2019, Oslo Marc Bezem

iii

Organisation

Program Committee

Thorsten Altenkirch University of Nottingham
Marc Bezem University of Bergen
Ma lgorzata Biernacka University of Wroc law
Jesper Cockx Chalmers University of Technology & University of Gothenburg
Herman Geuvers Radboud University Nijmegen
Silvia Ghilezan Univerity of Novi Sad
Mauro Jaskelioff National University of Rosario
Ambrus Kaposi Eötvös Loránd University
Ralph Matthes IRIT, CNRS, University of Toulouse

Étienne Miquey INRIA, University of Nantes
Leonardo da Moura Microsoft Research
Keiko Nakata SAP Potsdam
Fredrik Nordvall Forsberg University of Strathclyde
Benjamin Pierce University of Pennsylvania
Elaine Pimentel Federal University of Rio Grande do Norte
Lúıs Pinto University of Minho
Simona Ronchi Della Rocca University of Turin
Carsten Schürmann IT University of Copenhagen
Wouter Swierstra Utrecht University
Tarmo Uustalu Reykjavik University

Organising committee

Marc Bezem, Bjørn Ian Dundas, Erna Kas, and Camilla K. Elmar

Host

Centre for Advanced Study at the Norwegian Academy of Science and Letters

Sponsors

COST Action CA15123 EUTypes
Research Council of Norway
Academia Europaea Knowledge Hub Region Bergen

iv

Table of Contents

An alphabetical index of all (co-)authors can be found on page 114.

Invited talks

Cubical Indexed Inductive Types . 1
Evan Cavallo

Challenges Scaling Type-Theory-Based Verification to Cryptographic Code in Production 2
Adam Chlipala

Homotopy Canonicity for Cubical Type Theory . 3
Simon Huber

Classical analysis in dependent type theory . 4
Assia Mahboubi

Check the Box! . 5
Conor McBride

Homotopy Canonicity . 6
Christian Sattler

A Dependently-Typed Core Calculus for GHC . 7
Stephanie Weirich

Contributed talks

Normalization by Evaluation for Call-by-Push-Value . 8
Andreas Abel and Christian Sattler

Bicategories in Univalent Foundations . 10
Benedikt Ahrens, Daniil Frumin, Marco Maggesi and Niels van der Weide

Constructing Inductive-Inductive Types via Type Erasure . 12
Thorsten Altenkirch, Ambrus Kaposi, Andras Kovács and Jakob von Raumer

Containers of Applications and Applications of Containers . 14
Malin Altenmüller and Conor McBride

Deep and Shallow Embeddings in Coq . 16
Danil Annenkov and Bas Spitters

Linear metatheory via linear algebra . 18
Robert Atkey and James Wood

Simply RaTT: A Fitch-style Modal Calculus for Reactive Programming 21
Patrick Bahr, Christian Uldal Graulund and Rasmus Ejlers Møgelberg

Free Algebraic Theories as Higher Inductive Types . 23
Henning Basold, Niels van der Weide and Niccolò Veltri

v

Game Forms for Coalition Effectivity Functions . 26
Colm Baston and Venanzio Capretta

Coherence via big categories with families of locally cartesian closed categories 28
Martin Ernst Bidlingmaier

Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting 30
Frédéric Blanqui, Guillaume Genestier, and Olivier Hermant

Weak Type Theory is Rather Strong . 32
Simon Boulier and Théo Winterhalter

Type-theoretic modalities for synthetic (∞,1)-categories . 34
Ulrik Buchholtz and Jonathan Weinberger

Quillen bifibrations and the Reedy construction . 36
Pierre Cagne

Categories with Families: Unityped, Simply Typed, Dependently Typed 38
Simon Castellan, Pierre Clairambault and Peter Dybjer

Internally Parametric Cubical Type Theory . 41
Evan Cavallo and Robert Harper

How to Tame your Rewrite Rules . 43
Jesper Cockx, Nicolas Tabareau and Théo Winterhalter

Frame type theory . 45
Cyril Cohen, Assia Mahboubi and Xavier Montillet

Sheaf Models of Univalent Type Theory . 47
Thierry Coquand and Fabian Ruch

Choreographies in Coq . 49
Lúıs Cruz-Filipe, Fabrizio Montesi and Marco Peressotti

Planar graphs in Homotopy Type Theory . 51
Jonathan Cubides and H̊akon Robbestad Gylterud

Verse - An EDSL in Coq for verified low-level cryptographic primitives 53
Abhishek Dang and Piyush Kurur

Logipedia: a multi-system encyclopedia of formal proofs . 55
Gilles Dowek and François Thiré

Compact, totally separated and well-ordered types in univalent mathematics 57
Martin Escardo

Deciding several concepts of finiteness for simple types . 59
Jose Espirito Santo, Ralph Matthes and Lúıs Pinto

The Scott Model of PCF in Univalent Type Theory . 61
Tom de Jong

vi

Closed Inductive-Inductive Types are Reducible to Indexed Inductive Types 63
Ambrus Kaposi, Andras Kovács and Ambroise Lafont

A formalisation of Hahn-Banach theorem in Coq . 65
Marie Kerjean and Assia Mahboubi

Extracting Exact Bounds from Typing in a Classical Framework . 67
Delia Kesner and Pierre Vial

Dependent Event Types in Event Semantics . 69
Zhaohui Luo and Sergei Soloviev

Universal Algebra in HoTT . 71
Andreas Lynge and Bas Spitters

Dijkstra monads for all . 73
Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martinez, Cǎtǎlin Hritcu, Exequiel
Rivas and Éric Tanter

How Erasure is Linked to (im)Predicativity . 75
Stefan Monnier and Nathaniel Bos

A Double-Categorical Perspective on Type Universes . 77
Edward Morehouse, G. A. Kavvos and Daniel Licata

Compositional Game Theory using Dependent Types . 79
Fredrik Nordvall Forsberg

Dependable Atomicity in Type Theory . 81
Andreas Nuyts and Dominique Devriese

Menkar: Towards a Multimode Presheaf Proof Assistant . 84
Andreas Nuyts and Dominique Devriese

Type Inhabitation in Simply Typed Lambda Calculus Parameterized by Width 88
Mateus De Oliveira Oliveira

Effects, Substitution and Induction: An Explosive Ménage à Trois . 90
Pierre-Marie Pédrot and Nicolas Tabareau

Coherence for symmetric monoidal groupoids in HoTT/UF . 92
Stefano Piceghello

Twisted Cubes via Graph Morphisms . 94
Gun Pinyo and Nicolai Kraus

Towards Curry-Howard for Shared Mutable State . 96
Pedro Rocha and Lúıs Caires

Knowledge Representation with HoTT . 98
Andrei Rodin

Congruence in Univalent Type Theory . 100
Luis Scoccola

vii

A Model of the Blockchain using Induction-Recursion . 102
Anton Setzer

Cubical Syntax for Extensional Equality (without equality reflection) 104
Jonathan Sterling, Carlo Angiuli and Danny Gratzer

Proof Irrelevance in LambdaPi Modulo Theory . 106
François Thiré and Gaspard Ferey

A General Framework for Semantics of Type Theory . 108
Taichi Uemura

Guarded Recursion in Agda via Sized Types . 110
Niccolò Veltri and Niels van der Weide

Cubical Agda: A Dependently Typed PL with Univalence and HIT’s 112
Andrea Vezzosi, Anders Mörtberg, and Andreas Abel

viii

Cubical Indexed Inductive Types

Evan Cavallo1

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
ecavallo@cs.cmu.edu

Higher inductive types (HITs) provide a mutual generalization of inductive and quotient
types and are an essential component of HoTT. However, the development of a general theory
of HITs has lagged behind the use of specific instances; indeed, some examples employed in
the HoTT book are still not known to have models in simplicial sets. I’ll present my work
with Robert Harper on giving a general schema for and computational interpretation of higher
inductive types as part of a cubical type theory. Our schema includes indexed inductive types,
which are non-trivial in cubical type theory even without higher constructors. On the way, I’ll
discuss why cubical type theory is especially well-suited for practical reasoning with HITs, and
which problems remain open in cubical and other settings.

1

Challenges Scaling Type-Theory-Based Verification to

Cryptographic Code in Production

Adam Chlipala1

MIT CSAIL
adamc@csail.mit.edu

There is a clear basic recipe for using dependent type theory in a proof assistant for proofs
of programs, but the devil is in the details. I will discuss experiences overcoming practical
challenges in applying Coq to generate efficient, verified cryptographic code. The result is
code with about a billion users today, deployed in the Chrome web browser and elsewhere for
small but important parts of negotiating secure (TLS) network connections. I will survey the
context of cryptographic implementation and then turn closer to the hearts of most TYPES
participants, reviewing basic questions of splitting functionality between a kernel type checker
and tactics that generate proof terms. We found that the split embodied in Coq provided
unacceptable performance when using partial evaluation to produce thousands of lines of C
code in one go, which set us down the path of exploring an alternative approach to flexible
term reduction and rewriting, while requiring even less sophistication than today’s Coq kernel
builds in. I’ll explain the main insights behind the design of that system and how we apply
it to produce what is essentially a verified domain-specific compiler for big-integer modular
arithmetic.

2

Homotopy Canonicity for Cubical Type Theory

Simon Huber1

University of Gothenburg, Sweden
simonhu@chalmers.se

Cubical type theory provides a constructive justification of homotopy type theory and sat-
isfies canonicity: every natural number is convertible to a numeral. A crucial ingredient of
cubical type theory is a path lifting operation which is explained computationally by induction
on the type involving several non-canonical choices. In this talk I will present why if we re-
move these equations for the path lifting operation from the system, we still retain homotopy
canonicity: every natural number is path equal to a numeral. The proof involves proof relevant
computability predicates (also known as sconing) and doesn’t involve a reduction relation.

This is joint work with Thierry Coquand and Christian Sattler.

3

Classical analysis in dependent type theory

Assia Mahboubi1

Inria, LS2N
Assia.Mahboubi@inria.fr

This talk will present an on-going project which aims at setting up a new corpus of for-
malized real and complex analysis, developed using the Coq proof assistant. It will describe
the foundations and the design principles adopted in this project, highlight its current salient
features, and discuss its perspectives.

This is a joint work in progress with Raynald Affeldt, Cyril Cohen, Marie Kerjean, Damien
Rouhling, Pierre-Yves Strub.

4

Check the Box!

Conor McBride1

University of Strathclyde, Glasgow, United Kingdom

A bidirectional presentation of Cubical Type Theory.

5

Homotopy Canonicity

Chistian Sattler1

University of Gothenburg, Sweden
sattler@chalmers.se

Because of the univalence and function extensionality axioms, homotopy type theory does
not enjoy canonicity, a property expected from a constructive type theory. Voevodsky’s ’homo-
topy canonicity’ conjecture states that a homotopical version of this property still holds: every
closed element of the natural number type is homotopic to a numeral. So far, this was known
only for 1-truncated homotopy type theory, shown by Shulman using Artin glueing along a
groupoid-valued global sections functor. In this talk, I will present a full proof of homotopy
canonicity.

This is joint work with Krzysztof Kapulkin.

6

A Dependently-Typed Core Calculus for GHC

Stephanie Weirich1

University of Pennsylvania
sweirich@cis.upenn.edu

In this talk, I will give an overview of a new typed intermediate language for the Glas-
gow Haskell Compiler (GHC) and our experience with its development. This design is derived
from efforts to add dependent types to the Haskell language. This challenge has forced my
collaborators and I to consider how dependency interacts with GHC’s many language features,
including nontermination, parametric polymorphism, type families, GADTs and safe coercions.
In response to these constraints, we have developed a core calculus that specifies how depen-
dent types can work in this context. Furthermore, to make sure that this core calculus is a
firm foundation for Haskell, we have used the Coq proof assistant to verify its metatheoretic
properties, including type soundness.

7

Normalization by Evaluation for Call-by-Push-Value

Andreas Abel⇤ and Christian Sattler

Department of Computer Science and Engineering, Gothenburg University

Normalization by evaluation (NbE) [Berger and Schwichtenberg, 1991] is the interpretation
of an (open) term of type A as value in a suitable model [[A]], followed by reification of the value
to a normal form of type A. Functions f in [[A) B]] are reified as �-abstractions whose bodies
are obtained by reflecting a fresh variable of type A as value a in [[A]] and reifying the application
f a at type B. A suitable model that supports fresh variable generation are presheaves over the
category of typing contexts � and order-preserving embeddings � ✓ �0, where a base type o is
interpreted as the presheaf Ne o of neutral normal forms of type o, and function types by the
presheaf exponential aka Kripke function space [Coquand, 1993, Altenkirch et al., 1995].

NbE for sum types requires a refinement of the model, since reflection of a variable of type
A + B as a value in [[A + B]] requires case distinction in the model. One such refinement are
sheaves [Altenkirch et al., 2001]; another is the use of a monad C [Filinski, 2001, Barral, 2008]
in the category of presheaves for the interpretation of sum types: [[A+B]] = C([[A]]+ [[B]]). The
smallest such “cover” monad C are binary trees where leaves are the monadic unit aka return,
and the nodes case distinctions over neutrals Ne (A1+A2) of sum type. When leaves are normal
forms, the whole tree represents a normal form, thus, runNf : C(Nf A) ! Nf A is trivial. This
running of the monad on normal forms represents the algorithmic part of the sheaf condition
on Nf A and extends as run : C[[A]] ! [[A]] to all semantic types.

The given interpretation of sum types [[A + B]] = C([[A]] + [[B]]) corresponds to the call-by-
name (CBN) lambda calculus with lazy constructors. NbE can also be performed in call-by-
value (CBV) style, then the monad is placed in the codomain of function types: [[A) B]] =
[[A]]) C[[B]] [Danvy, 1996]. A systematic semantic analysis of CBN and CBV lambda-calculi
has been pioneered by Moggi [1991] through translation into his computational lambda calculus;
Filinski [2001] studied NbE for the latter calculus using the continuation monad. Moggi’s work
was continued and refined by Levy [2006] who subsumed CBV and CBN under his monadic
call-by-push-value (CBPV) calculus. In this work, we study NbE for CBPV.

CBPV was designed to study lambda-calculus with e↵ects. It separates types into value
types P and computation types N , which we, in analogy to polarized lambda-calculus [Zeil-
berger, 2009] refer to as positive and negative types. Variables stand for values, thus, have
positive types. The monad that models the e↵ects is placed at the transition from values to
computations Comp P , and computations can be embedded into values by thunking (Thunk N).

Ty+ 3 P ::= o | P1 + P2 | Thunk N positive type / value type
Ty� 3 N ::= P) N | Comp P negative type / computation type

We restrict to a fragment of pure CBPV with a single positive connective, sum types P1 + P2,
and a single negative connective, call-by-value function types P) N . While we have no proper
e↵ects, the evaluation of open terms requires the e↵ect of case distinction over neutrals, modeled
by a cover monad C. In the following, we give inductive definitions of the presheaves of normal
(Nf) and neutral normal forms (Ne) of our fragment of CBPV and a concrete, strong cover
monad Cov.

var
Var o �

Nf o�
thunk

Nf N �

Nf (Thunk N)�
inji

Nf Pi �

Nf (P1 + P2)�
ret

Cov (Nf P)�

Nf (Comp P)�
abs

Nf N (�.P)

Nf (P) N)�

⇤Supported by VR grant 621-2014-4864 and EU Cost Action CA15123.

8

Normalization by Evaluation for Call-by-Push-Value A. Abel and C. Sattler

force
Var (Thunk N)�

Ne N �
app

Ne (P) N)� Nf P �

Ne N �
bind

Ne (Comp P)� Cov J (�.P)

Cov J �

return
J �

Cov J �
case

Var (P1 + P2)� Cov J (�.P1) Cov J (�.P2)

Cov J �

(J stands for an arbitrary presheaf in Cov J .) Normal forms start from a variable of base
type and continue with introductions, except that the services of the monad can be used at the
transition ret from positive to negative types (Comp P). Neutrals are eliminations of variables
of type Thunk N into a positive type Comp P , and can then be bound to a variable of type
P to be used in a computation (see bind). Variables of sum type P1 + P2 can be utilized in
computations through a case split.

Terms Tm of CBPV are obtained by blurring the distinction between Ne and Nf, generalizing
bind and case from Cov J to computations Tm N , and relaxing var to variables of arbitrary type
P and force to arbitrary terms of type Thunk N . Terms are evaluated in the following presheaf
model, which interprets Thunk as the identity and Comp as Cov.

[[P1 + P2]] = [[P1]] +̂ [[P2]]
[[Thunk N]] = [[N]]
[[o]] = Var o

[[P) N]] = [[P]])̂ [[N]]
[[Comp P]] = Cov[[P]]

The evaluation of bind terms in Tm N relies on run : Cov[[N]] ! [[N]], which makes any com-
putation type monadic. Reflection " and reification # are defined mutually by induction on
the type. They take the usual form, only that reflection of positive variables is monadic, to
allow the complete splitting of sums via case. It is invoked by reification of functions #P)N via
runNf .

"P : Var P ! Cov [[P]]
"N : Ne N ! [[N]]

#P : [[P]] ! Nf P
#N : [[N]] ! Nf N

The details of our construction, plus extension to product types and polarized lambda cal-
culus, can be found in the full version at https://arxiv.org/abs/1902.06097. A partial Agda
formalization is available at https://github.com/andreasabel/ipl.

References

T. Altenkirch, M. Hofmann, and T. Streicher. Categorical reconstruction of a reduction free normalization proof.
In CTCS’95, vol. 953 of LNCS. Springer, 1995. https://doi.org/10.1007/3-540-60164-3 27.

T. Altenkirch, P. Dybjer, M. Hofmann, and P. J. Scott. Normalization by evaluation for typed lambda calculus
with coproducts. In LICS’01. IEEE CS Press, 2001. https://doi.org/10.1109/LICS.2001.932506.

F. Barral. Decidability for non-standard conversions in lambda-calculus. PhD thesis, Ludwig-Maximilians-
University Munich, 2008.

U. Berger and H. Schwichtenberg. An inverse to the evaluation functional for typed �-calculus. In LICS’91.
IEEE CS Press, 1991. https://doi.org/10.1109/LICS.1991.151645.

C. Coquand. From semantics to rules: A machine assisted analysis. In CSL’93, vol. 832 of LNCS. Springer,
1993. https://doi.org/10.1007/BFb0049326.

O. Danvy. Type-directed partial evaluation. In POPL’96. ACM, 1996. https://doi.org/10.1145/237721.237784.

A. Filinski. Normalization by evaluation for the computational lambda-calculus. In TLCA’01, vol. 2044 of
LNCS. Springer, 2001. https://doi.org/10.1007/3-540-45413-6 15.

P. B. Levy. Call-by-push-value: Decomposing call-by-value and call-by-name. HOSC, 19(4), 2006. https:
//doi.org/10.1007/s10990-006-0480-6.

E. Moggi. Notions of computation and monads. Inf. Comput., 93(1), 1991. https://doi.org/10.1016/
0890-5401(91)90052-4.

N. Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching. PhD thesis, Carnegie Mellon
University, 2009. http://software.imdea.org/⇠noam.zeilberger/thesis.pdf.

2 9

Bicategories in Univalent Foundations⇤

Benedikt Ahrens1, Dan Frumin2, Marco Maggesi3, and Niels van der Weide4

1 University of Birmingham, United Kingdom
b.ahrens@cs.bham.ac.uk

2 Radboud University, Nijmegen, The Netherlands
dfrumin@cs.ru.nl

3 University of Florence, Italy
marco.maggesi@unifi.it

4 Radboud University, Nijmegen, The Netherlands
nweide@cs.ru.nl

In this work, we define and study bicategories in univalent foundations. More specifically,
we define the notion of “univalent bicategory” and develop a mechanism to construct examples
of such bicategories in a modular way.

Bicategories are category-like structures allowing for “morphisms between morphisms”.
They naturally arise when studying the model theory of type theory via “categories with struc-
ture” such as categories with families [4] and categories with attributes (see, e.g., [7]). Other
examples, such as groupoids and 1-types, are used in the study of the semantics of HITs [5].

By “univalent foundations”, we mean the foundation given by univalent type theory (see,
e.g., the HoTT book [8]), with its notion of “univalent logic”, and the anticipated interpretation
of univalent type theory in simplicial sets arising from Voevodsky’s simplicial set model [6].

In this model, univalent categories (just called “categories” in [2]), defined below, correspond
to truncated complete Segal spaces, which in turn are equivalent to ordinary (set-theoretic) cat-
egories. This means that univalent categories are “the right” notion of categories in univalent
foundations: they correspond exactly to the traditional set-theoretic notion of category. Sim-
ilarly, the notion of univalent bicategory, studied in this work, provides the correct notion of
bicategory in univalent foundations. Below, we explain what these notions mean precisely.

Univalent categories are categories for which the canonical maps

idtoisoa,b : a = b ! a ⇠= b,

sending equalities between objects a and b to isomorphisms, are equivalences. Univalent bicat-
egories are defined analogously to univalent categories: we stipulate that the canonical maps

idtoiso0(a, b) : a = b ! a ' b and idtoiso1(f, g) : f = g ! f ⇠= g,

from identities on 0-cells a and b to adjoint equivalences, and from identities on 1-cells f and g
to isomorphisms, respectively, are equivalences.

Showing that a bicategory is univalent can be di�cult; this is particularly the case when the
0-cells of the bicategory are complicated structures obtained by layering data and properties—
several such bicategories are mentioned later. In such a case, identities and adjoint equivalences
between 0-cells are also complicated structures, and we would like to reason about the maps
idtoiso0 and idtoiso1 modularly and “layerwise”.

To this end, we develop the notion of displayed bicategory analogous to the 1-categorical
notion of displayed category [3]. Intuitively, a displayed bicategory D over a bicategory B
represents data and properties to be added to B to form a new bicategory: D gives rise to the
total bicategory

R
D. Its cells are pairs (b, d) where d in D is a “displayed cell” over b in B.

⇤This work was supported by a grant from the COST Action EUTypes CA15123.

10

Let us consider an example. Take B to be the bicategory of 1-types, functions, and homo-
topies between them. Define a displayed bicategory D over B such that

1. displayed 0-cells over a 1-type are its points,

2. displayed 1-cells over f : X ! Y and x : X and y : Y are paths pf : f(x) = y, and

3. displayed 2-cells over a homotopy ↵ : f ⇠ g are commutative triangles ↵x � pg = pf .

The total bicategory generated by this displayed bicategory is the bicategory of pointed 1-types.
Displayed bicategories can be iterated, thus yielding a convenient way to build complicated

bicategories in layers. Can we reason layerwise to show that the resulting bicategory is uni-
valent? Yes, we can, provided that each layer used to build the bicategory is “univalent” in a
suitable sense. We introduce the notion of “(displayed) univalence” for displayed bicategories,
a natural extension of the univalence condition for bicategories. Then we show

Result. The total bicategory
R

D of a displayed bicategory D over base B is univalent if B is
univalent and D is univalent.

Importantly, displayed “building blocks” can be provided, for which univalence is proved
once and for all. These building blocks, e.g., cartesian product, can be used like LEGO

TM

pieces
to modularly build complicated bicategories that are automatically accompanied by a proof of
univalence. We construct several such building blocks and show that they are univalent. We
then use these blocks to construct a number of complicated univalent bicategories:

1. the bicategory of pseudofunctors between two univalent bicategories;

2. bicategories of algebraic structures; and

3. the bicategory of univalent categories with families.

Our definitions and results are formalized in the UniMath library of univalent mathematics. A
full paper with more information is available [1].

References

[1] Benedikt Ahrens, Dan Frumin, Marco Maggesi, and Niels van der Weide. Bicategories in Univalent
Foundations. arXiv:1903.01152, to appear in FSCD 2019.

[2] Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the Rezk
completion. Mathematical Structures in Computer Science, 25:1010–1039, 2015.

[3] Benedikt Ahrens and Peter LeFanu Lumsdaine. Displayed Categories (conference version). In Dale
Miller, editor, 2nd International Conference on Formal Structures for Computation and Deduction,
volume 84 of Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:16. Leibniz-
Zentrum für Informatik, 2017.

[4] Pierre Clairambault and Peter Dybjer. The biequivalence of locally cartesian closed categories and
Martin-Löf type theories. Mathematical Structures in Computer Science, 24(6), 2014.

[5] Peter Dybjer and Hugo Moeneclaey. Finitary higher inductive types in the groupoid model. Electr.
Notes Theor. Comput. Sci., 336:119–134, 2018.

[6] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The Simplicial Model of Univalent Foundations
(after Voevodsky), 2012.

[7] Andrew M. Pitts. Categorical Logic. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors,
Handbook of Logic in Computer Science, Volume 5. Algebraic and Logical Structures, chapter 2,
pages 39–128. Oxford University Press, 2000.

[8] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

2
11

Constructing Inductive-Inductive Types via Type Erasure
Thorsten Altenkirch1, Ambrus Kaposi2, András Kovács2, and

Jakob von Raumer1

1 University of Nottingham, United Kingdom
thorsten.altenkirch@nott.ac.uk, jakob@von-raumer.de

2 Eötvös Loránd University, Budapest, Hungary
{akaposi, kovacsandras}@inf.elte.hu

Inductive-inductive types [6, 4] allow the mutual definition of a type and, for example,
a type family indexed over that type. This can be used to encode collections of types which
are intricately inter-related such as the syntax of type theory itself, where we define a type
Con : U of contexts at the same time as a type of types over a context: Ty : Con ! U .
Thes types could be populated by an empty context nil : Con, a function for context extension
ext : (� : Con) ! Ty(�) ! Con, a unit type former unit : (� : Con) ! Ty(�) and a former for
⇧-types of the form pi : (� : Con)(A : Ty(�)) ! Ty(ext(�, A)) ! Ty(�).

Many theorem provers like Coq [2] or Lean [3], which are based on foundations similar to the
calculus of constructions (CoC), do not provide native support for inductive-inductive types.
This raises the question about whether each example of an inductive-inductive type can be
reduced to a (mutual) inductive family, which is supported by these kinds of system.

In the above example of contexts and types, we can achieve this goal by first stripping away
the type dependencies (“type erasure”) and then defining a predicate which states whether an
instance of the erased types is well-formed according to the dependencies we erased (cf. last
year’s talk [1]). The recursor is obtained by defining a relation between erased types and the
types of an arbitrary algebra M, which then can be shown to be functional. In Lean, the main
definitions of such a construction would look like this, with CT being the erased types of contexts
and types, CTw being their well-formedness predicate, and rel being the recursor relation:

inductive CT : bool ! Type
| nil : CT ?
| ext : CT ? ! CT > ! CT ?
| unit : CT ? ! CT >
| pi : CT ? ! CT >

! CT > ! CT >

def CTw_arg (b : bool) : Type := if b then unit else CT ?

inductive CTw : ⇧ b, CT b ! CTw_arg b ! Prop
| nil : CTw ? CT.nil ()
| ext : ⇧ � A x�, CTw ? � x� ! CTw > A � ! CTw ? (CT.ext � A) ()
| unit : ⇧ � x�, CTw ? � x� ! CTw > (CT.unit �) �
| pi : ⇧ � A B x�, CTw ? � x� ! CTw > A � ! CTw > B (CT.ext � A)

! CTw > (CT.pi � A B) �

def rel_arg (b : bool) : Type := if b then M.C else ⌃ �, M.T �

inductive rel : ⇧ b, CT b ! rel_arg b ! Prop
| nil : rel ? CT.nil M.nil
| ext : ⇧ � A � a, rel ? � � ! rel > A h�, ai ! rel ? (CT.ext � A) (M.ext � a)
| unit : ⇧ � �, rel ? � � ! rel > (CT.unit �) h�, M.unit �i
| pi : ⇧ � A B � a b, rel ? � � ! rel > A h�, ai ! rel > B hM.ext � a, bi

! rel > (CT.pi � A B) h�, M.pi � a bi
This raises the question about how to prove that this strategy works for every
possible inductive-inductive type instead of specific examples. Compared to last year’s
contribution [1], considerable progress on this generalization has been made.

12

Constructing Inductive-Inductive Types Altenkirch, Kaposi, Kovács, and von Raumer

Dissecting the question, we provide answers for the following follow-up questions:

What are inductive-inductive types? We modify the approach of Kaposi and Kovács [5] to
use the contexts of a domain-specific type theory to generate the signatures of inductive-
inductive types. The syntax differentiates between sort constructors and point construc-
tors.

What are inductive families? We use a similar approach to specify inductive families: We
define a syntax of sort contexts and of contexts over a sort context to capture mutual
inductive families which may be parameterized over metatheoretic types.

What assumptions do we postulate? We define notions of displayed algebras and their sec-
tions over contexts describing inductive families, such that we can formally denote the
prerequesite of our reduction: for every such context, there exists an algebra (the con-
structor) which is initial in the sense that every displayed algebra over it has a section
(the dependent eliminator).

How to define type erasure and well-formedness. We define two syntactical translations:
One for the type erasure and, depending on an algebra over it, one for the inductively
defined well-formedness predicate, like the one contained in the above code snippet.

How to define the initial algebra. Assuming algebras over these transformed contexts, we
generate an algebra over the original inductive-inductive context of which we are confident
that we will be able to show its initiality.

The above approach for constructing initial algebras differs from the term model construction
in [5] in that we give a factorization of algebras into erased presyntax and well-formedness
predicates. This can be seen as a first step towards a generic method of initiality proofs for
various type theories presented as quotient inductive-inductive types. This would require to
generalize the above steps to allow equality constructors in the syntax of signatures. We have
formalized all results in Agda: https://github.com/javra/indind-agda

References
[1] Thorsten Altenkirch, Ambrus Kaposi, András Kovács, et al. Reducing inductive-inductive types to

indexed inductive types. TYPES 2018, 2018.
[2] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliatre, Ed-

uardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The Coq proof
assistant reference manual: Version 6.1. 1997.

[3] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The Lean theorem prover (system description). In Automated Deduction - CADE-25
- 25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015,
Proceedings, pages 378–388, 2015.

[4] Gabe Dijkstra. Quotient inductive-inductive definitions. PhD thesis, University of Nottingham,
2017.

[5] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-
inductive types. Proceedings of the ACM on Programming Languages, 3(POPL):2, 2019.

[6] Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis, Swansea University, 2013.

2
13

Containers of Applications and Applications of Containers

Malin Altenmüller and Conor McBride

University of Strathclyde, Glasgow, United Kingdom

We use the notion of indexed containers to define a datatype of applications in dependent type
theory. Applications are server-like programs, indexed by their current status. The basis for the
definition is the type of interface of an application, using the intuition that indexed containers
are interaction structures [HH06]. The type of applications itself results from building cofree
comonads on these containers. We take a comonadic view (applications provide a service) rather
than a monadic view (applications do side e↵ects), but Hancock, Setzer and Hyvernat’s analysis
of interaction structures [HS00, HSCS05] keep guiding our design. With indexed containers we
additionally get both a notion of how applications display themselves to a user and combinators
which enable modular construction of complex applications.

What is an Application? The applications we describe are programs which deliver some
functionality to a user. The user sends requests to the application and the applications reacts
accordingly. Applications act in a server-like way: they lazily await commands from their user,
updating their internal state when receiving one. In addition they are always ready to display
themselves to the user. Defining the type of applications consists of two parts: The type of
specification (or interface) for applications contains the commands and responses an application
can receive and send. The type of an application itself is based on an interface and coinductively
defines its display type and its reaction to a command.

Indexed Containers as Templates. Hancock and Hyvernat [HH06] introduced indexed
containers as interaction structures — protocols of communication between client and server.
They consist of fields for commands and responses as well as for the next state the server will
reach after a command-response pair has been sent. Indexed containers also represent indexed
functors on the underlying indexed sets as defined by Altenkirch et al.[AGH+15]. Our type of
specification for applications is a modified version of the description of interaction structure.
Instead of computing the next status with an indexed function (depending on the response),
we will use the contravariant powerset notion via a predicate on the type of status. This notion
emphasises that only some properties of the server’s next status might be known to the client,
but not all of it. In Agda, the type of specification for applications looks like this:

record � (Now Next : Set) : Set1 where
field Commands : Now ! Set

Response : (now : Now) ! Commands now ! (Next ! Set)

Here Now and Next are the types of status an application can be in, the Commands an ap-
plication can receive depend on its current status and the Response depends on the current
status and the issued command and returns a property of the next status of the application.
The closure properties of � are more flexible if Now and Next are separated, but we take
fixpoints only when they coincide, i.e. when the container represents an endofunctor.

14

Containers of Applications and Applications of Containers M. Altenmüller, C. McBride

The Type of Application. With indexed containers as a notion of interface, we use them
as the basis to define the type of applications themselves:

record App {S : Set} (spec : S � S) (D : S ! Set) (s : S) : Set where
coinductive
field display : D s

react : (c : spec .Commands s)
! (s : S) ⇥ (spec .Response s c s 0 ⇥ App spec D s 0)

We distinguish three types of state of applications: The static status S , the public display and
a private internal state, which is the carrier of the coalgebra. When it receives a command, the
application reacts by returning a Response and updating its internal state.

Having containers defining the interface of applications, we can use product operations on
them to build higher dimensional structures and describe more complex applications. Examples
include a text editor which is built from one-dimensional line editing applications and a window
manager, controlling multiple overlapping windows on a screen.

The Type of Display. We also use indexed containers to define the type of displays of
applications (called D in the above definition). This two-dimensional structure is indexed by
its size and the underlying indexed container defines how to partition it. Using the size as
index type makes the pieces (which result from partitioning) fit together properly. As we are
describing structures which take up a limited amount of space, the underlying container is
restricted to only have a finite amount of positions at which we can store data. Given a type of
tiles (also indexed by their size) we can build interiors by plugging in the tiles into holes they
fit in. This plugging-in operation is building the free monads of the underlying containers and
gives us the type of display of an application. Again, combinators of the underlying containers
let us build multi-dimensional structures. We start with notion of cutting a one-dimensional
structure (i.e. dividing its length) and then use a product operation to get higher-dimensional
structures. Partitioning a higher-dimensional structure consists of a choice of dimension, in
which the split is performed, the other dimensions stay unchanged.

Summary. With these definitions of applications and displays we are building a library to
construct complex applications from low dimensional ones. Using containers as the underlying
structures results in a notion of combining containers by using product operations. We are
currently implementing this library and aim for a su�cient collection of tools for building
applications compositionally.

References

[AGH+15] Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and Peter Morris. In-
dexed containers. Journal of Functional Programming, 25:e5, 2015.

[HH06] Peter Hancock and Pierre Hyvernat. Programming interfaces and basic topology. Annals
of Pure and Applied Logic, 137(1):189 – 239, 2006.

[HS00] Peter Hancock and Anton Setzer. Interactive programs in dependent type theory. In Peter G.
Clote and Helmut Schwichtenberg, editors, Computer Science Logic, pages 317–331, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg.

[HSCS05] Peter Hancock, Anton Setzer, L Crosilla, and P Schuster. Interactive programs and weakly
final coalgebras in dependent type theory. From Sets and Types to Topology and Analysis.
Towards Practicable Foundations for Constructive Mathematics, 48:115–134, 2005.

2 15

Deep and Shallow Embeddings in Coq ⇤

Danil Annenkov and Bas Spitters

Aarhus University

Abstract. We demonstrate how deep and shallow embeddings of functional programs can
coexist in the Coq proof assistant using meta-programming facilities of MetaCoq. While deep
embeddings are useful for proving meta-theoretical properties of a language, shallow embeddings
allow for reasoning about the functional correctness of programs.

Motivation. Functional languages are becoming increasingly popular in software develop-
ment. Moreover, there is a demand for languages with well-understood semantics arising from
the concept of “smart contracts” — computer programs running on blockchains. A number of
blockchain implementations have already adopted certain variations of functional languages as
an underlying smart contract language. These languages range from minimalistic and low-level
(Simplicity, Michelson) to fully-featured OCaml- and Haskell-like languages (Liquidity, Plu-
tus). There are several formalisations of these languages in proof assistants, mostly covering
meta-theory12 with the notable exception of Scilla [2], which features verification of particular
smart contracts translated by hand to Coq. One of the motivations for the present work is
formalisation of the Concordium Oak functional smart contract language. Although it seems
obvious to use the functional language of a proof assistant to represent constructions of a lan-
guage we would like to reason about, there are not that many tools available for that purpose.
We propose to use the meta-programming facilities of MetaCoq [1] to develop such a tool in a
principled way.

Embedding of Functional Languages. There are various ways of reasoning about prop-
erties of a programming language in a proof assistant. First, let us split the properties in two
groups: meta-theoretical properties (properties of a language itself) and properties of programs
written in the language. Since we limit ourselves to a functional programming language, it
is reasonable to assume that we can reuse the programming language of a proof assistant to
express functional programs and reason about their properties. A somewhat similar approach
is taken by the authors of the hs-to-coq library [3], which translates total Haskell programs to
Coq by means of source-to-source transformation. Unfortunately, in this case it is impossible
to reason about correctness of the translation.

An alternative is to directly interpret the syntax into Coq functions in NbE style [4]. In
the presence of inductive types this requires encodings that complicate reasoning about the
properties of the embedded programs. However, we do not rule out this approach, since it can
be quite useful for proving meta-theoretical properties.

We would like: (1) to have a way of translating programs written in our functional language
into a Coq function that looks close to the original (the shallow embedding); (2) to have access
to the AST of the language for meta-theoretical reasoning (the deep embedding), and (3) to
make an explicit connection between the semantics of the language and its representation in
Coq in the form of a soundness theorem.

⇤This work is supported by the Concordium Blockchain Research Center, Aarhus University, Denmark.
1Michelson in Coq: https://framagit.org/rafoo/michelson-coq/
2Plutus meta-theory in Agda: https://github.com/input-output-hk/plutus-metatheory.

16

Deep and Shallow Embeddings in Coq Annenkov, Spitters

Our approach. MetaCoq makes it possible to connect the two ways of reasoning about
functional programs. We implement a functional language that corresponds to a “core” subset
of an average functional language with a System F type system, algebraic data types and general
recursion. We define a translation from this language to the syntax of MetaCoq. In contrast
with the source-to-source translation, our translation is a Coq function from the AST of our
language to the AST of MetaCoq. This makes it possible to reason within Coq about the
translation and formalize the required meta-theory for the language.

MetaCoq allows us to convert an AST represented as an inductive type into a Coq term.
Thus, starting with the syntax of a program in our functional language, through a series of
translations we produce a MetaCoq AST, which is then interpreted into a program in Coq’s
Gallina language. Let us consider the following example:

Definition plus_syn : expr := [| fix "plus" (x : Nat) : Nat ! Nat :=
case x : Nat return Nat ! Nat of

| Z ! \y : Nat ! y

| Suc y ! \z : Nat ! Suc ("plus" y z) |].
(* Unquoting the syntax into a Coq term *)

Make Definition my_plus := Eval compute in (expr_to_term (indexify plus_syn)).
Lemma my_plus_correct n m : my_plus n m = n + m.
Proof. induction n;simpl;auto. Qed.
(* Computing with the interpreter *)

Compute (eval 10 enEmpty [| {plus_syn} 1 1 |]).
(* = Ok (vConstr "nat" "Suc" [vConstr "nat" "Suc" [vConstr "nat" "Z" []]]) *)

The term plus_syn defines an AST of a program in our functional language using the exten-
sion of the notation mechanism called custom entries. After the application of indexify (which
converts variable names into De Bruijn indices) and expr_to_term (which translates expressions
to the terms of MetaCoq) we use Make Definition my_plus := ... of MetaCoq to produce a Coq
program. The my_plus_correct lemma shows that the my_plus corresponds to the standard
definition of addition. This example already allows us to verify correctness of certain functions
by proving them equivalent to functions from the standard library of Coq.

The semantics of our functional language is defined as a definitional interpreter in Coq. As
the example above shows, this allows to compute with the interpreter on the deeply embedded
representation. The interpreter is implemented in an environment-passing style and works both
with named and nameless representations of variables. To be able to interpret general fixpoints
we evaluate fixpoints applications in the environment extended with the closure corresponding
to the recursive call. Due to the potential non-termination, we define our interpreter using a
fuel idiom: by structural recursion on an additional argument (a natural number).

Since MetaCoq aims to also formalise the meta-theory of Coq we use this development to
show that the semantics of our functional language agrees with its translation to MetaCoq (on
terminating programs) and our interpreter is sound with respect to the embedding. This paves
a way for principled embeddings of functional languages to Coq.

References

[1] Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and Nicolas Tabareau. Towards
Certified Meta-Programming with Typed Template-Coq. In ITP18, volume 10895 of LNCS, pages
20–39, 2018.

[2] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Scilla: a Smart Contract Intermediate-Level LAn-
guage. CoRR, abs/1801.00687, 2018.

[3] Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and Stephanie Weirich. Total
Haskell is reasonable Coq. CPP18, pages 14–27. ACM, 2018.

[4] Pawe lWieczorek and Dariusz Biernacki. A Coq Formalization of Normalization by Evaluation for
Martin-Löf Type Theory. CPP 2018, pages 266–279. ACM, 2018.

2 17

Linear metatheory via linear algebra

Robert Atkey1 and James Wood1⇤

University of Strathclyde, Glasgow, United Kingdom
{robert.atkey,james.wood.100}@strath.ac.uk

Introduction. We introduce a simply typed calculus �R that allows the use of variables to
be constrained by usage annotations in the context which binds them. �R is a generalisation
of existing core type theories for sensitivity analysis [RP10], dependency and confidentiality
[ABHR99], linearity [Bar96], and modal validity [PD99]. It is related to quantitative type
theory [Atk18], and various coe↵ect calculi [POM14, BGMZ14, GS14].

One of our insights is that because our usage annotations form a semiring, we have just
enough structure to talk about vectors and matrices in the metatheory. We find useful some
constructs of linear algebra, culminating in substitution phrased as application of a linear map.

An earlier version of this work was presented at TyDe 2018 [AW18]. The syntax and seman-
tics are formalised in Agda, with the code at https://github.com/laMudri/quantitative/.

Syntax. Our syntax is that of a simply typed �-calculus modified to let us reason about how
variables are used. We assume a partially ordered semiring (posemiring) (R,E, 0, +, 1, ⇤) of
usage annotations, with elements coloured in green for emphasis. The types are base types
(◆k), functions ((), tensor products (1, ⌦), with products (>, &), sums (0, �), and graded
bangs (!⇢). A context �R is the combination of a typing context � and a usage context R. We
see a usage context as a vector over R generated by the basis made of the variables it contains.

⇢,⇡ 2 R A, B, C ::= ◆k | A (B | 1 | A ⌦ B | > | A & B | 0 | A � B | !⇢A

�, � ::= · | �, x : A P, Q, R ::= · | R, x⇢ �R ::= · | �R, x
⇢
: A

Tensor products are eliminated by pattern matching (each side bound with annotation 1),
whereas with products are eliminated by projections. The di↵erence is correspondingly seen in
the introduction rules, where the two halves of a tensor product have separate usage, and the
two halves of a with product have shared usage (illustrated below).

The rule ⌦-I is the archetypal use of +. The constraint P + Q E R says that R must be at
least as permissive as the accumulation of usages in P and Q. If the addition of the semiring is a
join of the order (as in the modality example below), these two types of product are equivalent.

�P ` M : A �Q ` N : B P + Q E R
�R ` (M, N)⌦ : A ⌦ B

⌦-I
�R ` M : A �R ` N : B

�R ` (M, N)& : A & B
&-I

With the graded bang, we see use of ⇤ from the annotation posemiring. We read ⇢ ⇤ ⇡ as
applying the action ⇢ to ⇡. Introduction can be seen as scaling usage. Elimination is by pattern
matching, where we bind a new variable with whatever usage annotation the type gave us.

�P ` M : A ⇢ ⇤ P E R
�R ` [M] : !⇢A

!⇢-I
�P ` M : !⇢A �Q, x

⇢
: A ` N : B P + Q E R

�R ` let [x] = M in N : B
!⇢-E

⇤James Wood is supported by an EPSRC Studentship.

18

Linear metatheory via linear algebra Wood and Atkey

The var rule (not pictured) at x can only be used in a usage context R when x has a
usage annotation as permissive as 1, and all other variables have annotation as permissive as
0. In other words, x can be used plainly, and all other variables can be discarded. This can be
succinctly stated as the constraint x1 E R, where x1 is the xth basis vector.

Substitution. We have two admissible rules leading up to the substitution lemma — sub-
usaging (subuse) and weakening (weak) — stated below. In the language of linear algebra,
weakening is embedding into a space of higher dimension.

Let | � | denote the length of a context. Usage contexts are taken to be row vectors. A
substitution � from �P to �Q comprises a |Q|⇥ |P| matrix ⌃ such that Q⌃ E P, and for each

(x : A) 2 �, a term Mx such that �x1⌃ ` Mx : A. Then, the simultaneous substitution lemma
is proven via the linearity of vector-matrix multiplication.

subuse
�P ` M : A P E Q

�Q ` M : A

weak
�P ` M : A

�P , �0 ` M : A

�Q ` N : A

� : �P) �Q

�P ` N [�] : A
subst

The identity substitution, where each variable x is substituted by the term x, is witnessed
by the identity matrix. We expect composition to be witnessed by matrix multiplication.

Specialisations. To demonstrate the applicability of �R, and give examples of usage posemir-
ings, we show that certain instances are translatable to DILL [Bar96] and the modal type theory
of Pfenning and Davies [PD99]. Future work is to give an equational theory for �R, and show
that these translations form an isomorphism.

DILL is a linear type theory where contexts are split between unrestricted and linear vari-
ables. To model linearity, we introduce the {0, 1,!} posemiring. Annotation 0 denotes non-use,
1 linear use, and ! unrestricted use. Addition and multiplication are like the corresponding
natural number operations, with ! acting as an infinite element and 1 + 1 = ! in lieu of a
2 element. The order is generated by 0 E ! and 1 E !, with no relation between 0 and 1.
This says that unrestricted variables can be both discarded and used. We translate a DILL
derivation of �; � ` t : A into a �R derivation of �!, �1 ` Mt : A. We translate DILL’s unan-
notated ! into !!. In the translation, we make use of weak to ignore 0-use variables introduced
by usage separation. When translating the other way, we require that !0 and !1 do not occur in
the derivation we are translating. We translate a �R derivation of �!, �1, ⇥0 ` M : A into a
DILL derivation of �; � ` tM : A. This makes use of DILL’s Environment Weakening lemma
to correct cases where a �R subderivation was too precise about usage.

Pfenning and Davies’ modal type theory is already stated in the form of usage annotations. A
variable is annotated either true or valid . Furthermore, conclusions are only ever of true things.
This suggests that true is the 1 of the posemiring, and we introduce an unused annotation to
be the 0. The PD variable rule says that both true and valid assumptions are true, so we have
true E valid . Furthermore, all assumptions can be discarded, so unused is the bottom of the
order. Addition is the join of this order. The modality ⇤ is translated to !valid , which tells
us that valid ⇤ ⇡ = valid for ⇡ 6= unused . unused and true are the annihilator and unit of ⇤,
respectively. Having these definitions in place, the translations are similar to those for DILL.

Semantics. We also have a semantics that captures the intensional properties of programs via
families of Kripke indexed relations that refine a simple set-theoretic semantics. This allows us
to reconstruct the semantic properties of calculi in prior work for sensitivity analysis [RP10], and
dependency and confidentiality [ABHR99], as well as a new calculus for monotonicity analysis.

2 19

Linear metatheory via linear algebra Wood and Atkey

References

[ABHR99] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A Core Calculus of Dependency. In
POPL ’99, pages 147–160, 1999.

[Atk18] Robert Atkey. The syntax and semantics of quantitative type theory. In LICS ’18: 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, July 9–12, 2018, Oxford,
United Kingdom, 2018.

[AW18] Robert Atkey and James Wood. Context constrained computation. In 3rd Workshop on
Type-Driven Development (TyDe ’18), Extended Abstract, 2018.

[Bar96] Andrew Barber. Dual intuitionistic linear logic. Technical report, The University of Edin-
burgh, 1996.

[BGMZ14] A. Brunel, M. Gaboardi, D. Mazza, and S. Zdancewic. A Core Quantitative Coe↵ect
Calculus. In ESOP 2014, pages 351–370, 2014.

[GS14] Dan R. Ghica and Alex I. Smith. Bounded linear types in a resource semiring. In ESOP
2014, pages 331–350, 2014.

[PD99] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. In Math-
ematical Structures in Computer Science, page 2001, 1999.

[POM14] Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coe↵ects: a calculus of context-
dependent computation. In ICFP 2014, pages 123–135, 2014.

[RP10] J. Reed and B. C. Pierce. Distance makes the types grow stronger. In P. Hudak and
S. Weirich, editors, ICFP 2010, pages 157–168, 2010.

320

Simply RaTT
A Fitch-style modal calculus for reactive programming

Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg

IT University of Copenhagen (bahr,cgra,mogel@itu.dk)

Reactive programs are programs, such as servers or much control software, that engage in
an ongoing dialogue with their environment producing output from input, typically without
terminating. Functional Reactive Programming (FRP) aims to provide high-level abstractions
allowing control flow in reactive programming to be described in a simple and direct way. The
basic such abstractions are signals and events. A signal is a time-dependent value, and in the
special case of time being given by a discrete global clock, this just amounts to a stream.

Recently a number of authors [5, 4, 6] have suggested using modal types for functional
reactive programming. By encoding time steps using a delay modality �, one can ensure that
all programs are causal. This can then be combined with Nakano’s fixed point operator of type
(�A ! A) ! A to recursively define programs while maintaining productivity. This fixed
point operator has been the topic of much research also in dependent type theory lately, but
the functional reactive applications have di↵erent operational requirements, in particular the
avoidance of space leaks and time leaks forces restrictions on the calculus.

Our long term goal is to construct a dependent type theory for reactive programming (Re-
active Type Theory, RaTT) which provides operational guarantees on programs while being
expressive enough for program properties to be expressed and proved in the type theory. We
build on work by Krishnaswami [6], who proved the absence of space leaks in a modal calculus
for FRP. As most modal calculi, it uses let-expressions for eliminating modal types, and these
are generally considered undesirable in dependent type theory.

Simply RaTT

This talk presents Simply Typed Reactive Type Theory (Simply RaTT), a calculus for reactive
programming based on the Fitch-style approach to modal types [3, 2], in which introduction
and elimination are given by abstracting and adding tokens to a context, thus avoiding let-
expressions. For example, the token associated with the modal operator � is X, and the
introduction and elimination rules for this are

�,X ` t : A

� ` delay t : �A

� ` t : �A �,X, �0 `
�,X, �0 ` adv t : A

The type �A classifies computations that can be run in the next time-step producing elements
of type A. Time-steps are represented by adding a X to a context, and thus adv corresponds
to running a delayed computation in the next time step. The calculus also features a modal
operator 2, which is used for representing stable computations, i.e., computations that can be
safely executed any time in the future. It has the associated token].

Compared to Krishnaswami’s calculus, which uses a more standard dual-context approach
to modal types, Simply RaTT represents a shifted notion of time-dependence. Terms in Simply
RaTT can depend on variables from the past (those before a X) as well as from the present.
By contrast, terms in Krishnaswami’s calculus can depend on the result of executing delayed
computations in the future.

21

Simply RaTT Bahr, Graulund and Møgelberg

Fitch-style modal calculi have been used in dependently typed languages for guarded re-
cursion [1]. In these, the tokens are named ticks, which are used when proving properties of
recursive programs. We therefore hope to be able to reason about reactive programs using the
Fitch-style approach in a future extension of Simply RaTT with dependent types.

Operational semantics

Simply RaTT is equipped with an operational semantics inspired by Krishnaswami [6]. Terms
execute relative to a store used for storing delayed computations. The store can consist of zero,
one, or two heaps, i.e., mappings of locations to terms. The three cases are written as � = ?,
� =]⌘L and � =]⌘NX⌘L, respectively. A term executing in one of the two last stores can store
delayed computations in ⌘L. In the last case, delayed computations can be retrieved from ⌘N

and executed. For example, the operational semantics for delay and adv are

� 6= ? l 62 dom (later(�))

hdelay t;�i + hl;�, l 7! ti
ht;]⌘N i + hl;]⌘0N i h⌘0N (l);]⌘0NX⌘Li + hv;�0i

hadv t;]⌘NX⌘Li + hv;�0i

where later(�) refers to the ⌘L component of the store �.
The above operational semantics implements single step evaluation of reactive programs.

From this one can define multistep evaluation of terms. For example, to evaluate a stream t,
one would execute it in two empty heaps ht;];X;i + hn :: l;]⌘LX⌘N i to a value consisting of a
number n now, and a reference l to a delayed computation representing the tail. The tail can
then be evaluated by executing hadv(l);]⌘NX;i. Note that the heap ⌘L in this step has been
garbage collected.

Our main theorem states that any program of type 2(Str(Nat)) can be executed for ar-
bitrarily many steps following the above procedure, producing sequences of arbitrary length.
Likewise, programs of type 2(Str(Nat) ! Str(Nat)) represent stream processors that can pro-
cess arbitrarily long input in a causal way to produce output of the same length. Input is
represented by placing references of the form l 7! n :: l0 in the heap, where n is the current
value of the input stream, and l0 is a dangling reference to the tail which is only available in
the next time step. By garbage collecting the ⌘L heap in each step, space leaks (in the form of
indefinite storage of input data) is avoided. The safety of this algorithm for evaluating stream
processors is proved using a Kripke logical relation.

References

[1] P. Bahr, H. B. Grathwohl, and R. E. Møgelberg. The clocks are ticking: No more delays!
In LICS, 2017.

[2] Ranald Clouston. Fitch-style modal lambda calculi. In FoSSaCS, 2018.

[3] F. B Fitch. Symbolic logic, an introduction. Ronald Press Co., New York, NY, USA, 1952.

[4] Alan Je↵rey. LTL types FRP: linear-time temporal logic propositions as types, proofs as
functional reactive programs. In PLPV, 2012.

[5] Wolfgang Jeltsch. Temporal logic with ”until”, functional reactive programming with pro-
cesses, and concrete process categories. In PLPV, 2013.

[6] N. R. Krishnaswami. Higher-order Functional Reactive Programming Without Spacetime
Leaks. In ICFP, 2013.

2 22

Free Algebraic Theories as Higher Inductive Types
Henning Basold1⇤, Niels van der Weide2, and Niccolò Veltri3

1 CNRS, ENS Lyon
henning.basold@ens-lyon.fr

2 Radboud University Nijmegen
nweide@cs.ru.nl

3 IT University of Copenhagen
nive@itu.dk

In recent years, there has been an increasing interest in higher inductive types. There
are several reasons behind this, like synthetic homotopy theory [5], implementation of rewrite
rules [1], quotients [2], and other colimits. Here we are interested in applications of higher induc-
tive types in universal algebra and category theory, and the possibility of extending inductive
and coinductive types beyond strictly positive types. One of the most basic constructions in
universal algebra is that of a free algebra. This construction can be carried out by using higher
inductive types, as we will now briefly show.

We present some basic notions as Agda code. In what follows, we will work in Martin-Löf
type theory with two basic universes U0 : U1. We will also require function extensionality, which
can, however, be dropped if we restrict ourselves to finitary signature. The following record
type defines a signature (also polynomial or container) in Agda.

record Signature : U1 where
sym : U0

ar : sym ! U0

From a signature ⌃ : Signature, we can construct the type Term ⌃ X of terms (W-type) over ⌃
with leaves labelled in X. This type comes with the obvious iteration principle that we denote
by Term-iter. An algebraic theory is given by a signature and a set of equations between terms
over that signature. These equations may have free variables but may not use other properties
than equality on the variables. Thus, we represent equations as parametric binary relations [4],
as in the following record type.

record AlgTheory : U1 where
sig : Signature
eqs : 8 {X : U0} ! Rel (Term sig X)

Note that the requirement that the variable type X is in a fixed universe U0 will also fix the
universe in which the algebras for a theory live. This is, however, not a severe constraint, as
the induction principle still allows for large elimination.

Given an algebraic theory T : AlgTheory over a signature ⌃, we can define what an algebra
and an induction scheme for an algebra of T is. Algebras are given in two steps: First, we define
pre-algebras that do not have to fulfil the equations of the theory, but only are an algebra for
the functor induced by the signature ⌃. The fact that the carrier of a pre-algebra is a set (in
the sense of homotopy type theory) is technical necessity, which we would like to lift in the
future. Note that this pre-algebra immediately extends to all terms by freeness. An actual
algebra for T is then a pre-algebra that fulfils also the equations required by the theory. This
idea is formalised in the following two record types.

⇤This work is supported by the European Research Council (ERC) under the EU’s Horizon 2020 pro-
gramme (CoVeCe, grant agreement No. 678157)

23

easychair: Running title head is undefined. Basold, Veltri and van der Weide

record PreAlgebra : U1 where
carrier : U0

carrier-set : is-set carrier
algebra : (s : sym ⌃) (↵ : ar ⌃ s ! carrier) ! carrier

algebra* : Term ⌃ carrier ! carrier
algebra* = Term-iter (� x ! x) algebra

record Algebra : U1 where
pre-algebra : PreAlgebra
resp-eq : 8 {t u : Term ⌃ carrier} !

eqs t u ! algebra* t == algebra* u

One can then also define an induction scheme for algebras of an algebraic theory, cf. [3].
With the basic definitions in place, we construct the initial algebra of an algebraic theory as
higher inductive type with the following (type) constructors, where the function node* of type
Term ⌃ (FreeAlgebra T) ! FreeAlgebra T is the extension of node to terms, cf. algebra* above.

FreeAlgebra : (T : AlgTheory) ! U0

node : (s : sym ⌃) (↵ : ar ⌃ s ! FreeAlgebra T) ! FreeAlgebra T
eq : 8 {t u} ! eqs t u ! node* t == node* u
quot : is-set (FreeAlgebra T)

This HIT comes with an iteration principle for T-algebras and an induction principle. These
can be used to show that FreeAlgebra T is indeed the initial T-algebra. The principles are strong
enough to define the free algebra functor and show it is the left adjoint of the forgetful functor.
Examples of this construction include the free monoid, which can be shown to be equivalent
to lists. https://perso.ens-lyon.fr/henning.basold/code/AlgTheoryHIT. An alternative
development in UniMath can be found in [6].

Why would we be interested in such a construction of free algebras? First of all, we wish
to formalise parts of universal algebras, like quotient algebras and the isomorphism theorems.
Higher inductive types seem to provide the appropriate mechanism for such an endeavour.
Moreover, once we can construct free algebras, we could also consider inductive and coinductive
types over algebraic theories as an extension of strictly positive types. In particular, semantics
of finitely branching transition systems could be obtained in the final coalgebra for the finite
powerset functor, which is the free join-semilattice and therefore representable in our framework.
Finally, we aim to extend the construction to HITs that are not just sets, but groupoids. This
would enable us, for example, to construct free symmetric monoidal categories.

In the talk, we will present the algebras and the induction scheme in more detail, show
applications of the above construction, and discuss future directions.

References
[1] T. Altenkirch and A. Kaposi. Type theory in type theory using quotient inductive types. In

R. Bodík and R. Majumdar, editors, Proc. of POPL 2016, pages 18–29. ACM, 2016.
[2] H. Basold, H. Geuvers, and N. van der Weide. Higher Inductive Types in Programming. J.UCS,

David Turner’s Festschrift – Functional Programming: Past, Present, and Future, 2017.
[3] C. Hermida and B. Jacobs. Structural Induction and Coinduction in a Fibrational Setting. Infor-

mation and Computation, 145:107–152, 1997.

2
24

easychair: Running title head is undefined. Basold, Veltri and van der Weide

[4] C. Hermida, U. S. Reddy, and E. P. Robinson. Logical Relations and Parametricity - A Reynolds
Programme for Category Theory and Programming Languages. ENTCS, 303:149–180, 2014.

[5] T. Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathemat-
ics. Institute for Advanced Study, 2013.

[6] N. van der Weide and H. Geuvers. The Construction of Set-Truncated Higher Inductive Types.
Submitted.

3
25

Game Forms for Coalition E↵ectivity Functions

Colm Baston and Venanzio Capretta

School of Computer Science, University of Nottingham
{colm.baston,venanzio.capretta}@nottingham.ac.uk

Introduction Coalition logic, introduced by Pauly,1 is a multi-agent modal logic for reasoning
about what groups of agents can achieve if they act collectively, as a coalition. The semantics
for coalition logic is based on game forms, which are essentially perfect-information strategic
games where the players act simultaneously. From a game form, we can derive an e↵ectivity
function which defines those subsets of outcomes that a particular coalition can guarantee,
regardless of how all other players act.

Pauly proves that there is a set of properties, playability, that precisely describe when
an arbitrary e↵ectivity function is the e↵ectivity function for some strategic game. Our goal
is to formalise this equivalence in the logics of the type-theoretic proof assistants Coq and
Agda. Proving the playability of an e↵ectivity function that is derived from a game form is
straightforward, provided that we develop good libraries for decidable subsets of agents and
states. The other direction is more complex, requiring the construction of a game form from
a playable e↵ectivity function, then proving that the derived e↵ectivity function is equivalent
to the original. In addition to adapting it for type-theoretic formalisation, we simplify Pauly’s
construction for the second direction, and we give a sketch of this below.

Game Forms A game form G is a tuple hN, {Ai}i2N , S, oi where: N is a finite, non-empty
set of agents (for n agents, we simply use the natural numbers {0, . . . , n � 1}); {Ai}i2N is a
family of non-empty sets of actions for each agent i (a strategy profile � : ⇧i2NAi is a choice
of actions for every agent); S is a set of possible outcome states; o is a function (⇧i2NAi) ! S
that selects an outcome for every strategy profile.

A coalition C is a decidable subset of N . Let �C : ⇧i2CAi be a strategy profile for C and
�C : ⇧i2CAi a strategy profile for the complement coalition C = N \C. We denote by �C ��C

a global strategy profile � which joins the actions of both coalitions.
The e↵ectivity function for game form G is a function EG : Pdec(N) ! P(Pdec(S)) which

associates each coalition with a set of goals: each goal is a decidable set of states that the
coalition can achieve by working together; that is, X 2 EG(C) i↵ there is a strategy profile
for C that guarantees an outcome in X, no matter the counter-strategy for C. The e↵ectivity
function for a game form G is therefore defined by:

EG(C) = {X 2 Pdec(S) | 9�C , 8�C , o(�C � �C) 2 X}

In the semantics of coalition logic, it is very convenient to work abstractly with an e↵ectivity
function rather than directly with the game definition. Therefore we need a characterisation of
those e↵ectivity functions that come from games.

Playable E↵ectivity Functions An e↵ectivity function E : Pdec(N) ! P(Pdec(S)) is
playable i↵ it satisfies the following properties: For any C ✓ N , ? 62 E(C); For any C ✓ N ,
S 2 E(C); E is N -maximal: for any X ✓ S, X 62 E(?)) X 2 E(N); E is outcome-monotonic:
for any C ✓ N and any X1 ✓ X2 ✓ S, X1 2 E(C)) X2 2 E(C); E is superadditive: for any

1Marc Pauly, “A modal logic for coalitional power in games”, J. of Logic and Computation, 12, 02 2002.

26

Game Forms for Coalition E↵ectivity Functions Baston and Capretta

disjoint pair C1, C2 ✓ N , and any pair X1, X2 ✓ S, X1 2 E(C1) ^ X2 2 E(C2)) X1 \ X2 2
E(C1 [C2).

Two more properties follow from from the above: E is regular: for any C ✓ N and any X ✓
S, X 2 E(C)) X 62 E(C); E is coalition-monotonic: for any C1 ✓ C2 ✓ N , E(C1) ✓ E(C2).

Proving that for a game form G, EG is playable is just a routine question of checking the
properties. The inverse requires that for every playable E we construct a game form G such
that E = EG.

Game Form Construction Given a playable e↵ectivity function E : Pdec(N) ! P(Pdec(S))
for some non-empty sets N and S, we construct a game form G such that E = EG. The set of
agents and the set of states are N and S respectively, so we just need to define a family of sets
of actions {Ai}i2N , and an outcome function o.

An action for an agent i 2 N consists of a choice of a coalition C that i would like to be
part of, a goal X that i would like the coalition to aim for, a selected outcome x 2 X, and a
natural number t which will be used in determining which agent gets to make the final decision:

Ai = {hC, X, x, ti | C ✓ N, i 2 C, X 2 E(C), x 2 X, t 2 N}

Let a strategy profile � be given: we have a choice �i = hCi, Xi, xi, tii for every i 2 N . A
coalition C ✓ N is called �-cooperative if, for every i 2 C, Ci = C and, for every i, j 2 C,
Xi = Xj . Let XC = Xi for any i 2 C. Intuitively, a coalition C is �-cooperative if all its
members want to be in the coalition and they agree on the goal XC they want to aim for.

Let hC1, . . . , Cmi be all the non-empty �-cooperative coalitions, and let C0 be the set of
agents that are not in a �-cooperative coalition. hC0, . . . , Cmi is a partition of N . Define
XC0

= S and

O(�) =
m\

k=0

XCk
=

m\

k=1

XCk

The outcome of the game will be defined to be a state in O(�). The choice of the specific state
will depend again on �. We use the numbers ti to determine an agent that will make the final
decision: let d = (

P
i2N ti) mod |N |. The outcome will be the state chosen by this agent, xd.

However, this is not guaranteed to be an element of O(�): it is an element of Xd which is a
superset of O(�). In case it isn’t we revert to an arbitrary choice function H : ⇧X2E(N)X. This
exists constructively because by definition of playable e↵ectivity function every X 2 E(N) is
non-empty. We can prove that O(�) 2 E(N), so we can define:

o(�) =

⇢
xd if xd 2 O(�)
H(O(�)) otherwise

Theorem. E = EG

Proof. From left to right, we assume X 2 E(C) for some coalition C, and must show that
X 2 EG(C). Expanding the definition: 9�C , 8�C , o(�C � �C) 2 X. Define �C by setting for
every i 2 C, Ci = C and Xi = X; xi and ti may be chosen arbitrarily. By definition, C is a �-
cooperative coalition, so it will be one of the classes in the partition used to define O(�C ��C).
As XC = X, it follows that O(�C � �C) ✓ X, and o(�C � �C) 2 X, as desired.

We must omit the finer details in the right to left direction. The non-trivial case, where
C 6= N , relies on the playability properties for the construction of a counter-strategy �C such
that O(�) 2 E(C). For each x 2 O(�), we are able to tweak xj and tj for an agent j 2 C such
that o(�) = x, showing that x 2 X and O(�) ✓ X, proving by playability that X 2 E(C).

27

Coherence via big categories with families of

locally cartesian closed categories

Martin Bidlingmaier⇤

Dept. of Computer Science, Aarhus University, Denmark.
mbidlingmaier@cs.au.dk

Locally cartesian closed (lcc) categories are natural categorical models of extensional de-
pendent type theory [See84]. However, there is a slight mismatch: syntactic substitution is
functorial and commutes strictly with type formers, whereas pullback is generally only pseudo-
functorial and preserves universal objects only up to isomorphism. In response to this problem,
several notions of models with strict pullback operations have been introduced, e.g. categories
with families (cwf) [Dyb96], and coherence techniques have been developed to “strictify” weak
models such as lcc categories and obtain models with functorial substitution [CGH14][LW15].
Using these methods, a biequivalence of lcc categories and extensional type theories was estab-
lished [CD14], but a higher categorical analogue is currently only conjectured [Kap15].

This talk introduces big cwf of lcc categories, a novel coherence construction for extensional
type theory. Because we rely not on strictification but on particularly incoherent replacements
of lcc categories, we conjecture that our technique generalizes well to the higher categorical case,
giving rise to an interpretation of a weak dependent type theory without nontrivial definitional
equalities but strict substitution in arbitrary lcc quasi-categories [Kap15].

Our point of departure is the observation that, when working in type theory, changing the
ambient context is akin to changing the base terms of the underlying theory. For example,
proving v : � ` t : ⌧ is equivalent to proving · ` t : ⌧ in a type theory that was freely extended
by a term v of type �. We take the idea that contexts represent di↵erent type theories literally
and assign to each context a separate model, i.e. a separate lcc category. We thus work among
lcc categories instead of within a single one. Context extension then corresponds to freely
adjoining an interpretation of a term to an lcc category.

We have to be careful, however, because substitutions commute strictly with type formers,
whereas the usual notion of lcc functor is only guaranteed to preserve lcc structure up to iso-
morphism. Substitutions are thus interpreted as strict lcc functors, which preserve a canonical
choice of lcc structure on the nose. To account for possibly non-strict lcc functors we will en-
counter in the proof of theorem 1, we restrict ourselves to variable lcc categories �, for which
every lcc functor � ! � is uniquely isomorphic to a strict one. So as to allow for nontrivial
interpretations of the initial context, we consider lcc categories under some cobase C.

Definition 1. Let C be an lcc category. The cwf of lcc categories under C is given as follows.

• A context is a variable lcc functor B� : C ! �.

• A context morphism from B� : C ! � to B� : C ! � is a strict lcc functor F : � ! �
such FB� = B�.

• A type in context B� : C ! � is an object of �.

• A term of type � in context B� : C ! � is a morphism >� ! � in �.

• Substitution along context morphisms is given by application of strict lcc functors.

⇤Supported by AFOSR grant 12595060.

28

Coherence via big cwf of lcc categories Martin Bidlingmaier

Theorem 1. The cwf of lcc categories under C has an initial context and comprehensions, and
it supports ⌃, ⇧ and extensional identity types.

Theorem 1 enables the interpretation of a type theory with the corresponding type formers
in our cwf. The initial context is constructed by discarding the canonical choice of lcc structure
of C and adjoining new canonical lcc structure. This structure satisfies only the equations that
follow from the lcc axioms, so this construction can be understood as making C maximally
incoherent. The initial context is equivalent to C, so that all constructions in the empty context
can be transported back into C.

The existence of comprehensions follows from the following lemma, whose 2-categorical
content (compare [BKP89]) is also the main ingredient in our solution to the coherence problem.

Lemma 1. Let � be an lcc category and let � 2 Ob � be an object. Then there is a strict
lcc functor P� : � ! �.� and a morphism v : > ! P�(�) in �.� such that for every strict
lcc functor Q : � ! � and morphism w : > ! Q(�), there is a unique strict lcc functor
R = hQ, wi : �.� ! � such that R(v) = w. Moreover, if R1, R2 : �.� ! � are (not necessarily
strict) lcc functors and � : R1P�

⇠
=) R2P� : � ! � is a natural isomorphism which is suitably

compatible with v, then there is a unique natural isomorphism : R1
⇠
=) R2 such that P� = �.

To demonstrate the use of lemma 1, we sketch the construction of dependent function types
⇧(�, ⌧) and function application App⌧

�(s, t). The pullback functor �⇤ : � ! �/� is lcc and thus
corresponds to a strict lcc functor (�⇤)s by variability. Together with the diagonal � ! � ⇥ �,
it induces a strict lcc functor D� : �.� ! �/� by the universal property of �.�. We then define
⇧(�, ⌧) = ⇧�(D�(⌧)), where ⇧� : �/� ! � denotes the right adjoint to �⇤.

Now if s : > ! ⇧(�, ⌧) and t : > ! �, it is straightforward to produce a term of type
t⇤(D�(⌧)), but we need a term of type t(⌧), where t = hId�, ti : �.� ! �. There is a canonical
isomorphism t⇤ � D�

⇠
=) t which is constructed using lemma 1 from the ismorphism t⇤ � �⇤ ⇠

=)
Id� : � ! �. We may thus define

App⌧
�(s, t) : > �! t⇤(D�(⌧))

⇠�! t(⌧),

which has the appropriate type.

References

[BKP89] R. Blackwell, G.M. Kelly, and A.J. Power. Two-dimensional monad theory. Journal of Pure
and Applied Algebra, 59:1–41, 1989.

[CD14] P. Clairambault and P. Dybjer. The biequivalence of locally cartesian closed categories and
Martin-Löf type theories. Mathematical Structures in Computer Science, 24(6):e240606, 2014.

[CGH14] P.-L. Curien, R. Garner, and M. Hofmann. Revisiting the categorical interpretation of de-
pendent type theory. Theoretical Computer Science, 546:99–119, 2014. Models of Interaction:
Essays in Honour of Glynn Winskel.

[Dyb96] P. Dybjer. Internal type theory. In Selected Papers from the International Workshop on
Types for Proofs and Programs, TYPES ’95, pages 120–134. Springer-Verlag, 1996.

[Kap15] Chris Kapulkin. Locally cartesian closed quasicategories from type theory. Journal of Topol-
ogy, 10, 07 2015.

[LW15] P. L. Lumsdaine and M. A. Warren. The local universes model: An overlooked coherence
construction for dependent type theories. ACM Trans. Comput. Logic, 16(3):23:1–23:31, July
2015.

[See84] R. A. G. Seely. Locally cartesian closed categories and type theory. Mathematical Proceedings
of the Cambridge Philosophical Society, 95(1):33–48, 1984.

2
29

Dependency Pairs Termination in Dependent Type
Theory Modulo Rewriting

Frédéric Blanqui12, Guillaume Genestier23, and Olivier Hermant3

1 INRIA
2 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay

3 MINES ParisTech, PSL University

We introduce a termination criterion for a large class of programs whose operational se-
mantics can be described by higher-order rewriting rules typable in the �⇧-calculus modulo
rewriting (�⇧/R for short).

�⇧/R is a system of dependent types where types are identified modulo the �-reduction
of �-calculus and rewriting rules given by the user to define not only functions but also types.
Those rewriting rules can be non-orthogonal, meaning that they can overlap or be non-linear.
An example including overlapping and a type defined by rewriting rules is the propositional
integer comparison:

symbol Prop : TYPE symbol ? : Prop symbol > : Prop
symbol Prf : Prop) TYPE symbol infix : Nat) Nat) Prop
rule Prf > �! ⇧c:Prop. Prf c) Prf c rule (s x) 0 �! ?
rule Prf ? �! ⇧c:Prop. Prf c rule 0 y �! >
rule x x �! > rule (s x) (s y) �! x y

Dependency pairs are a key concept at the core of modern automated termination provers
for first-order term rewriting systems. Arts and Giesl [2] proved that a first-order rewriting
relation terminates if and only if there are no infinite chains, that are sequences of dependency
pairs interleaved with reductions in the arguments. We extend this notion of dependency pair
to higher-order rewriting. Then we prove that, for a large class of rewriting systems R, the
combination of � and R is strongly normalizing on terms typable in �⇧/R if, there is no infinite
chain.

To do so, we first construct a model of this calculus based on an adaptation of Girard’s
reducibility candidates [5], and prove that every typable term is strongly normalizing if every
symbol of the signature is in the interpretation of its type (Adequacy lemma). We then prove
that this hypothesis is verified if there is no infinite chain.

Our criterion has been implemented in SizeChangeTool. For now, it takes as input Xtc
(used for the termination competition) or Dedukti files, but it could be easily adapted to a
subset of other languages like Agda. As far as we know, this tool is the first one to automatically
check termination in �⇧/R, which includes both higher-order rewriting and dependent types.

Definition 1 (�⇧/R). �⇧/R is the PTS �P [3], enriched by a finite signature F and a set R
of rules (�, f ~l ! r) such that FV(r) ✓ FV(l) and � is a context associating a type to every
variable of ~l. Each f 2 F has a type ⇥f and a sort sf . f is (partially) defined if it is the head
of the left-hand side of a rule.

Let ! = !� [!R where !� is the �-reduction of �-calculus and !R is the smallest
relation containing R and closed by substitution and context. The typing rules are the ones of
�P too, but the conversion is enriched with R and function symbol introduction is similar to
variable introduction.

� ` a : A A!⇤ ⇤ B � ` B : s(conv)
� ` a : B

� ` ⇥f : sf(fun)
� ` f : ⇥f

30

Dependency Pairs in Dependent Type Theory Modulo Rewriting Blanqui, Genestier and Hermant

We assume that! is locally confluent and preserves typing. For all f , we require ` ⇥f : sf .
As a � step can generate an R step, and vice versa, we cannot expect to prove the termination

of!�[!R from the termination of!� and!R. The termination of �⇧/R cannot be reduced
to the termination of the simply-typed �-calculus either because of type-level rewriting rules.

So we build a model of our calculus by interpreting types into sets of terminating terms,
adapting Girard’s candidates [5]. To do so, we assume given a well-founded order on symbols
of sort 2. This interpretation is such that if f is a function symbol of type ⇧(~x : ~T).U ~y, then
f ~x 2 JU ~yK implies xi 2 JTiK if i is an accessible position in f (accessibility is similar to the
constraint of positivity of inductive types, for rewriting; see [4] for a definition).

We then extend this definition to interpret all types, such that if T ! U , then JT K = JUK.
We use � ✏ � to denote that for all x : T in �, �(x) 2 JT K�.

Lemma 2 (Adequacy). Assuming for all f , f 2 J⇥f K, if � ` t : T and � |= �, then t� 2 JT K�.

The hypothesis “for all f , f 2 J⇥f K” can be reduced to the absence of infinite chains, as
shown by Arts and Giesl for first-order rewriting [2].

Definition 3 (Dependency pairs). Let f ~l > g ~m iff there is a rule f ~l! r 2 R, g is (partially)
defined and g ~m is a maximally applied subterm of r.

f t1 . . . tp >̃ g u1 . . . uq iff there are a dependency pair f l1 . . . li > g m1 . . . mj with i p and
j q and a substitution � such that, for all k i, tk !⇤ lk� and, for all k j, mk� = uk.

We consider a pre-order ⌫ on F compatible with typing and rewriting (ie. if g 2 ⇥f or
r ⇤ g for f ~l ! r 2 R, then f ⌫ g). R is well-structured and accessible if for every rule
(�, f ~l ! r), r is typable using only symbols smaller or equal to f and for every substitution
�, if ⇥f = ⇧~x : ~T .U , then [~x 7! ~l]� |= ~x : ~T implies � |= �.

Theorem 4. The relation! =!� [!R terminates on terms typable in �⇧/R if! is locally
confluent and preserves typing, R is well-structured and accessible, and >̃ terminates.

Following [4], accessibility can be checked, by imposing that every variable occurring in
the right-hand side of a rule is accessible in the left-hand side. Following [7], to prove that >̃
terminates, we can use Lee, Jones and Ben-Amram’s size-change termination criterion [6].

Thus, we obtain a modular criterion extending Arts and Giesl’s theorem that a rewriting
relation terminates if there are no infinite chains [2] from first-order rewriting to dependently-
typed higher-order rewriting.

This result also extends Wahlstedt’s work [7] from weak to strong normalisation. Like
Wahlstedt’s work, Agda’s termination checker [1] is designed for rules defined by constructors
pattern matching, enforcing the rewriting system to be orthogonal and every definition to be
total. Our criterion requires a much weaker condition: local confluence.

References
[1] A. Abel. foetus – Termination Checker for Simple Functional Programs. 1998
[2] T. Arts, J. Giesl. Termination of term rewriting using dependency pairs. TCS 236:133–178, 2000.
[3] H. Barendregt. Lambda calculi with types. In Handbook of logic in computer science. Volume 2.

Background: computational structures, p. 117–309. Oxford University Press, 1992.
[4] F. Blanqui. Definitions by rewriting in the calculus of constructions. MSCS 15(1):37–92, 2005.
[5] J.-Y. Girard, Y. Lafont, P. Taylor. Proofs and types. Cambridge University Press, 1988.
[6] C. S. Lee, N. Jones, A. Ben-Amram. The size-change principle for program termination. POPL’01.
[7] D. Wahlstedt. Dependent type theory with first-order parameterized data types and well-founded

recursion. PhD thesis, Chalmers University of Technology, 2007.

2 31

Weak Type Theory is Rather Strong
Simon Boulier and Théo Winterhalter

Gallinette Project-Team, Inria Nantes France

Abstract

We often put computation at the core of our theories, showing Strong Normalisation
and confluence of our calculi. Thanks to the Curry-Howard isomorphism we know that
computation corresponds to cut-elimination, or simplification of proofs. In practice it is
also useful because it allows to identify expressions such as 0+n and n. We claim however
that computation does not bring more logical power to our type theories by means of a
Coq formalisation of a translation from Extensional Type Theory to a Weak Intensional
Type Theory with axioms K and functional extensionality. Our result extends to the case
of 2-level type theories, making it relevant in the homotopy setting.

Computation. The basic computation rule is the �-reduction (where square brackets repre-
sent substitution):

(�x. t) u ⌘ t[x := u]

In dependent type theories, computation is not limited to �-reduction and includes computation
rules for eliminators of inductive types (or pattern-matching). We can also extend the notion
and think of an equational theory that includes reduction but also ⌘-rules or even more recently
in the case of Coq and Agda, definitional proof-irrelevance of propositions [3].

f ⌘ �x. f x p ⌘ (⇡1 p,⇡2 p)
S n + m ⌘ S (n + m) 0 + n ⌘ n

(x : P : Prop) ⌘ (y : P : Prop) x ⌘ ? : Unit

Weak type theories (WTT) are type theories without computation rules. Instead all of
these rules are weak, i.e., assumed as equality axioms (for the type of propositional equality).
For instance, �-reduction is represented by the following equality (where x =T y is the identity
type representing propositional equality of x and y at type T).

�, x : A ` t : B � ` u : A

� ` �(x.t, u) : (�x. t) u =B[x:=u] t[x := u]

And the same goes for other equation rules. In particular we also make explicit the �-reduction
stating that a definition id := t can be unfolded. We additionally require axioms K, functional
extensionality and more surprising congruence rules for the other binders:

� ` p : t =A t

� ` K(p) : p = reflA t

�, x : A ` p : f x = g x

� ` funext(x.p) : f = g

�, x : A ` p : B1 = B2

� ` cong⇧(x.p) : ⇧(x : A).B1 = ⇧(x : A).B2

�, x : A ` p : B1 = B2

� ` cong⌃(x.p) : ⌃(x : A).B1 = ⌃(x : A).B2

Since our goal is to prove that extensional type theory (ETT) is conservative over WTT—every
valid WTT type that is inhabited in ETT is inhabited in WTT—and since ETT proves these
axioms, we have to assume them in WTT. The axioms cong⇧ and cong⌃ do not seem to be
derivable from funext.

32

Weak Type Theory is Rather Strong Boulier, Winterhalter

Extensional Type Theory is distinguished from the usual Intensional Type Theory (ITT)
by the reflection rule

� ` e : u =A v

� ` u ⌘ v

turning any provable equality into a conversion (i.e., computation rule in some sense). ITT
trivially embeds into ETT so our result also extends to ITT to WTT.

Translating ETT to WTT. This work builds on previous work [5] of translating ETT to
ITT: the idea is to take a typing derivation in ETT and produce a translation of the term
(which was a decoration of the original term with rewriting of equalities) and a proof that it is
typable in ITT.

This whole work has been formalised in Coq [2]. We proceed in two phases. For the
first one, we take advantage of our previous formalisation by remarking that the way we deal
with conversion in the target is mainly orthogonal to the translation itself. We thus remove
conversion from the target and obtain one form of WTT with some extra axioms. For the
second translation phase we remove these axioms by realising them using K, funext, and the
necessary computation equalities, thus landing in WTT.

Homotopy. For those concerned by the use of axiom K to interpret equality, it is interesting
to remark that the translation is done in a setting general enough that it can be instantiated to
2-level type theories [1]. By 2-level type theories we mean theories equipped with two equality
types, one that is strict (with K and funext), and one that is the usual unconstrained equality
meaning that in particular it can interpret the homotopy—or even univalent—equality (or path
type).

Our translation can thus go from an extensional 2-level type theory (close in definition and
usage to Voevodsky’s Homotopy Type System [4]) to a weak 2-level type theory, that is a theory
with a strict equality but no conversion.

Conclusion. We provide a translation from ETT to WTT that shows the former is conser-
vative over the latter, thus proving that computation/conversion doesn’t add logical power to
type theory, including in a homotopy setting.

References
[1] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. Extending homotopy type theory with

strict equality. In 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, Mar-
seille, France, 2016.

[2] S. Boulier, M. Sozeau, N. Tabareau, and T. Winterhalter. Formalisation of ETT to ITT (and to
WTT), 2019. Available at https://github.com/TheoWinterhalter/ett-to-itt/tree/weak.

[3] Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. Definitional Proof-
Irrelevance without K. Proceedings of the ACM on Programming Languages, POPL 2019, Cascais,
Portugal, 2019.

[4] Vladimir Voevodsky. A simple type system with two identity types. Unpublished note, 2013.
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf.

[5] Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau. Eliminating Reflection from Type
Theory. In 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2019, Lisbonne, Portugal, 2019.

2
33

Type-theoretic modalities for synthetic (1, 1)-categories

Ulrik Buchholtz and Jonathan Weinberger

TU Darmstadt, Darmstadt, GERMANY
{buchholtz,weinberger}@mathematik.tu-darmstadt.de

It is a challenge to find a convenient type-theoretic formulation of (1, 1)-category theory. In
a recent approach inspired by the complete Segal space model of (1, 1)-categories, Riehl and
Shulman [8] devise a type theory compatible with Voevodsky’s univalence axiom yielding basic
results of (1, 1)-category theory.

We present a variation of Riehl and Shulman’s theory, extended by certain modalities in
order to derive new results in this framework. Some of these modalities first appeared in
connection with manifold-like cohesion, cf. [10]. As an example, we give an actual embedding
of categories

yA : A ,! (Aop ! Space), (1)

illustrating two new features: the opposite modality (�)op, and a categorical universe of spaces
and maps, Space.

Modalities for (truncated) simplicial spaces The intended semantics for Riehl–Shulman
is in the (1, 1)-topos of simplicial spaces, PSh1(), which is cohesive over the (1, 1)-topos of
spaces, 1Gpd. Concretely, the theory is modeled in bisimplicial sets endowed with the Reedy
model structure acting as type-theoretic model structure.

It is useful to consider as well the (non-standard) semantics in truncated simplicial spaces.
These are the (1, 1)-toposes PSh1(n) corresponding to the full subcategories n ✓ on
the k-simplices with k n. In particular, PSh1(1) is the (1, 1)-topos of reflexive graphs.
Contrary to simplicial spaces, the (1, 1)-toposes of truncated simplicial spaces are not cohesive
over 1Gpd, but they still model the discrete and codiscrete modalities of [10], because they
are 1-connected and 1-local (1, 1)-toposes. They fail to be cohesive because the left-most
adjoint ⇧ does not preserve binary products.

We show that modal discreteness, i.e. being modal with respect to the discrete modality,
does not in general coincide with categorical discreteness, by which we mean the internal notion
of discreteness used in Riehl–Shulman’s type theory (i.e. invertibility of all directed arrows in
a type). This contrasts with the situation in simplicial spaces [8, Rem. 7.5]. The following
leverages computations previously done in [2].

Theorem 1. In PSh1(1) categorical discreteness is not equivalent to modal discreteness.

We furthermore provide a characterization of the codiscrete modality of PSh1(1) as an
accessible modality, cf. [9], as follows:

Theorem 2. The codiscrete reflection in 1-truncated simplicial spaces is given by nullification
of the fibers of the inclusion 1 + 1 ,! �1.

In simplicial spaces, the shape modality computes the localization of an (1, 1)-category at
all of its morphisms. The significance of this arises in its application as the group completion
operation when applied to (1, 1)-categories with a pointed, connected space of objects.

The flat and sharp modalities both represent the core of an (1, 1)-category: For any type,
there is a codiscrete reflection, and for crisp types, there is a discrete coreflection. In addition to

34

Type-theoretic modalities Buchholtz and Weinberger

the modalities from cohesion, we introduce another modality for the opposite type as previously
announced in [1], coming from the order-reversing involution of .

Defining the opposite modality in a fruitful way turns out to be somewhat subtle. Using the
modalities not only calls for additional definitional equalities, but one also requires a generaliza-
tion of the preexisting extension types from the Riehl–Shulman framework, e.g. when defining
homAop uniformly. Overall, we give an extension of Riehl–Shulman type theory extended with
cohesive modalities, the opposite type modality, and a notion of generalized extension types.

Categorical universes Our desired application (1) uses the universe Space. This can be
defined internally by embedding simplicial spaces in cubical spaces (modeled on the full sub-
category of posets on the powers of {0 < 1}). There we can leverage the fact that �1 is a tiny
object, and then use the technique of [6] to define the universe Space as announced in [3].

To derive (1) from the version of the Yoneda embedding in [8] we also need to postulate
the directed univalence axiom for Space. This holds in the intended semantics [4], and it can
plausibly be given a constructive meaning by reusing the glue types of [5] in a new way [7].

From [3] we have further universes, including Dist[Space], Cat, and Dist[Cat]. We speculate
on how to formulate the corresponding directed univalence axioms, which is not obvious because
just looking at the 1-simplices is not su�cient in the case of distributors.

We do not claim any meta-theoretical properties (canonicity, decidable equality, etc.) of our
extended type theory. However, by recent work of [11] one would be able to get universes à la
Russell in (a type-theoretic model category presenting) cubical spaces.

References

[1] Ulrik Buchholtz and Jonathan Weinberger, A mode theory for a type theory of cubical and simplicial
types, 2018, Presentation at EUTYPES Working group meeting, Aarhus.

[2] , (Truncated) simplicial models of type theory, 2018, Presentation at Workshop on Homo-
topy Type Theory/Univalent Foundations, Oxford.

[3] , Universes in a type theory for synthetic 1-category theory, 2018, Presentation at EU-
TYPES Working group meeting, Aarhus.

[4] Evan Cavallo, Emily Riehl, and Christian Sattler, On the directed univalence axiom, 2018, Talk
at AMS Special Session on Homotopy Type Theory, Joint Mathematics Meething, San Diego.

[5] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg, Cubical type theory: a con-
structive interpretation of the univalence axiom, 21st International Conference on Types for Proofs
and Programs (TYPES 2015), LIPIcs. Leibniz Int. Proc. Inform., Schloss Dagstuhl. Leibniz-Zent.
Inform., Wadern, 2018.

[6] Dan Licata, Ian Orton, Andy Pitts, and Bas Spitters, Internal Universes in Models of Homotopy
Type Theory, ArXiv e-prints (2018).

[7] Dan Licata and Matthew Weaver, Directed univalence in bicubical directed type theory, 2018,
Presentation at MURI Meeting, Pittsburgh.

[8] Emily Riehl and Michael Shulman, A type theory for synthetic 1-categories, Higher Structures 1
(2017), no. 1, 147–224.

[9] Egbert Rijke, Michael Shulman, and Bas Spitters, Modalities in homotopy type theory, ArXiv
e-prints (2017), arXiv:1706.07526.

[10] Michael Shulman, Brouwer’s fixed-point theorem in real-cohesive homotopy type theory, Mathe-
matical Structures in Computer Science 28 (2018), no. 6, 856941.

[11] Michael Shulman, All (1, 1)-toposes have strict univalent universes, arXiv e-prints (2019),
arXiv:1904.07004.

2
35

फ़JMMFO CJCSBUJPOT BOE UIF 3FFEZ DPOTUSVDUJPO
1JFSSF $BHOF 	KPJOU XPSL XJUI 1��"� .FMMJ¨T

3' 6OJWFSTJU© 1BSJT %JEFSPU ۗ 1BSJT �
cagne@irif.fr

य़F (SPUIFOEJFDL DPOTUSVDUJPO JT BO VCJRVJUPVT UPPM UIBU UBLFT BT JOQVU B 	QTFVEP
 GVODUPS
BPQ ޛ Cat WBMVFE JO UIF ��DBUFHPSZ PG 	TNBMM
 DBUFHPSJFT BOE QSPEVDFT B (SPUIFOEJFDL CSBUJPO
E	
 ޛ B� &WFO CF॒FS FWFSZ (SPUIFOEJFDL CSBUJPO DPNFT GSPN TVDI B QTFVEP GVODUPS JO BO
FTTFOUJBMMZ VOJRVF XBZ� *G XF SFTUSJDU PVS B॒FOUJPO UP UIF QTFVEP GVODUPST TVDI UIBU 	੨
 IBT B MFॏ
BEKPJOU GPS FWFSZ NBQ ੨ PG B UIFO UIF QSFWJPVT DPSSFTQPOEFODF SFTUSJDUT UP (SPUIFOEJFDL CJCSBUJPOT�
5P Y OPUBUJPOT TUBSUJOH GSPN B (SPUIFOEJFDL CJCSBUJPO E ޛ B UIF 	FTTFOUJBMMZ VOJRVF
 QTFVEP
GVODUPS JU DPNFT GSPN XJMM CF EFOPUFE CZ� ޭ E 	੨ ޛ ਼
 ޭ 	੨ߜ E਼ ޛ E

8IFOFWFS ੨ߜ IBT B MFॏ BEKPJOU EFOPUF JU ੨�� .PTU UZQF�UIFPSFUJD DPOTUSVDUJPOT OE B OBUVSBM TFNBOUJDT
JO TVDI TUSVDUVSFT STU FYQMPSFE CZ -BXWFSF VOEFS UIF OBNF ۠IZQFSEPDUSJOFT �ۡ &YUFOTJPOBM JEFOUJUZ
UZQFT MB .BSUJO�-¶G GPS FYBNQMF BSF FBTJMZ EFTDSJCFE BT ಉ�	ࡧ
 ߎ E� XIFSF ࡧ JT UFSNJOBM JO E
BOE ಉ ޛ � JT UIF EJBHPOBM PG JO B� *OUFOUJPOBM JEFOUJUZ UZQFT IPXFWFS BSF OPU RVJUF XFMM
FODPNQBTTFE CZ UIJT GSBNFXPSL� य़F MBDL PG SFठFDUJPO SVMF GPS TVDI JEFOUJUZ UZQFT JOWPMWFT XFBLFS
TUSVDUVSFT UP JOUFSQSFU UIFN� 8JUI UIJT JODFOUJWF JO NJOE XF EFTJHO JO UIJT XPSL BO IPNPUPQJDBM
WFSTJPO PG UIF (SPUIFOEJFDL DPOTUSVDUJPO UIBU BMMPXT UP FRVJQ E	
 XJUI B फ़JMMFO NPEFM TUSVDUVSF
XIFOFWFS UIF QTFVEP GVODUPS BPQ ޛ Cat TUBSUT GSPN B NPEFM DBUFHPSZ BOE JT WBMVFE JO NPEFM
DBUFHPSJFT JO TVDI B XBZ UIBU 	੨
 JT B फ़JMMFO SJHIU BEKPJOU GPS FWFSZ NBQ ੨ PG B QSPWJEFE UIBU
CFIBWFT OJDFMZ FOPVHI BDDPSEJOH UP UIJT IPNPUPQJDBM DPOUFOU�

.PSF QSFDJTFMZ MFU VT EFOF B JMMFOࡊ CJटCSBUJPO BT B (SPUIFOEJFDL CJCSBUJPO E ޛ B XJUI
NPEFM TUSVDUVSFT PO CPUI E BOE B TVDI UIBU

ۦ QSFTFSWFT CSBUJPOT DPCSBUJPOT BOE XFBL FRVJWBMFODFT

ۦ GPS FBDI PCKFDU PG B UIF NPSQIJTNT PG UIF CFS E UIBU BSF CSBUJPOT DPCSBUJPOT BOE XFBL
FRVJWBMFODFT PG E GPSNT B NPEFM TUSVDUVSF PO E�

य़FO XF FTUBCMJTI UIF GPMMPXJOH�

�FPSFNࢊ -FU E ޛ B CF B (SPUIFOEJFDL CJटCSBUJPO TVDI UIBU B BOE FBDI PG UIF टCFST E ߎ B

IBWF NPEFM TUSVDUVSFT� 1SPWJEFE UIBU UIF BEKVODUJPOT 	੨� ੨ߜ
 BSF JMMFOࡊ GPS BMM NBQT ੨ PG B UIF GVODUPS
JT B JMMFOࡊ CJटCSBUJPO JG BOE POMZ JG UIF GPMMPXJOH DPOEJUJPOT BSF NFU�

	I$PO
 UIF GVODUPS ੨� QSFTFSWFT BOE SFठFDUT XFBL FRVJWBMFODFT XIFOFWFS ੨ JT BO BDZDMJD DPटCSBUJPO� EVBMMZ
UIF GVODUPS ੩ߜ QSFTFSWFT BOE SFठFDUT XFBL FRVJWBMFODFT XIFOFWFS ੩ JT BO BDZDMJD टCSBUJPO

	I#$
 GPS FWFSZ DPNNVUBUJWF TRVBSF PG B BT GPMMPXT
ී ਼੨ී ੩ ੨

੩ී
XJUI ੨ ੨ී BDZDMJD DPटCSBUJPOT BOE ੩ ੩ී BDZDMJD टCSBUJPOT UIF JOEVDFE NBUF OBUVSBM USBOTGPSNBUJPO	੨ී
�੩ߜ ޛ 	੩ී
�੨ߜ JT QPJOUXJTF B XFBL FRVJWBMFODF JO UIF टCFS Eී �

36

फ़JMMFO CJCSBUJPOT BOE UIF 3FFEZ DPOTUSVDUJPO $BHOF

" QSPNJOFOU JMMVTUSBUJPO BOE B TFDPOE TPVSDF PG JOTQJSBUJPO JT UIF SFDPOTUSVDUJPO UISPVHI UIJT
UIFPSFN PG UIF 3FFEZ NPEFM TUSVDUVSF PO UIF DBUFHPSZ 'VO 	RM
 PG EJBHSBNT PG TIBQF R 	B 3FFEZ
DBUFHPSZ
 JO B NPEFM DBUFHPSZ M� *O UIF JOJUJBM 	VOQVCMJTIFE
 XPSL PG ,BO JOTQJSFE CZ 3FFEZT XPSL
PO TJNQMJDJBM PCKFDUT JO B NPEFM DBUFHPSZ UIF XFBL FRVJWBMFODFT PG UIJT NPEFM TUSVDUVSF BSF HJWFO
QPJOUXJTF BOE UIF CSBUJPOT BOE DPCSBUJPOT BSF QSFTFOUFE UISPVHI UIF TP�DBMMFE MBUDIJOH BOE NBUDIJOH
TQBDFT� य़F VTVBM QSPPG HPFT UISPVHI B USBOTOJUF JOEVDUJPO PO UIF EFHSFF PG UIF PCKFDUT JO UIF 3FFEZ
DBUFHPSZ R BOE UIF JOEVDUJPO TUFQ GPS TVDDFTTPS DBSEJOBMT JT RVJUF UFDIOJDBM� य़F QSFWJPVT SFTVMU PO
फ़JMMFO CJCSBUJPOT BMMPXT GPS B TJNQMFS FYQMBOBUJPO PG UIJT TVDDFTTPS TUFQ BOE UIF VTF PG UIFTF MBUDIJOH
BOE NBUDIJOH TQBDFT� JG POF EFOPUFT R UIF GVMM TVCDBUFHPSZ PG R TQBOOFE CZ UIF PCKFDUT PG EFHSFF
TUSJDUMZ MFTT UIBO UIFO UIF SFTUSJDUJPO GVODUPS

'VO ොR��Mෝ ޛ 'VO ොRMෝ
JT B (SPUIFOEJFDL CJCSBUJPO UIBU NFFUT UIF IZQPUIFTJT PG UIF UIFPSFN JG XF FRVJQ UIF CBTF 'VO ොRMෝ
XJUI UIF 3FFEZ NPEFM TUSVDUVSF� य़F DPODMVTJPO PG UIF UIFPSFN HJWFT B NPEFM TUSVDUVSF PO UIF UPUBM
DBUFHPSZ 'VO ොR��Mෝ XIJDI UVSOT PVU UP CF UIF 3FFEZ NPEFM TUSVDUVSF POF MFWFM IJHIFS� य़F MBUDIJOH
BOE NBUDIJOH TQBDFT FNFSHF OBUVSBMMZ BT JOJUJBM BOE OBM PCKFDUT PG UIF CFST BOE UIF 	DP
DBSUFTJBO HBQT
PG UIF GPSN ޛ �ੇੇ BOE ࡗ ޛ VTFE JO ,BOT PSJHJOBM EFOJUJPO PG UIF 	DP
CSBUJPOT
DPNF OBUVSBMMZ BT GBDUPSJ[BUJPOT PG ޛ JO UIF CFST UISPVHI UIF 	DP
DBSUFTJBO NPSQIJTNT� य़FTF
SFNBSLT PO UIF 3FFEZ DPOTUSVDUJPO BMTP BQQMZ UP UIF WBSJPVT HFOFSBMJ[BUJPOT PG 3FFEZ DBUFHPSJFT BOE
UIF BTTPDJBUFE DPOTUSVDUJPOT� #FSHFS�.PFSEJKLT <#.��> $JTJOTLJT <$JT��> BOE 4IVMNBOT <4IV��>�

*O UIJT UBML * XJMM QSFDJTFMZ TUBUF UIF UIFPSFN BOE USZ UP HJWF B GFFMJOH PG XIBU NBLFT JU UJDL JO PSEFS
UP TIFE MJHIU PO UIF 3FFEZ DPOTUSVDUJPO� "T BO PQFOJOH * XJMM TLFUDI UIF TVSQSJTJOH CFIBWJPS PG UIF
IPNPUPQZ MPDBMJ[BUJPO PG फ़JMMFO CJCSBUJPOT�

3FGFSFODFT
<#.��> $MFNFOT #FSHFS BOE *FLF .PFSEJKL� 0O BO FYUFOTJPO PG UIF OPUJPO PG 3FFEZ DBUFHPSZ� .BUIFNBUJTDIF

;FJUTDISJࡄ ���	���
����ۗ���� �����
<$JT��> %FOJT�$IBSMFT $JTJOTLJ� -FT QS©GBJTDFBVY DPNNF NPE¨MFT EFT UZQFT EڣIPNPUPQJF� 4PDJ©U© NBUI©NBUJRVF EF

'SBODF �����
<4IV��> .JDIBFM 4IVMNBO� 3FFEZ DBUFHPSJFT BOE UIFJS HFOFSBMJ[BUJPOT +VMZ ����� BSYJW�����������W��

� 37

*�i2;Q`B2b rBi? 6�KBHB2b,
lMBivT2/- aBKTHv hvT2/- .2T2M/2MiHv hvT2/

U1ti2M/2/ �#bi`�+iV

aBKQM *�bi2HH�M- SB2``2 *H�B`�K#�mHi- S2i2` .v#D2`

�M BKTQ`i�Mi T�`i Q7 +�i2;Q`B+�H HQ;B+ Bb iQ 2bi�#HBb? +Q``2bTQM/2M+2b #2@
ir22M H�M;m�;2b U7`QK HQ;B+V �M/ +�i2;Q`B+�H KQ/2HbX 6Q` 2t�KTH2- BM i?2B`
#QQF ǳAMi`Q/m+iBQM iQ ?B;?2` Q`/2` +�i2;Q`B+�H HQ;B+Ǵ (d) G�K#2F �M/ a+Qii T`Qp2
2[mBp�H2M+2b #2ir22M ivT2/ H�K#/� +�H+mHB �M/ +�`i2bB�M +HQb2/ +�i2;Q`B2b- #2@
ir22M mMivT2/ H�K#/� +�H+mHB �M/ *@KQMQB/b- �M/ #2ir22M BMimBiBQMBbiB+ ivT2
i?2Q`B2b �M/ iQTQb2bX G�K#2F �M/ a+QiiǶb BMimBiBQMBbiB+ ivT2 i?2Q`B2b �`2 BM@
imBiBQMBbiB+ p2`bBQMb Q7 *?m`+?Ƕb bBKTH2 i?2Q`v Q7 ivT2b- r?B+? b?QmH/ MQi #2
+QM7mb2/ rBi? J�`iBM@Gƺ7Ƕb BMimBiBQMBbiB+ ivT2 i?2Q`B2bX AMi2`2biBM;Hv- BM i?2
T`27�+2 Q7 i?2B` #QQF (d- T pBBB) G�K#2F �M/ a+Qii 2tT`2bb � /2bB`2 iQ BM+Hm/2 �
`2bmHi +QM+2`MBM; i?2 H�ii2` iQQ,

q2 �HbQ +H�BK i?�i BMimBiBQMBbiB+ ivT2 i?2Q`B2b �M/ iQTQb2b �`2
+HQb2Hv `2H�i2/- BM �b Km+? �b i?2`2 Bb � T�B` Q7 �/DQBMi 7mM+iQ`b
#2ir22M i?2B` `2bT2+iBp2 +�i2;Q`B2bX h?Bb Bb rQ`F2/ Qmi Qmi BM S�`i
AAX h?2 `2H�iBQMb?BT #2ir22M J�`iBM@Gƺ7 ivT2 i?2Q`B2b �M/ HQ+�HHv
+�`i2bB�M +HQb2/ +�i2;Q`B2b r�b 2bi�#HBb?2/ iQQ `2+2MiHv U#v _Q#2`i
a22HvV iQ #2 i`2�i2/ ?2`2X

a22HvǶb b2KBM�H T�T2` (N) +H�BKb iQ T`Qp2 i?�i � +�i2;Q`v Q7 J�`iBM@Gƺ7 ivT2
i?2Q`B2b Bb 2[mBp�H2Mi iQ � +�i2;Q`v Q7 HQ+�HHv +�`i2bB�M +HQb2/ +�i2;Q`B2b UH+++bVX
>Qr2p2`- ?Bb `2bmHi `2HB2b QM �M BMi2`T`2i�iBQM Q7 bm#biBimiBQM �b TmHH#�+F- �M/
i?2b2 �`2 QMHv /2}M2/ mT iQ BbQKQ`T?BbKX Ai Bb MQi +H2�` ?Qr iQ +?QQb2 TmHH#�+Fb
BM bm+? � r�v i?�i i?2 bi`B+i H�rb 7Q` bm#biBimiBQM �`2 b�iBb}2/X h?Bb +Q?2`2M+2
T`Q#H2K r�b B/2MiB}2/ �M/ bQHp2/ #v *m`B2M (9) �M/ >Q7K�MM (e) r?Q T`QpB/2/
�Hi2`M�iBp2 K2i?Q/b 7Q` BMi2`T`2iBM; J�`iBM@Gƺ7 ivT2 i?2Q`v BM H+++b Ub22 �HbQ
(8)VX "v mbBM; >Q7K�MMǶb BMi2`T`2i�iBQM *H�B`�K#�mHi �M/ .v#D2` (j) +QmH/ i?2M
b?Qr i?�i i?2`2 Bb �M �+im�H #B2[mBp�H2M+2 Q7 k@+�i2;Q`B2bX

AM i?Bb T�T2` (k) Ub22 �`sBp,RNy9Xyy3kd- �T`BH kyRNV r2 �bF Qm`b2Hp2b
r?�i Bi rQmH/ i�F2 iQ �// i?2 KBbbBM; +?�Ti2` QM J�`iBM@Gƺ7 ivT2 i?2Q`v �M/
Bib +Q``2bTQM/2M+2 rBi? H+++b iQ i?2 #QQF #v G�K#2F �M/ a+QiiX

6B`bi r2 rQmH/ M22/ iQ �// bQK2 K�i2`B�H iQ S�`i y BM i?2 #QQF QM ǳAM@
i`Q/m+iBQM iQ +�i2;Q`v i?2Q`vǴ- BM+Hm/BM; BMi`Q/m+iBQMb iQ H+++b- k@+�i2;Q`B2b-
#B+�i2;Q`B2b- Tb2m/Q7mM+iQ`b- �M/ #B2[mBp�H2M+2bX "mi KQ`2 T`Q7QmM/Hv- Qm`
#B2[mBp�H2M+2 i?2Q`2K /Bz2`b 7`QK G�K#2F �M/ a+QiiǶb U�M/ a22HvǶbV 2[mBp�H2M+2
i?2Q`2Kb BM BKTQ`i�Mi `2bT2+ib- bBM+2 r2 `2TH�+2 a22HvǶb +�i2;Q`v Q7 J�`iBM@Gƺ7
i?2Q`B2b #v � k@+�i2;Q`v Q7 +�i2;Q`B2b rBi? 7�KBHB2b U+r7bV- rBi? 2ti`� bi`m+im`2
7Q` ivT2 7Q`K2`b Iext, Σ, Π- �M/ Tb2m/Q +r7@KQ`T?BbKb r?B+? T`2b2`p2 i?2 bi`m+@

R
38

im`2 mT iQ BbQKQ`T?BbKX h?mb +r7b rBi? 2ti`� bi`m+im`2 `2TH�+2 J�`iBM@Gƺ7
i?2Q`B2b QM i?2 ǳbvMi�+iB+Ǵ bB/2 Q7 i?2 #B2[mBp�H2M+2X

h?Bb bivH2 Q7 T`2b2MiBM; i?2 +Q``2bTQM/2M+2 #2ir22M ǳbvMi�tǴ �M/ ǳb2K�M@
iB+bǴ 7Q` J�`iBM@Gƺ7Ƕb /2T2M/2Mi ivT2 i?2Q`v �TTHB2b 2[m�HHv r2HH iQ i?2 bBKTHv
ivT2/ H�K#/� +�H+mHmb �M/ i?2 mMivT2/ H�K#/� +�H+mHmb- T`QpB/2/ r2 +QMbB/2`
bm#+�i2;Q`B2b Q7 bBKTHv ivT2/ +r7b Ub+r7bV- r?2`2 ivT2b /Q MQi /2T2M/ QM p�`B@
�#H2b- �M/ Q7 mMivT2/ +r7b Um+r7bV- r?2`2 i?2`2 Bb QMHv QM2 ivT2X �b 7Q` 7mHH +r7b
r2 M22/ iQ T`QpB/2 2ti`� bi`m+im`2 7Q` KQ/2HHBM; λ@�#bi`�+iBQM �M/ �TTHB+�iBQM
BM i?2 mMivT2/ λ@+�H+mHmb �M/ 7Q` KQ/2HHBM; ivT2 7Q`K2`b BM i?2 bBKTHv ivT2/
λ@+�H+mHmbX

h?Bb bm;;2bib i?�i r2 Qm;?i iQ `2r`Bi2 G�K#2F �M/ a+QiiǶb S�`i A ǳ*�`i2bB�M
+HQb2/ +�i2;Q`B2b �M/ λ@+�H+mHmbǴ BM � r�v r?B+? ?�`KQMBx2b rBi? Qm` T`2b2M@
i�iBQM Q7 i?2 #B2[mBp�H2M+2 #2ir22M J�`iBM@Gƺ7 ivT2 i?2Q`v �M/ H+++bX

*�i2;Q`B2b rB7? 7�KBHB2b U+r7bV KQ/2H i?2 KQbi #�bB+ `mH2b Q7 /2T2M/2Mi ivT2
i?2Q`v- i?Qb2 r?B+? /2�H rBi? bm#biBimiBQM- +QMi2ti 7Q`K�iBQM- �bbmKTiBQM- �M/
;2M2`�H `2�bQMBM; �#Qmi 2[m�HBivX � F2v 72�im`2 Q7 +r7b Bb i?�i i?2 /2}MBiBQM
+�M #2 mM7QH/2/ iQ vB2H/ � ;2M2`�HBx2/ �H;2#`�B+ i?2Q`v BM *�`iK2HHǶb b2Mb2 (R)X
�b bm+? Bi bm;;2bib � H�M;m�;2 Q7 +r7@+QK#BM�iQ`b r?B+? +�M #2 mb2/ 7Q` i?2
+QMbi`m+iBQM Q7 BMBiB�H +r7b UrBi? 2ti`� bi`m+im`2 7Q` KQ/2HHBM; ivT2 7Q`K2`bVX

q2 T`Qp2 b2p2`�H +Q``2bTQM/2M+2 i?2Q`2Kb #2ir22M ǳbvMi�tǴ BM i?2 ;mBb2
Q7 � MmK#2` Q7 +r7@#�b2/ MQiBQMb �M/ ǳb2K�MiB+bǴ BM i?2 ;mBb2 Q7 bQK2 #�bB+
MQiBQMb 7`QK +�i2;Q`v i?2Q`vX aQK2 Q7 Qm` i?2Q`2Kb `2[mB`2 ǳ+QMi2tim�HBivǴ- �
MQiBQM BMi`Q/m+2/ #v *�`iK2HH (R) 7Q` ?Bb +QMi2tim�H +�i2;Q`B2bX Pi?2`b `2[mB`2
ǳ/2KQ+`�+vǴ- � MQiBQM BMi`Q/m+2/ #v *H�B`�K#�mHi �M/ .v#D2` 7Q` i?2B` #B2[mBp@
�H2M+2 i?2Q`2KbX JQ`2Qp2`- Qm` 2[mBp�H2M+2 i?2Q`2Kb `2[mB`2 bi`B+i T`2b2`p�iBQM
Q7 +?Qb2M +r7@bi`m+im`2- r?BH2 Qm` #B2[mBp�H2M+2 i?2Q`2Kb QMHv `2[mB`2 T`2b2`@
p�iBQM Q7 +r7@bi`m+im`2 mT iQ BbQKQ`T?BbKX AM i?Bb r�v r2 +�M `2H�i2 � MmK#2`
Q7 MQiBQMb 7`QK +�i2;Q`B+�H HQ;B+ bm+? �b +�`i2bB�M QT2`�/b- G�rp2`2Ƕb �H;2#`�B+
i?2Q`B2b- P#imƈQrB+xǶ �H;2#`�B+ i?2Q`B2b Q7 ivT2 λ@βη (3)- +�i2;Q`B2b rBi? }MBi2
T`Q/m+ib �M/ HBKBib- +++b- �M/ H+++b- iQ i?2 +Q``2bTQM/BM; +r7@#�b2/ MQiBQMbX
AM �//BiBQM iQ i?Bb r2 /Bb+mbb /Bz2`2Mi +QMbi`m+iBQMb Q7 BMBiB�H m+r7b- b+r7b �M/
+r7b UrBi? 2ti`� bi`m+im`2V rBi? �M/ rBi?Qmi 2tTHB+Bi bm#biBimiBQMbX

h?2 Tm`TQb2 Q7 Qm` rQ`F Bb MQi bQ Km+? iQ T`Qp2 M2r `2bmHib- #mi iQ bm;;2bi �
M2r r�v iQ Q`;�MBx2 #�bB+ +Q``2bTQM/2M+2 i?2Q`2Kb BM +�i2;Q`B+�H HQ;B+- r?2`2
i?2 m+r7@b+r7@+r7@b2[m2M+2 T`QpB/2b � bKQQi? T`Q;`2bbBQM Q7 i?2 +�i2;Q`B+�H
KQ/2H i?2Q`v Q7 mMivT2/- bBKTHv ivT2/- �M/ /2T2M/2MiHv ivT2/ λ@+�H+mHBX q2
rBHH �HbQ ?B;?HB;?i bQK2 Q7 i?2 bm#iH2iB2b r?B+? �`Bb2 r?2M `2H�iBM; bvMi�+iB+ �M/
b2K�MiB+ MQiBQMbX �MQi?2` BKTQ`i�Mi 72�im`2 Bb i?�i i?2 +Q``2bTQM/2M+2b #2@
ir22M HQ;B+�H i?2Q`B2b �M/ +�i2;Q`B+�H MQiBQMb �`2 MQr bTHBi BMiQ irQ T?�b2b, UBV
2[mBp�H2M+2b �M/ #B2[mBp�H2M+2b #2ir22M +r7@#�b2/ MQiBQMb �M/ #�bB+ +�i2;Q`B@
+�H MQiBQMb- �M/ UBBV i?2 +QMbi`m+iBQMb Q7 BMBiB�H +r7@#�b2/ MQiBQMbX h?Bb vB2H/b
�M ǳ�#bi`�+i bvMi�tǴ T2`bT2+iBp2 Q7 7Q`K�H bvbi2Kb- r?2`2 bT2+B}+ 7Q`K�HBbKb
7Q` mMivT2/- bBKTHv ivT2/ �M/ /2T2M/2MiHv ivT2/ λ@+�H+mHB �`2 BMbi�M+2b Q7 i?2
`2bT2+iBp2 BbQKQ`T?BbK +H�bb2b Q7 BMBiB�H +r7@#�b2/ MQiBQMbX h?Bb Bb T�`iB+mH�`Hv
BKTQ`i�Mi 7Q` /2T2M/2Mi ivT2b �M/ J�`iBM@Gƺ7 ivT2 i?2Q`v- bBM+2 /Bz2`2Mi �m@
i?Q`b K�F2 /Bz2`2Mi +?QB+2b BM i?2 2t�+i 7Q`KmH�iBQM Q7 i?2 bvMi�t �M/ BM72`2M+2
`mH2bX "2BM; BMBiB�H BM i?2 �TT`QT`B�i2 +�i2;Q`v Q7 +r7b Bb � bmBi�#H2 +Q``2+iM2bb
+`Bi2`BQM 7Q` i?2b2 7Q`KmH�iBQMbX

k
39

_272`2M+2b
(R) CQ?M *�`iK2HHX :2M2`�HBx2/ �H;2#`�B+ i?2Q`B2b �M/ +QMi2tim�H +�i2;Q`B2bX

�MM�Hb Q7 Sm`2 �M/ �TTHB2/ GQ;B+- jk,kyNĜk9j- RN3eX

(k) aBKQM *�bi2HH�M- SB2``2 *H�B`�K#�mHi- �M/ S2i2` .v#D2`X *�i2@
;Q`B2b rBi? 7�KBHB2b, lMBivT2/- bBKTHv ivT2/- �M/ /2T2M/2MiHv ivT2/X
�`sBp,RNy9Xyy3kd- �T`BH kyRNX

(j) SB2``2 *H�B`�K#�mHi �M/ S2i2` .v#D2`X h?2 #B2[mBp�H2M+2 Q7 HQ+�HHv +�`i2bB�M
+HQb2/ +�i2;Q`B2b �M/ J�`iBM@Gƺ7 ivT2 i?2Q`B2bX J�i?2K�iB+�H ai`m+im`2b BM
*QKTmi2` a+B2M+2- k9UeV- kyR9X

(9) SB2``2@GQmBb *m`B2MX am#biBimiBQM mT iQ BbQKQ`T?BbKX 6mM/�K2Mi� AM7Q`@
K�iB+�2- RNUR-kV,8RĜ3e- RNNjX

(8) SB2``2@GQmBb *m`B2M- _B+?�`/ :�`M2`- �M/ J�`iBM >Q7K�MMX _2pBbBiBM; i?2
+�i2;Q`B+�H BMi2`T`2i�iBQM Q7 /2T2M/2Mi ivT2 i?2Q`vX h?2Q`2iB+�H *QKTmi2`
a+B2M+2- 89e,NNĜRRN- kyR9X

(e) J�`iBM >Q7K�MMX PM i?2 BMi2`T`2i�iBQM Q7 ivT2 i?2Q`v BM HQ+�HHv +�`i2bB�M
+HQb2/ +�i2;Q`B2bX AM G2bx2F S�+?QHbFB �M/ C2`xv hBm`vM- 2/BiQ`b- *aG- pQH@
mK2 Njj Q7 G2+im`2 LQi2b BM *QKTmi2` a+B2M+2X aT`BM;2`- RNN9X

(d) CX G�K#2F �M/ SX CX a+QiiX AMi`Q/m+iBQM iQ ?B;?2` Q`/2` +�i2;Q`B+�H HQ;B+X
LmK#2` d BM *�K#`B/;2 bim/B2b BM �/p�M+2/ K�i?2K�iB+bX *�K#`B/;2 lMB@
p2`bBiv S`2bb- RN3eX

(3) �/�K P#imƈQrB+xX 6mM+iQ`B�H b2K�MiB+b Q7 i?2 ivT2 7`22 H�K#/�@#2i�2i�
+�H+mHmbX AM 6QmM/�iBQMb Q7 *QKTmi�iBQM h?2Q`v- T�;2b jykĜjyd- RNddX

(N) _X �X :X a22HvX GQ+�HHv +�`i2bB�M +HQb2/ +�i2;Q`B2b �M/ ivT2 i?2Q`vX S`Q@
+22/BM;b Q7 i?2 *�K#`B/;2 S?BHQbQT?B+�H aQ+B2iv- N8,jjĜ93- RN39X

j
40

Internally Parametric Cubical Type Theory⇤

Evan Cavallo and Robert Harper

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
ecavallo@cs.cmu.edu, rwh@cs.cmu.edu

A polymorphic function—one that takes a type as an argument—is said to be parametric
when its behavior is uniform in that type argument [Str67]. Reynolds uncovered a precise for-
mulation of this property, one that is satisfied by polymorphic functions in many type systems:
a function is polymorphic when it acts on relations [Rey83]. For example, if F is a function
of type 8X. X ! X, then it is parametric when for any relation R ✓ A ⇥ B, if R(a, b) holds,
then so too does R(F [A](a), F [B](b)). Among the theorems that follow from parametricity are
many naturality principles, popularly known as “theorems for free” [Wad89].

Reynolds’ parametricity is denotational : to be more precise, a function is parametric when
its denotation acts on semantic relations. To show that polymorphic functions in the typed
�-calculus are parametric, Reynolds defines a relational model of the system, the existence of
which implies that the denotation of any term also acts on relations. Especially with the advent
of dependent type theory, however, we know that many denotational concepts have operational
equivalents. This raises a natural question: can parametricity be exposed within type theory?

That question has recently been explored to great e↵ect. Bernardy, Jansson, and Paterson
observe that in a dependent type system, the relational interpretations of types and terms can
be defined within the same system [BJP10]. This is a partial internalization: the interpretation
function itself is external. Full internalization is achieved by Bernardy and Moulin, who intro-
duce a type former that computes relational interpretations [BM12]. They have simplified their
initial theory by the use of so-called colors [BM13, BCM15], while Nuyts, Vezzosi, and Devriese
have developed a related theory, using modalities to capture distinctions between variables used
in parametric and ad-hoc positions [NVD17].

We extend internal parametricity to cubical type theory, a theory of proof-relevant equality
[CCHM15, AFH18]. The integration of the two is abetted by strong similarities between them,
asevidenced by cross-pollination in their historical development. Cubical type theory adds a
context of path dimensions : a term M 2 A [, x] varying in a dimension x is a path, or
proof-relevant equality, connecting endpoints Mh0/xi 2 Ah0/xi [] and Mh1/xi 2 Ah1/xi []
given by substitution with constants 0, 1. Path equality enjoys strong extensionality properties,
including function extensionality and Voevodsky’s univalence axiom, which identifies paths be-
tween types with equivalences. In parallel, internal parametricity contributes a context � of
bridge dimensions (the aforementioned colors): a bridge of types A type [�, x |] is a relation
between its endpoints Ah0/xi and Ah1/xi, while a term M 2 A [�, x |] is evidence that
Mh0/xi is related to Mh1/xi by A. In place of function extensionality, we have a characteri-
zation of bridges at function type as functions from bridges to bridges; in place of univalence, the
identification of bridges between types with type-valued relations, a principle we call relativity.

By extending internal parametricity to cubical type theory, we can consider the parametric-
ity properties of higher inductive types : inductive types with higher-dimensional generators.
For example, the suspension susp(A) of a type A is generated by two elements north, south and
a path merid(a) from north to south for every a : A. Using internal parametricity, we show
that the functions of type (X:U) ! susp(X) ! susp(X) (where U is a universe of types) are

⇤This abstract is based on work supported by Air Force O�ce of Scientific Research through MURI grant
FA9550-15-1-0053. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the AFOSR.

41

Internally Parametric Cubical Type Theory Cavallo and Harper

characterized by where they send north and south: such a function is either the identity, con-
stant north, constant south, or the function that sends north to south, south to north, and each
merid path to its inverse. We believe that these techniques can be applied to establish algebraic
properties of higher inductive types, such as the symmetric monoidal structure on the smash
product [vD18], which currently require highly technical proofs.

In addition to proving results specific to cubical type theory, we advance the practice of
internal parametricity. We suggest that relativity characterizes bridges in inductive types by
showing that this is indeed the case for booleans: there is an equivalence between bridges in bool
and paths in bool. We single out types with such trivial bridge structure as bridge-discrete; the
sub-universe of bridge-discrete types is closed under most type formers (excluding universes) and
relativistic, in the sense that its bridges correspond to relations valued in bridge-discrete types.
Bridge-discreteness plays the role of the identity extension lemma of standard parametricity,
which we demonstrate by example by proving that paths in a bridge-discrete type are given by
Leibniz equality. Using the fact that bool is bridge-discrete, we refute the law of the excluded
middle for homotopy propositions (evoking [Uni13, Corollary 3.2.7]).

Details, including a computational semantics, can be found in our technical report [CH19].

References

[AFH18] Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. Cartesian cubical com-
putational type theory: Constructive reasoning with paths and equalities. In CSL 2018,
September 4-7, 2018, Birmingham, United Kingdom, 2018.

[BCM15] Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. A presheaf model of
parametric type theory. Electr. Notes Theor. Comput. Sci., 319:67–82, 2015.

[BJP10] Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Parametricity and dependent
types. In ICFP 2010, Baltimore, Maryland, USA, September 27-29, 2010, pages 345–356,
2010.

[BM12] Jean-Philippe Bernardy and Guilhem Moulin. A computational interpretation of para-
metricity. In LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 135–144, 2012.

[BM13] Jean-Philippe Bernardy and Guilhem Moulin. Type-theory in color. In ICFP 2013, Boston,
MA, USA - September 25 - 27, 2013, pages 61–72, 2013.

[CCHM15] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory:
A constructive interpretation of the univalence axiom. In TYPES 2015, May 18-21, 2015,
Tallinn, Estonia, pages 5:1–5:34, 2015.

[CH19] Evan Cavallo and Robert Harper. Parametric cubical type theory. arXiv:1901.00489, Jan-
uary 2019.

[NVD17] Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. Parametric quantifiers for de-
pendent type theory. PACMPL, 1(ICFP):32:1–32:29, 2017.

[Rey83] John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP Congress,
pages 513–523, 1983.

[Str67] Christopher Strachey. Fundamental Concepts in Programming Languages. Lecture notes,
International Summer School in Computer Programming, Copenhagen, 1967.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study, 2013.

[vD18] Floris van Doorn. On the Formalization of Higher Inductive Types and Synthetic Homotopy
Theory. PhD thesis, Carnegie Mellon University, 2018.

[Wad89] Philip Wadler. Theorems for free! In FPCA 1989, London, UK, September 11-13, 1989,
pages 347–359, 1989.

2
42

How to Tame your Rewrite Rules
Jesper Cockx1, Nicolas Tabareau2, and Théo Winterhalter2

1 Chalmers, Göteborg, Sweden
2 Gallinette Project-Team, Inria Nantes France

Dependently typed languages such as Coq and Agda can statically guarantee the correctness
of our proofs and programs. We can extend these languages with new features using rewrite
rules [5]. For example, exceptional type theory [8] introduces two new constructions raise : ∀A. A
and catch : ∀P. P true → P false → P raise → ∀b. P b together with new rewrite rules such as
catchP pt pf pr raise ! pr. However in general, by adding a wrong rewrite rule, the language
may lose any or all of its good properties like decidability of typechecking, canonicity, or even
type safety. Moreover, these new rewrite rules may interact badly with other extensions.

We present a framework to add user-defined (higher-order and non-linear) rewrite rules to
type theory in a safe and modular way. In particular, we provide checks to ensure type safety
as well as decidability of conversion and thus type-checking, which in turn require checking the
confluence and termination properties. We are currently working on extensions to both Agda
and Coq to provide user-defined rewrite rules, where the user can pick their desired level of
(un)safety by enabling or disabling individual checks (for confluence, termination, . . .).

Ensuring subject reduction. In the current implementation of rewrite rules in Agda, ‘bad’
rewrite rules can destroy not only normalization and canonicity but also subject reduction:

• Exploiting non-confluence: Let A : Set with rewrite rules A ! (N → N) and A ! (N →
Bool), then (λ(x : N). x) 0 : Bool. But this reduces to 0 which does not have type Bool.

• Rewriting already defined symbols: Let Box (A : Set) : Set be a datatype with a single
constructor box : (x : A) → Box A and unbox : Box A → A defined by unbox (box x) = x.
If we add a rewrite rule Box (N → N) ! Box (N → Bool), then we have unbox (box (λ(x :
N). x)) 0 : Bool but this term again reduces to 0, which does not have type Bool.

The second example exploits the fact that unboxA (boxB x) ! x even when A ̸= B. Here
Agda implicitely assumes that Box is injective, enforcing the necessary conversion by typing.
If we were to check for conversion in the reduction rule for unbox (as we do for user-defined
rewrite rules) evaluation would be stuck but subject reduction would be preserved.

Both these examples break injectivity of Π types, which is a crucial lemma in most proofs
of subject reduction. Hence we infer that we should check confluence of the rewrite rules, and
we should only allow rewrite rules on ‘fresh’ (i.e. postulated) symbols. From these natural
restrictions, we can derive injectivity of Π types and hence re-establish subject reduction.

Checking confluence and termination. Confluence and termination of higher-order rewrite
rules are both known and well-studied problems (see for example [7] and [3]). However, checking
termination usually requires confluence, and checking confluence usually requires termination.
We propose to resolve this dilemma by fixing a deterministic rewriting strategy !s⊆!, which
is complete in the sense that whenever u ! v, there exists some w such that both u !∗

s w and
v !∗

s w. We can then check confluence and termination:

1. First, we check termination of !. If it succeeds, we don’t know yet that ! is terminating
(because the termination check assumes confluence), but we do know !s is terminating
(since it is included in ! and confluent by construction).

43

How to Tame your Rewrite Rules Cockx, Tabareau, Winterhalter

2. Second, we check confluence of !, using !s for joining critical pairs. Because !s⊆!
and !s is complete, this check succeeds iff ! is confluent.

3. Finally, we conclude that ! is terminating, using point 1. and the confluence of !.

Rewriting modulo an equational theory. In many proof assistants, conversion includes
not just computation rules (e.g. β-reduction) but also type-directed rules (e.g. η-conversion).
Hence we consider conversion up to an equational theory ∼. E.g. this relation can include
η-rules for functions or records, or a definitionally proof-irrelevant universe of propositions [6].

If rewrite rules do not respect ∼, we run into trouble. For example, let f : ∀A. (A → A) →
Bool with a rewrite rule fA (λx. x) ! true and consider the term f⊤ (λx. tt). The argument
λx. tt is not of the form λx. x, yet the rewrite rule should still apply since tt ∼ x : ⊤!

As such we must ensure that rewrite rules are well-behaved with respect to the equational
theory: if a ∼ a′ : A and a ! b, then there must exist b′ such that1 b ∼ b′ : A and a′ !∗ b′.
With this property we are able to deduce that conversion between two terms Γ ⊢ t = u : A is
equivalent to t !∗ t′ and u !∗ u′ and Γ ⊢ t′ ∼ u′ : A. This allows us to prove2 injectivity of Π
types and check confluence in the presence of a non-trivial equational theory.

Conclusion. User-defined rewrite rules allow you to extend the power of a dependently typed
language on a much deeper level than normally allowed. We already mentioned exceptional type
theory; other potential applications include adding new equations to neutral terms [1], defining
quotient types [4] or higher inductive types, and implementing guarded type theory [2]. By
having access to the necessary checks you can be confident that no important properties will
break by accident, while you still have the option to ignore the checks when required by your
application. Soon rewrite rules and the corresponding safety checks are coming to both Agda
and Coq. We cannot wait to see what other uses you will come up with!

References
[1] Guillaume Allais, Conor McBride, and Pierre Boutillier. New equations for neutral terms: A sound

and complete decision procedure, formalized. In Dependently-typed Programming, 2013.
[2] Lars Birkedal and Rasmus Ejlers Møgelberg. Intensional type theory with guarded recursive types

qua fixed points on universes. In LICS ’13.
[3] Frédéric Blanqui, Guillaume Genestier, and Olivier Hermant. Dependency pairs termination in

dependent type theory modulo rewriting. unpublished, 2019.
[4] Guillaume Brunerie. quotients.agda. https://github.com/guillaumebrunerie/initiality/blob/

reflection/quotients.agda.
[5] Jesper Cockx and Andreas Abel. Sprinkles of extensionality for your vanilla type theory. In TYPES

’16.
[6] Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. Definitional Proof-

Irrelevance without K. POPL ’19.
[7] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence. Theoretical

computer science, 1998.
[8] Pierre-Marie Pédrot and Nicolas Tabareau. Failure is Not an Option An Exceptional Type Theory.

In ESOP ’18.

1This does not assume that b : A, the type A is simply a hint to guide the equational theory.
2Further assuming Π A′ B′ ∼ Π C′ D′ is equivalent to A′ ∼ C′ and B′ ∼ D′

2
44

6`�K2 ivT2 i?2Q`v
*v`BH *Q?2M1- �bbB� J�?#Qm#B2- �M/ s�pB2` JQMiBHH2i2

1 lMBp2`bBiû *Ƭi2 /Ƕ�xm`- AM`B�- 6`�M+2
2 AM`B�- GakL- 6`�M+2 7B`biM�K2XH�biM�K2!BM`B�X7`

q`BiBM; KQ/mH�` T`Q;`�Kb BM T`QQ7 �bbBbi�Mib Bb MQiQ`BQmbHv /B{+mHiX � bB;MB}+�Mi HBi2`�@
im`2R �M/ BKTH2K2Mi�iBQM 2zQ`i Bb /2pQi2/ iQ i?2 iQTB+- rBi? �TT`Q�+?2b `�M;BM; 7`QK �//BM;
M2r +QMbi`m+iBQMb iQ i?2 mM/2`HvBM; HQ;B+- iQ �//BM; 72�im`2b iQ i?2 T`QQ7 �bbBbi�MiX >Qr2p2`-
�HH +m``2Mi QTiBQMb UBM+Hm/BM; `2+Q`/b- b2+iBQMb �M/ KQ/mH2b (9- k)V �`2 mMb�iBb7�+iQ`v BM QM2
r�v Q` �MQi?2`X AM i?Bb rQ`F UBM T`Q;`2bbV- r2 �BK �i `2+QM+BHBM; i?2 T`Qb Q7 b2p2`�H QTiBQMb
mbBM; 7`�K2bX 6B;m`2 R bmKK�`Bx2b i?2 T`Qb �M/ +QMb Q7 2�+? QTiBQM �b BKTH2K2Mi2/ BM i?2 *Q[
T`QQ7 �bbBbi�Mi (R)- �M/ i?2 /2bB`2/ T`QT2`iB2b Q7 7`�K2bX

a2+iBQMb JQ/mH2b _2+Q`/b 6`�K2b
6B`bi@+H�bb Q#D2+ib LQ LQ u2b u2b
L�K2/ �TTHB+�iBQM f L�K2/ +m``vBM; LQ u2b f LQ u2b f LQ u2b
JBMBK�H /Bb+?�`;2 f 6B2H/ +QKKmi�iBQM u2b LQ LQ u2b
AKTQ`i f 6H�ii2MBM; LQ u2b LQ u2b
_2}M2K2Mi f .2}MBiBQM�H bBM;H2iQM LQ u2b LQ u2b
am#ivTBM; LQ u2b LQ LQ

6B;m`2 R, amKK�`v Q7 T`Qb �M/ +QMb Q7 2�+? QTiBQM
*QMD2+im`2 RX h?2`2 2tBbib � +�H+mHmb Q7 /2T2M/2MiHv ivT2/ 7`�K2b i?�i b�iBb}2b i?2 T`QT2`iB2b
Q7 };m`2 R- Bb +QM~m2Mi- Bb bi`QM;Hv@MQ`K�HBxBM;- ?�b /2+B/�#H2 ivT2 +?2+FBM;- �M/ Bb +QMb2`p�iBp2
Qp2` *B* U2ti2M/2/ rBi? � /2}MBiBQM�H bBM;H2iQMVX

h?Bb i�HF rBHH /2b+`B#2 �M/ /Bb+mbb i?2 T`QT2`iB2b Q7 Qm` +�M/B/�i2 +�H+mHmbX
6`�K2b h?2 +2Mi`�H B/2� Bb iQ +QMbB/2` `2+Q`/b r?2`2 bQK2 }2H/b /Q MQi ?�p2 � p�Hm2 v2iX
q2 rBHH +�HH i?2b2 ;2M2`�HBx2/ `2+Q`/b 7`�K2b- �M/ rBHH b�v i?�i � }2H/ Bb � /2}MBiBQM U`2bTX
�#bi`�+iBQMV B7 Bi ?�b U`2bTX /Q2b MQi ?�p2V � p�Hm2X 6`�K2b +�M �HbQ #2 i?Qm;?i Q7 �b �
`2B}+�iBQM Q7 i?2 +QMi2tib Q7 *B*- �b T`2b2Mi2/ BM i?2 *Q[K�Mm�HX 6Q` 2t�KTH2- i?2 7`�K2
τ

/27
= {x := 1, λy, z := x + y} ?�b irQ /2}MBiBQMb x �M/ z �M/ QM2 �#bi`�+iBQM yX S`QD2+iBQMb

�`2 QMHv �HHQr2/ 7Q` /2}MBiBQM }2H/b i?�i �`2 MQi T`2+2/2/ #v �M �#bi`�+iBQM }2H/ Ui?�i i?2v
/2T2M/ QMVX 6Q` 2t�KTH2 τ.x ≡ 1 #mi M2Bi?2` τ.y MQ` τ.z �`2 /2}M2/X

{
τ, .2}MBiBQM x := t. p

}
✄

{
τ, x := t, p

}
{

τ, o�`B�#H2 x. p
}

✄

{
τ, λx, p

}
{

τ, JQ/mH2 M. p
}

✄

{
τ, M :=

{
p

}}
{

τ1, M :=
{

τ2, 1M/JQ/mH2 . p
}}

✄

{
τ1, M := {τ2} , p

}
{

τ1, M := {τ2} , τ3, AKTQ`i M. p
}

✄

{
τ1, M := {τ2} , τ3, τ2, p

}

6B;m`2 k, JQ+F@mT QT2`�iBQM�H b2K�MiB+b

6`QK *Q[iQ 7`�K2b o2`@
M�+mH�` +QKK�M/b Q7 *Q[UHBF2
.2}MBiBQMV +�M #2 i?Qm;?i Q7 �b
�+iBM; QM 7`�K2b +QMi2tib- BX2X
7`�K2b rBi? � ?QH2X 6Q` 2t�K@
TH2- B7 r2 r`Bi2 τ 7Q` 7`�K2b
�M/ p 7Q` *Q[T`Q;`�Kb- i?2
`mH2b BM 6B;m`2 kk /2}M2 bQK2
KQ+F@mT QT2`�iBQM�H b2K�MiB+b
7Q` *Q[T`Q;`�Kb Ur?2`2 i?2
#Qt `2T`2b2Mib i?2 ?QH2 Q7 i?2
7`�K2 +QMi2ti- �M/ i?2 T`Q@
;`�K #2BM; 2p�Hm�i2/ Bb TH�+2/ BMbB/2 i?2 ?QH2VX

Rh?�i r2 /Q MQi ?�p2 i?2 `QQK iQ +Bi2 BM /m2 7Q`KX
kq?2`2 i?2 H�bi QM2 Bb � bT2+B�H +�b2 7Q` i?2 b�F2 Q7 #`2pBivX

45

6`�K2 ivT2 i?2Q`v *X *Q?2M- �X J�?#Qm#B- �M/ sX JQMiBHH2i

6B`bi@+H�bb Q#D2+ib Cmbi HBF2 `2+Q`/b- 7`�K2b b?QmH/ #2 }`bi@+H�bb Q#D2+ibX h?Bb �HHQrb- 7Q`
2t�KTH2- iQ /2}M2 i?2 ni? TQr2` Q7 � KQMQB/ �b Bib Bi2`�i2/ T`Q/m+iX Ai �HbQ �HHQrb iQ [m�MiB7v
Qp2` �HH `2�H +HQb2/ }2H/b UrBi? i?2 +�``B2` HBpBM; BM bQK2 }t2/ mMBp2`b2V- 7Q` 2t�KTH2 iQ bi�i2
i?�i i?2`2 Bb � [m�MiB}2` 2HBKBM�iBQM T`Q+2/m`2X
L�K2/ �TTHB+�iBQM f L�K2/ +m``vBM; f S�`iB�H BMbi�MiB�iBQM �#bi`�+iBM; Qp2` b2p@
2`�H }2H/b b?QmH/ #2 2[mBp�H2Mi iQ �#bi`�+iBM; Qp2` � `2+Q`/ rBi? i?Qb2 }2H/bX AM Qi?2` rQ`/b-
Bi b?QmH/ #2 TQbbB#H2 iQ ;Bp2 b2p2`�H �`;mK2Mib �i QM+2- rBi? i?2 M�K2b �HHQrBM; iQ K�i+?
�#bi`�+iBQMb �M/ i?2 +Q``2bTQM/BM; �`;mK2Mib- �M/ +m``vBM; b?QmH/ #2 �HHQr2/,

{λx, λy, z := x + y} {x := 0, y := 1} ✄∗ {x := 0, y := 1, z := 0 + 1} ✁∗ ({λx, λy, z := x + y} {x := 0}) {y := 1}
JBMBK�H /Bb+?�`;2 f 6B2H/ +QKKmi�iBQM �#bi`�+iBQMb BM 7`�K2b b?QmH/ #2?�p2 �b �#@
bi`�+iBQMb BM b2+iBQMb, A7 i?2 p�Hm2 Q7 bQK2 }2H/ x /Q2b MQi /2T2M/ QM i?2 p�Hm2 Q7 �MQi?2` }2H/
y U�M/ /Q2b MQi /2T2M/ 2Bi?2` QM }2H/b i?�i /2T2M/ QM yV- i?2M Bi b?QmH/ #2 TQbbB#H2 iQ ;2i i?2
x T`QD2+iBQM Q7 i?2 7`�K2 rBi?Qmi BMbi�MiB�iBM; yX 6Q` 2t�KTH2- {λx, y := t, . . . } .y ≡ t B7 x Bb
MQi 7`22 BM tX h?Bb �HHQrb iQ K�F2 2�+? i?2Q`2K T`QQ7 /2T2M/ QMHv QM i?2 ?vTQi?2b2b Bi mb2b-
rBi?Qmi M22/BM; iQ K�F2 i?Bb b2i Q7 ?vTQi?2b2b 2tTHB+BiX

JQ`2 ;2M2`�HHv- }2H/b i?�i /Q MQi /2T2M/ QM 2�+? Qi?2` b?QmH/ +QKKmi2- BM+Hm/BM; r?2M QM2
Q7 i?2 }2H/b Bb � /2}MBiBQM �M/ i?2 Qi?2` QM2 Bb �M �#bi`�+iBQMX 6Q` 2t�KTH2- {λx, y := t, . . . } ≡
{y := t, λx, . . . } B7 x Bb MQi 7`22 BM tX lM/2` i?2b2 +QKKmi�iBQMb- T`QD2+iBQMb +�M #2 i?Qm;?i
Q7 �b QMHv #2BM; �HHQr2/ 7Q` i?2 }`bi }2H/ UQ` KQ`2 ;2M2`�HHv- }2H/b i?�i �`2 i?2 }`bi }2H/ BM �
+QMp2`iB#H2 7`�K2VX
AKTQ`i f 6H�ii2MBM; Ai b?QmH/ #2 TQbbB#H2 iQ ǳBKTQ`iǴ � 7`�K2 BM �MQi?2`- Dmbi HBF2 7Q`
KQ/mH2bX h?Bb rQmH/ �HHQr iQ ǳ`2QT2M b2+iBQMbǴ #v BKTQ`iBM; i?2 +Q``2bTQM/BM; 7`�K2X q?2M
+QKT�`2/ iQ i?2 mb2 Q7 `2+Q`/b iQ `2T`2b2Mi b2ib 2[mBTT2/ rBi? bQK2 bi`m+im`2- i?Bb �HHQrb iQ
ǳ~�ii2MǴ i?2 bi`m+im`2 rBi?Qmi ?�pBM; iQ /mTHB+�i2 +Q/2 U�b r?2M /2}MBM; ;`QmTb BM/2T2M/2MiHv
Q7 KQMQB/bV Q` M2bi i?2K U�b r?2M /2}MBM; ;`QmTb �b � KQMQB/ rBi? bQK2 2ti`� bi`m+im`2VX
h?Bb ǳ#mM/H2/ pb mM#mM/H2/Ǵ /BH2KK� �M/ `2H�i2/ T`Q#H2Kb �`2 /2b+`B#2/ BM (8- j)X
_2}M2K2Mi f .2}MBiBQM�H bBM;H2iQM Ai b?QmH/ #2 TQbbB#H2 iQ `2}M2 7`�K2b �M/ i?2B` ivT2bX
6Q` 2t�KTH2- i?2 ivT2 Q7 +�i2;Q`B2b b?QmH/ #2 `2}M�#H2 iQ i?2 ivT2 Q7 KQMQB/b #v 7Q`+BM; i?2
ivT2 Q7 Q#D2+ib iQ #2 mMBi- �M/ i?2 T`Q/m+i Q7 +�i2;Q`B2b b?QmH/ #2 `2}M�#H2 iQ i?2 T`Q/m+i Q7
KQMQB/bX

PM2 +QmH/ �HbQ /2}M2 � `BM; �b � KQMQB/ �+iBM; QM �M �#2HB�M ;`QmT rBi? i?2 b�K2 +�``B2`X
h?Bb b2+QM/ 2t�KTH2 K�F2b Bi +H2�`2` i?�i r2 r�Mi i?2 `2}M2/ ivT2 iQ 2Mbm`2 i?�i i?2 irQ
+�``B2`b �`2 /2}MBiBQM�HHv 2[m�H- �M/ MQi Dmbi T`QTQbBiBQM�HHv 2[m�HX AM i?2 +QMi2ti Q7 i?2 mbm�H
/2T2M/2Mi ivT2b- i?Bb �KQmMib iQ r�MiBM; � /2}MBiBQM�H bBM;H2iQM ivT2 aBM;(t) BM?�#Bi2/ #v
i2`Kb +QMp2`iB#H2 iQ t- �M/ bm+? i?�i � ?vTQi?2bBb x : aBM;(t) BM i?2 +QMi2ti Bb mM/2`biQQ/ �b �
/2}MBiBQM x := tX
_272`2M+2b
(R) h?2 *Q[.2p2HQTK2Mi h2�KX h?2 *Q[_272`2M+2 J�Mm�H- p2`bBQM 3X9X �m;X kyRkX
(k) Cm/B+�ďH *Qm`�MiX ǳJ*k � KQ/mH2 +�H+mHmb 7Q` Sm`2 hvT2 avbi2KbǴ UkyydVX
(j) 6`�MÏQBb :�`BHHQi 2i �HX ǳS�+F�;BM; J�i?2K�iB+�H ai`m+im`2bǴX kyyNX
(9) 1HB2 aQm#B`�MX ǳ.ûp2HQTT2K2Mi KQ/mH�B`2 /2 i?ûQ`B2b 2i ;2biBQM /2 HǶ2bT�+2 /2 MQK TQm`

HǶ�bbBbi�Mi /2 T`2mp2 *Q[X UJQ/mH�` /2p2HQTK2Mi Q7 i?2Q`B2b �M/ M�K2@bT�+2 K�M�;2K2Mi
7Q` i?2 *Q[T`QQ7 �bbBbi�MiVǴX S?. i?2bBbX ú+QH2 SQHvi2+?MB[m2- S�H�Bb2�m- 6`�M+2- kyRyX

(8) "�b aTBii2`b �M/ 12HBb p�M /2` q22;2MX ǳhvT2 +H�bb2b 7Q` K�i?2K�iB+b BM ivT2 i?2Q`vǴ
UkyRRVX

k 46

Sheaf Models of Univalent Type Theory
Thierry Coquand, Fabian Ruch

Göteborgs Universitet, Sweden
coquand@chalmers.se, fabian.ruch@cse.gu.se

Abstract

We adapt the technique of sheaf models used in topos theory to univalent type theory
to obtain independence results for Markov’s principle, countable choice, Brouwer’s fan
theorem, and LPO. We construct the models as inner models, refining the work in [6] and
applying the theory of higher modalities [7].

1 Model construction
Following works such as [1, 5], various presheaf models of univalent type theory can be built in
a constructive meta theory. In these models, we can consider a family R c of (not necessarily
fibrant) types over a fixed type C such that the functor 2c : X 7! (R c ! X) is an idempotent
monad with unit ⌘c : x 7! �(_ : R c). x. It suffices, for instance, that R c is a family of fibrant
h-propositions [7]. We then consider, following [2], the higher inductive types 2A (for arbitrary
types A) and N2 defined as follows.

⌘ : A ! 2A

g : ⇧(c : C)(2c(2A) ! 2A)

s : ⇧(c : C)(x : 2A)(gc (⌘c x) = x)

zero : N2

succ : N2 ! N2

g : ⇧(c : C)(2cN2 ! N2)

s : ⇧(c : C)(x : 2A)(gc (⌘c x) = x)

The constructor s ensures that each ⌘c has a left inverse and thus is an equivalence by
idempotency.

Theorem 1.

• 2 is a lex (left exact, finite-limit-preserving) modality [7, Definition 1.1, Theorem 3.1].

• In particular, 2 is the modal operator of a ⌃-closed reflective subuniverse (and hence
closed under dependent products, dependent sums, and identification types).

• The subtype U2 ⌘ ⌃(X : U)isModal(X) of U is 2-modal, where isModal(X) states that
⌘c : X ! 2cX is an equivalence for each c : C.

• U2 is a univalent universe of 2-modal types.

• The elimination principle ext : (⇧(a : A)B(⌘ a)) ! ⇧(x : 2A)B(x) for 2A into a family
B of 2-modal types satisfies the strict computation rule (ext f) � ⌘ ⌘ f .

• N2 is 2-modal, and is a natural numbers type eliminating into 2-modal types with strict
computation rules.

Using this theorem we construct inner models inside the presheaf models along the lines
of [6, Section 4.5], interpreting types as the 2-modal types. A new contribution w.r.t. [6] is
that we also get models of inductive data types with strict computation rules, by mixing their
constructors with the ones of the modality 2 (as shown above for the natural numbers type).

47

Sheaf Models of Univalent Type Theory Coquand and Ruch

2 Applications
We can apply this model construction to obtain various independence and compatibility results
for univalent type theory.

Theorem 2.

• A countermodel for Markov’s principle for decidable propositions P

MP ⌘ (¬¬⌃(n : N)P (n)) ! ⌃(n : N)P (n)

• A countermodel for countable choice for families of sets A

CC ⌘ (⇧(n : N) kA(n)k) ! k⇧(n : N)A(n)k

• A model for Brouwer’s fan theorem

FT ⌘ (⇧(↵ : N ! N2)⌃(n : N)A(↵, n)) ! ⌃(M : N)⇧(↵ : N ! N2)⌃(n : N6M)A(↵, n)

• A model for limited principle of omniscience

LPO ⌘ (⇧(n : N)P (n)) + ⌃(n : N)¬P (n)

The first two claims generalize to univalent type theory the results obtained in [3]. The
model construction of the last claim is obtained by adapting [4] to univalent type theory.

A future research direction is to construct univalent sheaf models for the applications con-
sidered in the work of Wellen, like over rings equipped with the Zariski topology, for instance,
where 2 gets interpreted by the coreduction modality described in [8, Definition 2.3.2].

References
[1] C. Cohen, T. Coquand, S. Huber, and A. Mörtberg. Cubical type theory: A constructive inter-

pretation of the univalence axiom. In T. Uustalu, editor, 21st International Conference on Types
for Proofs and Programs, TYPES 2015, May 18-21, 2015, Tallinn, Estonia, volume 69 of LIPIcs,
pages 5:1–5:34. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[2] T. Coquand, S. Huber, and A. Mörtberg. On higher inductive types in cubical type theory. In
A. Dawar and E. Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 255–264. ACM, 2018.

[3] T. Coquand, B. Mannaa, and F. Ruch. Stack semantics of type theory. In 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages
1–11. IEEE Computer Society, 2017.

[4] T. Coquand and E. Palmgren. Intuitionistic choice and classical logic. Arch. Math. Log., 39(1):53–
74, 2000.

[5] I. Orton and A. M. Pitts. Axioms for modelling cubical type theory in a topos. In J. Talbot and
L. Regnier, editors, 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August
29 - September 1, 2016, Marseille, France, volume 62 of LIPIcs, pages 24:1–24:19. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016.

[6] K. Quirin. Lawvere-Tierney sheafification in Homotopy Type Theory. (Faisceautisation de Lawvere-
Tierney en théorie des types homotopiques). PhD thesis, École des mines de Nantes, France, 2016.

[7] E. Rijke, M. Shulman, and B. Spitters. Modalities in homotopy type theory. CoRR, abs/1706.07526,
2017.

[8] F. Wellen. Formalizing Cartan Geometry in Modal Homotopy Type Theory. PhD thesis, Karlsruher
Instituts für Technologie, Germany, 2017.

2 48

Choreographies in Coq

Lúıs Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti⇤

Department of Mathematics and Computer Science, University of Southern Denmark
{lcf,fmontesi,peressotti}@imada.sdu.dk

Choreographic Programming is a paradigm for specifying concurrent systems based on
message-passing where communications are written in an Alice-to-Bob notation. Every pro-
gram (choreography) can then be mechanically translated into a distributed process-calculus
implementation that is guaranteed to be bisimilar to the original choreography. Thanks to this
methodology, such implementations are guaranteed never to su↵er from mismatched commu-
nications. More generally, they cannot reach a deadlock state, since the original choreography
language does not allow deadlocks.

Example 1. The following choreography models a scenario where Alice (a) buys a book from a
seller (s) routing the payment through her bank (b).

a.title ! s; s.price ! a; s.price ! b;

if b.ok then b ! s[ok]; b ! a[ok]; s.book ! a

else b ! s[ko]; b ! a[ko]

First, Alice sends the title of the book to the seller, which then quotes the price to both Alice and
the bank. If the bank confirms the transaction, it sends an acknowledgement to both Alice and
the seller, and the latter proceeds to send the book. Otherwise, the bank sends a cancellation to
both parties.

The hallmark of Choreographic Programming is the EPP Theorem, which guarantees a
precise operational correspondence between a choreography and its generated implementation
(EndPoint Projection).

Example 2. The previous choreography can be projected into the following distributed protocol.

a . s!title; s?; b&{ok : s? | ko :}
b . s?; if ok then (s[ok]; a[ok]) else (s[ko]; a[ko])

s . a?; a!price; b!price; b&{ok : a!book | ko :}

The protocol for Alice is thus: send a title to the seller and wait for a reply; then wait for either
confirmation from the bank, in which case the seller will send the book, or cancellation, in which
case the protocol ends. The protocol for the seller is similar. In turn, the bank initially waits
for a message from the seller, and then decides whether to send confirmation or cancellation to
both the seller and Alice.

In the examples above, the participants exchange two kinds of messages: data messages
(e.g. a.title ! s) or signals (e.g. b ! s[ok]), which are exclusively meant to dictate control
flow. The need for this distinction has to do with propagating local choices, in our example the
decision by the bank on whether to authorize payment or not.

The EPP Theorem guarantees that the choregraphy in Example 1 behaves exactly as the
three communicating processes in Example 2. However, the proof of this theorem even for

⇤This work was partially supported by the Independent Research Fund Denmark, grant no. DFF-7014-00041.

1
49

Choreographies in Coq L. Cruz-Filipe, F. Montesi and M. Peressotti

simple choreography languages is complex, due to the high number of cases that need to be
considered and to the multitude of rules in the semantics of both choreography and process
languages. Such proofs are known to be prone to errors when designed and checked by humans:
a previous attempt to formalize a publication on a higher-order process calculus [3] turned up
a number of problems in the original proofs [4].

Choreographic Programming is closely related to Multiparty Session Types, a typing disci-
pline for concurrent programming that also guarantees desirable properties. The main di↵erence
between these two approaches is methodological: Multiparty Session Types work bottom-up,
starting from an implementation and trying to find a type; Choreographic Programming works
top-down, starting from a choreography (which can be thought of as a type with additional
computational abilities and information on the data being communicated) and generating the
implementation. It has recently been discovered that a significant number of published results
in Multiparty Session Types were wrong, in the sense that not only did the published proofs
contain errors, but also the stated results did not hold [5, Chapter 8.1]. Here again, the problem
is the complexity of the proofs involved, both in terms of number of cases to be checked and
technical complexity of checking each individual case.

In order to establish solid foundations for Choreographic Programming, we propose to for-
malize the core choreography calculus from [1] using the Coq theorem prover. This calculus
was proposed originally as a minimal calculus that already embodies the characteristic features
of Choreographic Programming. As such, it provides a good benchmark both to evaluate the
feasibility of a full formalization of a model for Choreographic Programming and to verify its
correctness by certified means. Moreover, this calculus already includes the major challenges
that have to be dealt with in this theory, namely: finite sets and functions on finite sets; partial
functions; syntactic binders.

Furthermore, [1] also includes a proof that this choreography model is Turing-complete.
Formalizing this proof also requires formalizing Kleene’s theory of partial recursive functions [2],
which again deals with partiality and finite sets, but also poses some additional problems related
to induction over dependent types.

Currently our formalization covers the fragment of the choreography language that does not
include recursion (infinite behaviour). This fragment already requires treating finite sets and
functions (as the semantics of choreographies is defined by means of a function assigning each
process to the value it stores), as well as partial functions (even without recursion, projecting
a choreography to a process implementation is not always possible). Furthermore, in this
fragment we can already encode a subset of partial recursive functions. As such, this work is
already illustrative of the challenges encountered and the solutions that can be put in place.

References

[1] Lúıs Cruz-Filipe and Fabrizio Montesi. A core model for choreographic programming. In Olga
Kouchnarenko and Ramin Khosravi, editors, FACS, volume 10231 of LNCS, pages 17–35. Springer,
2017.

[2] S.C. Kleene. Introduction to Metamathematics, volume 1. North-Holland Publishing Co., 1952.

[3] Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi, and Alan Schmitt. On the expressiveness and
decidability of higher-order process calculi. Inf. Comput., 209(2):198–226, 2011.

[4] Petar Maksimovic and Alan Schmitt. HOCore in Coq. In Christian Urban and Xingyuan Zhang,
editors, ITP, volume 9236 of LNCS, pages 278–293. Springer, 2015.

[5] Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. PACMPL,
3(POPL):30:1–30:29, 2019.

2
50

SH�M�` ;`�T?b BM >QKQiQTv hvT2 h?2Q`v
CQM�i?�M S`B2iQ@*m#B/2bφ �M/ >´FQM _Q##2bi�/ :vHi2`m/φ

.2T�`iK2Mi Q7 AM7Q`K�iB+b- lMBp2`bBiv Q7 "2`;2M- "2`;2M- LQ`r�v
{jonathan.cubides,hakon.gylterud}@uib.no

�#bi`�+i
q2 +QMbB/2` � +?�`�+i2`Bx�iBQM Q7 TH�M�` ;`�T?b BM >QKQiQTv hvT2 h?2Q`v U>QhhVX

lbBM; #�bB+ +QM+2Tib 7`QK >Qhh- bm+? �b mMBp�H2M+2- QM2 +�M /2}M2 � ivT2 Q7 ;`�T?b-
bm+? i?�i 2[m�HBiv UBM i?2 b2Mb2 Q7 i?2 B/2MiBiv ivT2V #2ir22M ;`�T?b +QBM+B/2b rBi? BbQ@
KQ`T?BbKX 6Q` TH�M�`Biv- r2 i�F2 BMbTB`�iBQM 7`QK iQTQHQ;B+�H ;`�T? i?2Q`v- BM T�`iB+mH�`-
+QK#BM�iQ`B�H 2K#2//BM;b Q7 ;`�T?b BMiQ bm`7�+2bX � T`QQ7@�bbBbi�Mi 7Q` /2T2M/2Mi ivT2
i?2Q`v rBi? >Qhh bmTTQ`i U�;/�V Bb mb2/ iQ p2`B7v i?2 +Q``2+iM2bb Q7 i?Bb rQ`F BM T`Q;`2bbX

AMi`Q/m+iBQMX AM :`�T? i?2Q`v- � ;`�T? Bb TH�M�` r?2M Bi +�M #2 2K#2//2/ BMiQ i?2 TH�M2X
h?2`2 �`2 K�Mv +?�`�+i2`Bx�iBQMb Q7 TH�M�` ;`�T?b (k- 9)- 2X;X 7Q`#B//2M KBMQ`b ԀϯӴϯ �M/ ԀΘVX
6Q` Qm` /2}MBiBQM- r2 �`2 i�FBM; BMbTB`�iBQM 7`QK hQTQHQ;B+�H :`�T? h?2Q`v (R) r?2`2 QM2
rQ`Fb rBi? +QK#BM�iQ`B�H 2K#2//BM;b r?B+? `2T`2b2Mi 2K#2//BM;b Q7 ;`�T?b BMiQ bm`7�+2b mT
iQ BbQiQTvX � ;`�T? Bb TH�M�` B7 �M/ QMHv B7 Bi +�M #2 2K#2//2/ BMiQ i?2 bT?2`2, B7 QM2 ?�b �M
2K#2//BM; BMiQ i?2 bT?2`2- QM2 +�M Q#i�BM �M 2K#2//BM; BMiQ i?2 TH�M2- #v TmM+im`BM; i?2
bT?2`2 �M/ �TTHvBM; bi2`2Q;`�T?B+ T`QD2+iBQMX q2 ;2i � `2T`2b2Mi�iBQM Q7 TH�M�` ;`�T?b- mT iQ
BbQiQTv- �b � +QK#BM�iQ`B�H 2K#2//BM; BMiQ i?2 bT?2`2- �M/ F22TBM; i`�+F Q7 r?2`2 i?2 bT?2`2
r�b TmM+im`2/X

AM i?2 7QHHQrBM;- r2 2H�#Q`�i2 bQK2 Q7 i?2 +QM+2Tib M22/2/ BM Q`/2` iQ 7Q`K�HBx2R i?2 �#Qp2
+?�`�+i2`Bx�iBQM Q7 TH�M�` ;`�T? BM >Qhh (j)X AM T�`iB+mH�`- i?2 MQiBQM Q7 +QK#BM�iQ`B�H 2K@
#2//BM; �M/ r?B+? Q7 i?Qb2 BM/m+2 2K#2//BM;b BMiQ i?2 bT?2`2X hQ bi�`i rBi?- r2 }t � MQiBQM
Q7 ;`�T?bX AM r?�i 7QHHQrb- Ӽ �M/ ӽ �`2 ;`�T?b �M/ ԧ- Ԩ Q` ԩ �`2 p�`B�#H2b 7Q` MQ/2bX

:`�T?bX q2 +QM+2`M Qm`b2Hp2b �#Qmi bBKTH2 �M/ mM/B`2+i2/ ;`�T?b r?B+? +�M #2 7Q`K�HBx2/
�b i?2 7QHHQrBM; ivT2kӴjӴ9,

Graph ଉ ం
Nն ం

EN݂N݂ն Bba2i	N
 ః֓Ӵ֔N BbS`QT	Eԧ Ԩ
 ః֓Ӵ֔N 	Eԧ Ԩ ݂ E Ԩ ԧ
�
:`�T? >QKQKQ`T?BbKbX � ?QKQKQ`T?BbK 7`QK Ӽ iQ ӽ Bb � T�B` Q7 7mM+iBQMb 	ᅫ ᅬ

r?2`2 ᅫ Nը ݂ Nթ �+ib QM MQ/2b �M/ ᅬ ԧ Ԩ Eը ԧ Ԩ ݂ Eթ	ᅫ ԧ
	ᅫ Ԩ
X q?2M #Qi? 7mM+iBQMb �`2
2[mBp�H2M+2b8- bm+? � K�T Bb +�HH2/ �M BbQKQ`T?BbKX �b Bb ivTB+�H Q7 >Qhh- i?2 B/2MiBiv ivT2
QM ;`�T?b Bb 2[mBp�H2Mi iQ i?2 ivT2 Q7 BbQKQ`T?BbK #2ir22M ;`�T?beX

*v+HB+ P`/2`bX � +v+HB+ Q`/2` QM � b2i A Bb � i2`M�`v `2H�iBQM R QM A bm+? i?�i i?2 #BM�`v
`2H�iBQM RԐ Bb � iQi�H Q`/2` 7Q` 2p2`v Ԑ A �M/ 7Q` Ԑ ԑ Ԓ A- B7 Ԑ ଈ ԑ- RԐԑԒ BKTHB2b RԑԒԐX

*QK#BM�iQ`B�H 1K#2//BM;bX � +QK#BM�iQ`B�H 2K#2//BM; Q7 � ;`�T? Bb � +v+HB+ Q`/2` QM
i?2 bi�`d Q7 2�+? MQ/2X

CombinatorialEmbedding	Ӽ
 ଉ ః֓NԲ CyclicOrder	StarӼ ԧ
�
R1ti`� +�`2 Bb i�F2M iQ +?QQb2 ivT2b bm+? i?�i i?2B` B/2MiBiv ivT2b +QBM+B/2 rBi? i?2 M�im`�H MQiBQM Q7

2[mBp�H2M+2b Q7 i?2 K�i?2K�iB+�H Q#D2+ibX
k6Q` �Mv ivT2 բ- Bba2i	բ
 ଉ ွ֓Ӵ֔բွӴ ֓�֔ 	 �
X
j6Q` �Mv ivT2 բ- BbS`QT	բ
 ଉ ွ֓Ӵ֔բ 	֓ � ֔
X
9� MQ/2 Bb Q7 ivT2 Nը �M/ �M 2/;2 #2ir22M MQ/2b ֓Ӵ ֔ Bb Q7 ivT2 Eը ֓ ֔X
81[mBp�H2M+2 Q7 ᆿ Nը ݂ Nթ Bb #BD2+iBQM �M/ 7Q` ᇀ ֓ ֔ Bb #B@BKTHB+�iBQMX
eh?2 M�im`�H K�T ွըӴթGraph 	ը � թ
 ݂ 	ը அ թ
 Bb �M 2[mBp�H2M+2X
dStarը	֓
 ଉ ဿ֔NԲ Eը ֔ ֓X

51

SH�M�` ;`�T?b BM >Qhh S`B2iQ@*m#B/2b �M/ :vHi2`m/

� +QK#BM�iQ`B�H 2K#2//BM; /2}M2b �M 2K#2//BM; Q7 i?2 ;`�T? BMiQ � +HQb2/ bm`7�+2 #mi
r?B+? bm`7�+2 Bb H27i BKTHB+Bi #v i?2 /2}MBiBQMX >Qr2p2`- i?2 bm`7�+2 +�M #2 `2+QMbi`m+i2/ 7`QK
� +QK#BM�iQ`B�H 2K#2//BM; #v i?2 MQiBQM Q7 � 7�+2X q2 i?2M `2+Q;MBx2 r?2M i?2 `2bmHiBM;
bm`7�+2 Bb � bT?2`2 #v mbBM; i?2 7�+i i?2 bT?2`2 Bb bBKTHv +QMM2+i2/X

*v+HB+ :`�T?bX A/2MiB7vBM; 6BM։ rBi? i?2 b2i Q7 \� ੈ ԝ �^- +QMbB/2` i?2 7mM+iBQMԈ 6BM։ ݂ 6BM։ r?B+? K�Tb Uԝ � ޘ �- Ԙ ޘ Ԙ � �VX h?Bb 7mM+iBQM Bb �M 2[mBp�H2M+2X 6`QK i?2
7mM+iBQM Ԉ- r2 +QMbi`m+i i?2 ;`�T? Cn 7Q` ԝ ଯ � rBi? MQ/2b 6BM։ �M/ 2/;2b 7`QK Ԙ iQ Ԉ Ԙ 7Q`
�HH Ԙ 6BM։X h?2 ivT2 Q7 +v+HB+ ;`�T?b Bb i?2 +QMM2+i2/ +QKTQM2Mib Q7 	Cn Ԉ
 BM i?2 ivT2 Q7 �HH
bm+? bi`m+im`2b3X � +v+H2 BM � ;`�T? Ӽ Bb +v+HB+ ;`�T? ӽ �HQM; rBi? � ?QKQKQ`T?BbK ӽ ݂ ӼX

*Q`M2`bX PM i?2 bi�` ԧ- � +Q`M2` Bb � `2H�iBQM #2ir22M irQ 2/;2b Ԕφ-Ԕϵ r?B+? b�iBb}2b i?2`2
Bb MQ Qi?2` 2/;2 BM #2ir22MX h?2 +Q`M2` Bb /2MQi2/ #v Ԕφ StarԲ	֓
 ԔϵX

6�+2bX � 7�+2 Bb � +v+H2 r?2`2 �HH +QMb2+miBp2 2/;2b �`2 +Q`M2`b �M/ 2�+? +Q`M2` Q++m`b �i
KQbi QM+2X 6Q` 2t�KTH2- i?2 ;`�T? UAV #2HQr rBi? i?2 BM/B+�i2/ +QK#BM�iQ`B�H 2K#2//BM; ?�b
i?`22 7�+2b rBi? i?`22- 7Qm`- �M/ }p2 2/;2b `2bT2+iBp2HvX

aT?2`B+�H :`�T?bX � +QK#BM�iQ`B�H 2K#2//BM; Q7 � ;`�T? Bb bT?2`B+�H B7 �Mv r�HFN Ԧφ +�M
#2 Q#i�BM2/ #v /27Q`KBM; �HQM; 7�+2b �Mv Qi?2` r�HF Ԧϵ rBi? i?2 b�K2 2M/TQBMibX 6Q` 2t�KTH2
BM UAoV- i?2 r�HF Ԑ ԑ Ԓ +�M #2 /27Q`K2/ BMiQ i?2 r�HF Ԑ Ԕ ԓ Ԓ �HQM; i?2 i`B�M;mH�` 7�+2ԐԑԒ �M/ i?2 7�+2 ԐԒԓԔX

SH�M�` :`�T?bX �b bT?2`B+�H +QK#BM�iQ`B�H 2K#2//BM;b- UAV UAAV �M/ UAAAV �`2 �HH 2[mBp�@
H2MiX hQ /BbiBM;mBb? i?2b2 �b 2K#2//BM;b BMiQ i?2 TH�M2- r2 +�M F22T i`�+F Q7 � 7�+2- /2bB;M�i2/
�b i?2 Qmi2` 7�+2X q2 `2[mB`2 7Q` i2+?MB+�H `2�bQMb i?�i TH�M�` ;`�T?b �`2 +QMM2+i2/X

Planar	Ӽ
 ଉ ంրCombinatorialEmbeddingԲ SphericalӼ Ԕ FaceӼ Ԕ Connected Ӽ�
*QM+HmbBQMbX h?2 T`2/B+�i2 Planar Bb MQi � T`QTQbBiBQM- BM 7�+i r2 2tT2+i iQ ?�p2 2H2K2Mib
`2T`2b2MiBM; �HH 2K#2//BM;b Q7 i?2 ;`�T? BMiQ i?2 TH�M2- B/2MiB}2/ mT iQ BbQiQTvX q2 rQmH/ HBF2
iQ +QKT�`2 i?Bb �TT`Q�+? rBi? Qi?2` +?�`�+i2`Bx�iBQMb- Q7 TH�M�`BivX q?BH2 r2 ?2`2 7Q+mb QM
TH�M�` ;`�T?b- Bi Bb �HbQ TQbbB#H2 iQ +QMbB/2` ;`�T?b rBi? `Qi�iBQM bvbi2K �b � r�v iQ bT2+B7v
�Mv +HQb2/ Q`B2Mi�#H2 bm`7�+2X *QMbi`m+iBM; bm`7�+2b BM i?Bb r�v- mbBM; ?B;?2` BM/m+iBp2 ivT2b-
Bb �MQi?2` BMi2`2biBM; HBM2 Q7 BMp2biB;�iBQMX

_272`2M+2b
(R) CQM�i?�M G :`Qbb �M/ h?QK�b q hm+F2`X hQTQHQ;v :`�T? h?2Q`vX RN3dX
(k) G�`b LQb+?BMbFBX 6Q`K�HBxBM; :`�T? h?2Q`v �M/ SH�M�`Biv *2`iB}+�i2bX kyR8X
(j) h?2 lMBp�H2Mi 6QmM/�iBQMb S`Q;`�KX >QKQiQTv hvT2 h?2Q`v, lMBp�H2Mi 6QmM/�iBQMb Q7 J�i?2@

K�iB+bX AMbiBimi2 7Q` �/p�M+2/ aim/v- kyRjX
(9) JX u�K�KQiQ- aX LBb?Bx�FB- JX >�;Bv�- �M/ uX hQ/�X 6Q`K�HBx�iBQM Q7 TH�M�` ;`�T?bX T�;2b

jeNĜj39- "2`HBM- >2B/2H#2`;- RNN8X aT`BM;2` "2`HBM >2B/2H#2`;X
3 CyclicGraph ଉ ဿբGraphဿᇜբ݂բဿ։ ੯ 	բӴ ᇜ
 � 	CnӴ մ
 ੯ ӳ
N� r�HF 7`QK ֓ iQ ֔ Bb � b2[m2M+2 Q7 2/;2b րφ Eը ֓ ֓φӴ ੈ Ӵ րք Eը ֓քφ ֓քӴ րք Eը ֓ք ֓ք�φӴ ੈ Ӵ ր։ Eը ֓ֆ ֔X

k 52

Verse - An EDSL in Coq for verified low-level

cryptographic primitives

Abhishek Dang1 and Piyush Kurur2

1 Indian Institute of Technology Kanpur, India.
2 Indian Institute of Technology Palakkad, India.

1 Introduction

Despite impressive work on code optimisation in modern compilers, cryptographic primitives
are still being written in low-level languages like C and even assembly. While performance is
an important consideration, the unpredictable nature of modern optimising compilers for high
level languages leave primitives written in them vulnerable to various side channel attacks.
However, in this bargain we have lost out on the safety, portability, and maintainability that
comes naturally with a high-level language. We present Verse [4], a DSL embedded inside Coq
for writing cryptographic primitives, which addresses some of these shortcomings.

2 The Design of Verse

Verse is a low-level language for writing cryptographic primitives albeit with a relatively high-
level interface. Following in the footsteps of qhasm [2], the instruction set of Verse is simply
a common notation for the arithmetic and bit-wise operations across architectures. However,
unlike qhasm, it was possible to encode a lot of safety properties (including array index safety)
into the inductive types that represent these instructions. We do this without compromising
readability or ease of coding - the Coq notation system hides the arcane constructors of syntax
elements of Verse arising out of the correct by construction strategy, and tactics fill in the proof
objects that reside in, say, the array dereference constructor. In addition, a Verse program-
mer can generate Verse code using functions written in Gallina, the functional programming
language underlying Coq. This meta-programming facility can be seen as assembler macros
and is used to give many utility functions for coding patterns like looping, register caching
etc. These features of Verse make the programming experience remarkably high-level. To the
programmer, Verse appears to be a typed low-level language, with facility for defining and using
assembler macros and strong compile time type safety. The interested reader can refer to the
quick example in our repository1 for some of these code features in action.

Finally, towards portability, we provide a framework to modularly add machine architectures
to Verse. These specify the mostly one-to-one translation of Verse instructions to those of the
machine and also abstract out some of the non-application code from Verse. This means,
for instance, that while the user has complete control over the allocation of local variables
to registers, he does not have to worry about parameter allocation by calling conventions or
function preamble and cleanup for the local variables. Verse code can currently be compiled
down to portable C and X86-64.

To demonstrate the feasibility of our approach, we have implemented some real world cryp-
tographic code which can be found in our source code repository2. The resulting C code is now

1https://github.com/raaz-crypto/verse-coq/blob/master/src/Verse/Tutorial.v
2https://github.com/raaz-crypto/verse-coq/tree/master/src/Verse/CryptoLib

53

Verse - An EDSL for cryptographic primitives Dang and Kurur

part of the Raaz3 cryptographic library which will be released soon.

3 Functional properties

The primary motivation of embedding inside Coq, a proof assistant, was to prove functional
properties of Verse code in the same environment where the code is written. The author’s
experience in developing Raaz informed our choice to limit focus to a simple instruction set -
arithmetic and bit-wise operations - and a linear control flow. This design choice immunizes
implementations against some timing attacks while not being too restrictive for the domain
at hand. Further, these simplifications make for a simple semantics involving interpretation
over a state machine. This was our approach towards semantic verification in our writeup [4].
However, this required understanding the internals of Verse to formulate and prove semantic
properties, which compares unfavourably to the programming interface, where no internals
are exposed. The parametric nature of the Verse AST and heavy use of the Coq sectioning
mechanism in writing the code makes our job of giving a clean interface for proofs hard.

Our current approach is to provide the facility to add annotatations encoding program
properties in Verse code itself. Extraction and presentation of proof obligations from annotated
code is now very usable. We refer the reader to the annotated SHA2 code in our repository.
The current tactics to extract out proof obligations from code work well with true bitvector
code. We are working towards handling arithmetic proof obligations that come up with high-
modulo arithmetic in elliptic curve primitives. It might bear remarking here that our aim is
presentation of the proof obligations to the user in a palatable form, more so than to provide
automated proofs for the obligations.

4 Conclusion

We hope to make a case for an embedded language as the approach towards narrow program-
ming domains intent upon security and verification. This is in contrast to other work [1] [3].
Elsewhere, while not sharing our aim of providing a coding environment for general Crypto-
graphic code, the Coq based approach [5] focuses on synthesis of verified fast implementations
of high-modulo arithmetic.

References

[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent
Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub. Jasmin: High-
assurance and high-speed cryptography. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1807–1823. ACM, 2017.

[2] Daniel J Bernstein. Writing high speed software, 2007.

[3] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K Rustan M Leino, Jacob R Lorch, Bryan Parno,
Ashay Rane, Srinath Setty, and Laure Thompson. Vale: Verifying high-performance cryptographic
assembly code. In the 26th USENIX Security Symposium, pages 917–934, 2017.

[4] Abhishek Dang and Piyush P Kurur. Verse: An EDSL for cryptographic primitives. In the 20th
International Symposium on Principles and Practice of Declarative Programming. ACM, 2018.

[5] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. Systematic
generation of fast elliptic curve cryptography implementations, 2018.

3https://github.com/raaz-crypto/raaz

2
54

Logipedia: a multi-system encyclopedia of formal proofs

Gilles Dowek and François Thiré

Inria and École normale supérieure de Paris-Saclay
LSV, 61, avenue du Président Wilson 94235 Cachan Cedex, France

gilles.dowek@ens-paris-saclay.fr

francois.thire@lsv.fr

Libraries of formal proofs are an important part of our mathematical heritage, but their
usability and sustainability is poor. Indeed, each library is specific to a proof system, sometimes
even to some version of this system. Thus, a library developed in one system cannot, in general,
be used in another and when the system is no more maintained, the library may be lost. This
impossibility of using a proof developed in one system in another has been noted for long and a
remediation has been proposed: as we have empirical evidence that most of the formal proofs
developed in one of these systems can also be developed in another, we can develop a standard
language, in which these proofs can be translated, and then used in all systems supporting this
standard.

Logipedia (http://logipedia.science) is an attempt to build such a multi-system on-
line encyclopedia of formal proofs expressed in such as standard language. It is based on two
main ideas: the use of a logical framework and of reverse mathematics.

Logical frameworks Di↵erent proof systems, such as Coq, Matita, HOL Light, Is-
abelle/HOL, PVS... implement variants of di↵erent logical formalisms: the Calculus of
constructions, Simple type theory, Simple type theory with predicate subtyping... After several
decades of research, we understand the relationship between these formalisms much better.
But, to build an encyclopedia of formal proofs, we have been one step further and expressed all
these formalisms as theories in a common logical framework.

The idea of using a logical framework, such as predicate logic, to express theories, such
as geometry and set theory, goes back to Hilbert and Ackermann, but several other logical
frameworks such as �-Prolog, Isabelle, the �⇧-calculus deduction modulo theory, and the �⇧-
calculus modulo theory [3, 5], have been proposed to solve some issues of predicate logic. We
have used the the �⇧-calculus modulo theory, implemented in the system Dedukti [2]. With
respect to predicate logic this logical framework allows

• binders (like �-Prolog, Isabelle, and the �⇧-calculus)

• proofs as �-terms (like the �⇧-calculus)

• an arbitrary definitional / computational equality (like deduction modulo theory)

• arbitrary connectives and quantifiers, in particular a mix of constructive classical ones
(like ecumenical logics [6]).

It permits to express Simple type theory with 8 symbol declarations and 3 rewrite rules and
the Calculus of constructions with 9 symbol declarations and 4 rewrite rules [4].

Expressing the theory implemented in HOL Light and Matita theories D[HOLL] and
D[Mat] in Dedukti allows to translate proofs developed in these systems to these theories and
back.

55

Logipedia Dowek and Thiré

Dedukti

D[HOLL]D[Mat]

HOL-LightMatita

Figure 1: Logical Framework

Dedukti

D[HOLL]D[Mat]

HOL-LightMatita

Figure 2: Reverse mathematics

Reverse mathematics Expressing various formalisms as theories in the same logical frame-
work permits to compare them. For instance comparing the expression of Simple type theory
and of the Calculus of constructions in Dedukti [4], we notice that there are only three di↵er-
ences the symbol arrow that permits to build functional types is dependent in the Calculus of
constructions, and the same holds for the implication). Then the Calculus of constructions
has one extra symbol ⇡ to build types for functions mapping proofs to terms and Simple type
theory does not. Thus all proofs expressed in D[HOLL] can be translated to D[Mat].

Conversely, we can identify a subset of the proofs of D[Mat], that do not use the dependency
of the symbols arrow and) and do not use the symbol ⇡, and can be translated to D[HOLL].
Composing these translation we obtain a partial function mapping Matita proofs to HOL
Light proofs.

Instead of keeping proofs in various libraries such that that of HOL Light or Matita, and
use translators, we can as well build a single multi-system encyclopedia such as Logipedia and
use them directly when developing a proof in one system or the other.

Empirical results As a proof of concept, we have translated to D[Mat] the arithmetic library
of Matita [1] up to Fermat’s little theorem (around 300 lemmas). We have then translated
it to D[HOLL] and exported it to HOL Light, Isabelle/HOL, Coq, Lean, PVS, and, of
course, Matita.

The proofs are available at http://logipedia.science.

References

[1] Ali Assaf. A framework for defining computational higher-order logics. (Un cadre de définition de
logiques calculatoires d’ordre supérieur). PhD thesis, École Polytechnique, Palaiseau, France, 2015.

[2] Ali Assaf, Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles Dowek, Catherine Dubois,
Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. Dedukti: a logical
framework based on the lambda-Pi-calculus modulo theory. Submitted to publication.

[3] Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-pi-calculus mod-
ulo. In Typed Lambda Calculi and Applications, 8th International Conference, TLCA 2007, Pro-
ceedings, 2007.

[4] Gilles Dowek. Analyzing individual proofs as the basis of interoperability between proof systems.
In Proceedings of the Fifth Workshop on Proof eXchange for Theorem Proving, PxTP 2017., 2017.

[5] Bengt Nordström, Kent Petersson, and Jan M. Smith. Martin-Löf’s type theory. In Handbook of
Logic in Computer Science. 2000.

[6] Luiz Carlos Pereira and Ricardo Rodriguez. Normalization, soundness and completeness for the
propositional fragment of Prawitz’ ecumenical system. Revista Portuguesa de Filosofia, 2017.

2
56

Compact, totally separated and well-ordered types in

univalent mathematics

Mart́ın Hötzel Escardó

School of Computer Science, University of Birmingham, UK
m.escardo@cs.bham.ac.uk

Our univalent type theory. We work with an intensional Martin-Löf type theory with an
empty type , a one element type , a type with points 0 and 1, a type N of natural numbers,
and type formers + (disjoint sum), ⇧ (product), ⌃ (sum), W types, and Id (identity type), and
a hierarchy of type universes closed under them, ranged over by U , V, W. On top of that we
add Voevodsky’s univalence axiom and a propositional truncation axiom.

A formal version of the development discussed here is available at our github repository
TypeTopology, in Agda with the option –without-K. We are considering porting this to cubical
Agda, so that no axioms are used and our results get a computational interpretation.

By a proposition we mean a type with at most one element (any two of its elements are
equal in the sense of the identity type). The existential quantification symbol 9 denotes the
propositional truncation of ⌃. We denote the identity type Id X x y by x = y with X elided.
We assume the notation and terminology of the HoTT Book unless otherwise stated.

Compact types. We consider three notions of exhaustively searchable type. We say that
a type X is compact, or sometimes ⌃-compact for emphasis, if the type ⌃(x : X), p x = 0
is decidable for every p : X ! , so that we can decide whether p has a root. We also
consider two successively weaker notions, namely 9-compactness (it is decidable whether there
is an unspecified root) and ⇧-compactness (it is decidable whether all points of X are roots),
obtained by replacing ⌃ by 9 and ⇧ in the definition of compactness.

For the model of simple types consisting of Kleene–Kreisel spaces, these notions of com-
pactness agree and coincide with topological compactness under classical logic, but we reason
constructively here, meaning that we don’t invoke (univalent) choice or excluded middle.

Finite types of the form + + · · · + are clearly compact. The compactness of N is LPO
(limited principle of omniscience), which happens to be equivalent to its 9-compactness, and
its ⇧-compactness is equivalent to WLPO (weak LPO), and hence all forms of compactness for
N are not provable or disprovable in our classically/constructively-neutral foundation.

An example of an infinite compact type is that of conatural numbers, N1, also known as
the generic convergent sequence (this was presented in Types’2011 in Bergen). This type, the
final coalgebra of �+ , is not directly available in our type theory, but can be constructed as
the type of decreasing infinite binary sequences.

We are able to construct plenty of infinite compact types, and it turns out they all can be
equipped with well-orders making them into ordinals.

Ordinals. An ordinal is a type X equipped with a proposition-valued binary relation �<� :
X ! X ! U which is transitive, well-founded (satisfies transfinite induction), and extensional
(any two elements with the same predecessors are equal). The HoTT Book additionally requires
the type X to be a set, but we show that this follows automatically from extensionality. For
example, the types of natural and conatural numbers are ordinals. By univalence, the type of
ordinals in a universe is itself an ordinal in the next universe, and in particular is a set.

57

Compact, totally separated and well-ordered types Mart́ın Hötzel Escardó

Addition is implemented by the type former �+�, and multiplication by the type former ⌃
with the lexicographic order. The compact ordinals we construct are, moreover, order-compact
in the sense that a minimal element of ⌃(x : X), p x = 0 is found, or else we are told that this
type is empty. Additionally, we have a selection function of type (X !) ! X which gives
the infimum of the set of roots of any p : X ! , and in particular our compact ordinals have
a top element by considering p = �x.1.

Discrete types. We say that a type is discrete if it has decidable equality.

Totally separated types. It may happen that a non-trivial type has no nonconstant function
into the type of booleans so that it is trivially compact. For example, this would be the case
for a type of real numbers under Brouwerian continuity axioms. Under such axioms, such types
are compact, but in a uninteresting way. We say that a type is totally separated, again borrowing
a terminology from topology, if the functions into the booleans separate the points, in the sense
that any two points that satisfy the same boolean-valued predicates are equal. This can be seen
as a boolean-valued Leibniz principle. Such a type is automatically a set, or a 0-groupoid, in
the sense of univalent mathematics. We construct a totally separated reflection for any type,
and show that a type is compact, in any of the three senses, if and only if its totally separated
reflection is compact in the same sense.

Interplay between the notions. We show that compact types, totally separated types,
discrete types and function types interact in very much the same way as their topological
counterparts, where arbitrary functions in type theory play the role of continuous maps in
topology, without assuming Brouwerian continuity axioms. For instance, if the types X ! Y
and Y are discrete then X is ⇧-compact, and if X ! Y is ⇧-compact, and X is totally separated
and Y is discrete, then X is discrete, too. The simple types are all totally separated, which
agrees with the situation with Kleene–Kreisel spaces, but it is easy to construct types which
fail to be totally separated (e.g. the homotopical circle) or whose total separatedness gives a
constructive taboo (e.g. ⌃(x : N1), x = 1 ! , where we get two copies of the point 1).

Notation for discrete and compact ordinals. We define infinitary ordinal codes, or ex-
pression trees, similar to the so-called Brouwer ordinals, including one, addition, multiplication,
and countable sum with an added top point.

We interpret these trees in two ways, getting discrete and compact ordinals respectively. In
both cases, addition and multiplication nodes are interpreted as ordinal addition and multipli-
cation. But in the countable sum with a top point, the top point is added with � + in one
case, and so is isolated, and by a limit-point construction in the other case (given our sequence
N ! U of types, we extend it to a family N1 ! U so that it maps 1 to a singleton type, by a
certain universe injectivity construction, and then take its sum).

We denote the above interpretations of ordinal notations ⌫ by �⌫ and K⌫ . The types in the
image of � are discrete and retracts of N, and those in the image of K are compact, totally
separated and retracts of the Cantor type N ! . Moreover, there is an order preserving and
reflecting embedding �⌫ ! K⌫ , which is an isomorphism if and only if LPO holds, but whose
image always has empty complement for all ordinal notations ⌫. An example of such a situation
is the evident embedding N + ! N1 (this inclusion is merely a monomorphism, rather than
a topological embedding, in topological models – the word embedding in univalent mathematics
refers to the appropriate notion for 1-groupoids, which in this example are 0-groupoids). By
transfinite iteration of the countable sum, one can get rather large compact ordinals.

2 58

Deciding several concepts of finiteness for simple types

José Esṕırito Santo1, Ralph Matthes2, and Lúıs Pinto1

1 Centro de Matemática, Universidade do Minho, Portugal
2 Institut de Recherche en Informatique de Toulouse (IRIT), CNRS and Univ. of Toulouse, France

Proofs in propositional logic correspond to �-terms with simple types – this is the Curry-
Howard correspondence. The search for proofs of a given formula corresponds to the search
for �-terms of that type, since formulas are seen as types. Finite successful runs of the search
correspond to the construction of inhabitants of that type, but proof search is more than the set
of its finite successful outcomes. In our previous work (started in [1] and briefly described in [2]),
we developed a representation of the search space for locally correct, bottom-up applications of
the proof rules, not limiting the representation to the construction of (finite) inhabitants. The
data structure we propose is an extension of the �-calculus (more precisely: of a fragment to
describe long normal forms) to a coinductive structure that also allows to express choice points
in the search process. The elements of that structure are called forests, and individual inductive
or even coinductive �-terms can be seen as members of such a forest. In particular, for a given
sequent � = �) A, consisting of a context � (a set of declarations of types for variables) and
a type A, we can define the canonical search space associated with � as the forest S�. The
finite members of S� are precisely the inhabitants of �. More generally, the members of S�,
whether finite or not, represent successful runs of the search procedure (that is, runs which did
not face the impossibility of applying a proof rule); they also represent solutions of the proof
search problem posed by the sequent.

The forests form a coinductive datatype and are therefore not necessarily finitely described
objects. The finitary counterpart to forests is a �-calculus with inductively defined terms (called
finitary forests) that also has the means of expressing choice points and that comes with a formal
fixed-point operator, based on fixed-point variables that are typed with sequents. There is a
natural interpretation of finitary forests as forests, which henceforth allows to check whether
finitary forests put forward are indeed solutions to problems specified semantically (in terms of
forests). The first instance of that methodology is seen in the definition of the finitary forest F�

for a given sequent � (the “finitary representation of �”) whose interpretation is precisely S�.
The termination of the recursive definition of F� exploits the subformula property of (minimal)
propositional logic.1

The inhabitation problem – is there an inhabitant for a given sequent �? – is the first
problem we dealt with in this methodology, and this is sketched in [2] and developed in [4].
With a development that mostly mirrors the steps for inhabitation, we can also decide type
finiteness – are there only finitely many inhabitants for a given sequent �? Having only finitely
many finite members of a forest is inductively characterized by a predicate finfin on forests,
hence by duality its complement is a coinductive predicate in�n (the latter predicate is needed
for coinductive reasoning). We have type finiteness of � i↵ finfin(S�). On the level of finitary
forests, we introduce a parameterized recursive predicate, FFP , where the parameter P is a set
of “good” sequents. Importantly, in one of the clauses of its definition, we need in the premise
the parameterized predicate used for inhabitation, with its parameter set so as to exploit our
algorithm for deciding inhabitation. The theorem on type finiteness characterizes type finiteness
of � by the truth of FF;(F�).

1The results reported so far can be consulted on the arXiv [3], including an extensive discussion of the
decontraction operation that is needed for the interpretation of finitary forests but not mentioned in this abstract.

59

Deciding several concepts of finiteness for simple types

In a similar spirit, one can obtain soundness of a simple counting function on finitary forests
that yields the number of inhabitants if there are only finitely many. Two simple properties
of finitary forests – having no occurrence of fixed-point variables and having no choice points
with at least two options, respectively, can be proven for F� if � is positively non-duplicated
resp. negatively non-duplicated (under an extra proviso). This reproves (and factorizes) gener-
alized coherence theorems (that traditionally give su�cient conditions for having uniqueness of
proofs).

We now come to as of now unpublished material [5]. Type finiteness was taken above to
mean that the sequent only has finitely many inhabitants. But, as soon as one grants the status
of “member” of a sequent � to any member of the forest S�, other natural concepts of finiteness
are possible. One is the finiteness of any member of �. This concept can be related to the
finiteness of the search space, in the spirit of König’s lemma (because the search space is a
kind of tree whose branches are runs). So, finiteness of the search space is another concept of
finiteness. Our main result is that all these concepts of finiteness are decidable, and so is the
property of absence of members (finite or otherwise), which is an extreme form of unprovability.

An interesting observation is that all three mentioned concepts of finiteness of a sequent
� (type finiteness, finiteness of all members, finiteness of the search space) are instances of a
generic finiteness predicate fin⇧(S�), the instances being determined by setting the parameter
⇧, which is a predicate on forests (e. g., finfin is obtained with ⇧ set to the forests that have
finite members). This allows an easy ordering of these three instances, leading to the conclusion
that a sequent has only finitely many inhabitants as soon as all of its members are finite.

Parameterization also allows a single proof of decidability, capturing the three referred in-
stances. The proof follows our methodology of obtaining an equivalent predicate FIN⇧(F�). In
the proof of decidability, we require that ⇧ is decidable, when composed with a certain alter-
native and “simplified” interpretation of finitary forests as forests. So the parameterized proof
of decidability rests on three preliminary decidability results, one of which is the decidability
of absence of members. Therefore, the latter decidability result stays out of the parameterized
scheme and is established separately (but with the same methodology).

The decidability of absence of members also enters in the definition of the pruned search
space generated from a sequent �, where all failed runs are chopped o↵. Pruning is useful
because, in our idealized proof search procedure, a run develops fully and in parallel all of its
branches, and so a failed run may well be an infinite object. Our final result, which we dub
König’s lemma for simple types, says that finiteness of all members of a sequent is equivalent
to finiteness of the pruned search space generated from the sequent.

References

[1] José Esṕırito Santo, Ralph Matthes, and Lúıs Pinto. A coinductive approach to proof search. In
David Baelde and Arnaud Carayol, editors, Proceedings of FICS 2013, volume 126 of EPTCS, pages
28–43, 2013. http://dx.doi.org/10.4204/EPTCS.126.3.

[2] idem. Inhabitation in simply-typed lambda-calculus through a lambda-calculus for proof search. In
Ambrus Kaposi, editor, Book of abstracts for TYPES 2017. http://types2017.elte.hu/proc.pdf.

[3] idem. A coinductive approach to proof search through typed lambda-calculi. http://arxiv.org/

abs/1602.04382, July 2016.

[4] idem. Inhabitation in simply-typed lambda-calculus through a lambda-calculus for proof search.
Mathematical Structures in Computer Science, pages 1–33, April 2018. First View - volume not yet
known, dx.doi.org/10.1017/S0960129518000099.

[5] idem. Decidability of several concepts of finiteness for simple types. Fundamenta Informaticae, 2019.
28 pages. To appear. Author version at https://hal.archives-ouvertes.fr/hal-02119503.

2 60

The Scott Model of PCF in Univalent Type Theory
Tom de Jong

University of Birmingham, United Kingdom

We report on the development of the Scott model of the programming language PCF in
constructive predicative univalent type theory. To account for the non-termination in PCF, we
work with the partial map classifier monad (also known as the lifting monad) from topos theory
[6], which has been extended to constructive type theory by Knapp and Escardó [4, 5].

Our results show that lifting is a viable approach to partiality in univalent type theory.
Moreover, we show that the Scott model can be constructed in a predicative and constructive
setting. Other approaches [1, 3] to partiality either require some form of choice or higher
inductive-inductive types. We show that one can do without these extensions.

Capretta’s delay monad has been used to give a constructive approach to domain theory [2].
However, the objects have the “wrong equality”, so that every object comes with an equivalence
relation that maps must preserve. The framework of univalent mathematics in which we have
placed our development provides a more natural approach. Moreover, we do not make use of
Coq’s impredicative Prop universe and our treatment incorporates directed complete posets
(dcpos) and not just Ê-cpos.

Framework. We work in intensional Martin-Löf Type Theory with inductive types (including
the empty 0, unit 1, natural numbers and identity types),

q
- and

r
-types, functional and

propositional extensionality and propositional truncation. We work predicatively, so we do
not assume propositional resizing. Although we do not need full univalence at any point, we
emphasise the importance of the idea of h-levels, which is fundamental to univalent type theory.

PCF and the Scott model. PCF has a type ÿ for natural numbers and a function type
‡ ∆ · for every two PCF types ‡ and · . Every natural number n is represented as the numeral
n of type ÿ. Moreover, PCF has a fixed point operator. To model this, we work with directed
complete posets (dcpos) with a least element.

The lifting L(X) of a type X is defined as
q

P :�(P æ X), where � is a type universe of
propositions (subsingletons). Note that we can embed X into L(X) by x ‘æ (1,⁄t.x). If X is a
set, then L(X) is a dcpo and it has a least element given by (0, fromemptyX) [5].

We write J‡K for the interpretation of a PCF type ‡, and JtK : J‡K for the interpretation of
a PCF term t : ‡. In our model, JÿK © LN. The function type ‡ ∆ · is interpreted as the dcpo
of continuous maps from J‡K to J·K. For a term s : ‡ ∆ · and a term t : ‡, the application
(st) : · is a term, and is interpreted as function application JsK(JtK).

The operational semantics of PCF induce a binary reduction relation Ûú on terms, where
s Ûú t intuitively means that “s computes to t”. We show our Scott model to work well with the
operational semantics through soundness and computational adequacy. Soundness means that
if s Ûú t, then JsK = JtK. Computational adequacy states that for any PCF term t of type ÿ and
natural number n, if JtK = JnK, then t Ûú n.

Computational adequacy and total functionals. An interesting use of computational
adequacy is that it allows one to argue semantically to obtain results about termination (i.e.
reduction to a numeral) in PCF.

Let ‡ be a PCF type. A functional of type ‡ is an element of J‡K. By induction on PCF
types, we define when a functional is said to be total:

61

The Scott Model of PCF in Univalent Type Theory Tom de Jong

(i) a functional i of type ÿ is total if i = JnK for some natural number n;

(ii) a functional f of type ‡ ∆ · is total if it maps total functionals to total functionals, viz.
f(d) is a total functional of type · for every total functional d of type ‡.

Now, let s be a PCF term of type ‡1 ∆ (‡2 ∆ (· · · (‡n ∆ ÿ) · · ·)). If we can prove that
JsK is total, then computational adequacy allows us to conclude that for all total inputs
Jt1K : J‡1K, . . . , JtnK : J‡nK, the term s(t1, . . . , tn) reduces to the numeral representing
JsK(Jt1K, . . . , JtnK).

Characterising PCF propositions. Recall that PCF terms of type ÿ are interpreted as
elements of the lifting of the natural numbers. Hence, the first projection yields a proposition
for every such term. Soundness and computational adequacy allow us to characterise these
propositions as those of the form ÷n : N(t Ûú n), where t is a PCF term of type ÿ. Intuitively,
these propositions are semidecidable, i.e. of the form ÷n1, . . . , nk : N(P (n1, . . . , nk)) where P is
a decidable predicate on Nk. In proving this, we are led to study indexed W-types, a particular
class of inductive types, and when they have decidable equality. Moreover, we provide some
conditions on a relation for its k-step reflexive transitive closure to be decidable.

Formalisation. Most of our results (including soundness and computational adequacy) have
been formalised in the proof assistant Coq using the UniMath library [7] and Coq’s Inductive
types. The code may be found at https://github.com/tomdjong/UniMath/tree/paper. The
full paper can be found at https://arxiv.org/abs/1904.09810.

Acknowledgements. I would like to thank Mart́ın Escardó for suggesting and supervising
this project. I have also benefited from Benedikt Ahrens’s support and his help with UniMath.

References
[1] Thorsten Altenkirch, Nils Anders Danielsson, and Nicolai Kraus. Partiality, revisited: The parti-

ality monad as a quotient inductive-inductive type. In Javier Esparza and Andrzej S. Murawski,
editors, Foundations of Software Science and Computation Structures, pages 534–549. Springer
Berlin Heidelberg, 2017.

[2] Nick Benton, Andrew Kennedy, and Carsten Varming. Some domain theory and denotational
semantics in coq. In Lecture Notes in Computer Science, pages 115–130. Springer Berlin Heidelberg,
2009.

[3] James Chapman, Tarmo Uustalu, and Niccolò Veltri. Quotienting the delay monad by weak bisim-
ilarity. Mathematical Structures in Computer Science, 29(1):67–92, 2017.

[4] Mart́ın H. Escardó and Cory M. Knapp. Partial elements and recursion via dominances in univalent
type theory. In Valentin Goranko and Mads Dam, editors, 26th EACSL Annual Conference on
Computer Science Logic (CSL 2017), volume 82 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 21:1–21:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017.

[5] Cory Knapp. Partial Functions and Recursion in Univalent Type Theory. PhD thesis, School of
Computer Science, University of Birmingham, June 2018.

[6] Anders Kock. Algebras for the partial map classifier monad. In Lecture Notes in Mathematics,
pages 262–278. Springer Berlin Heidelberg, 1991.

[7] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath — a computer-checked
library of univalent mathematics. https://github.com/UniMath/UniMath.

2
62

Closed Inductive-Inductive Types are Reducible to
Indexed Inductive Types

Ambrus Kaposi1, András Kovács1, and Ambroise Lafont2

1 Eötvös Loránd University, Budapest, Hungary
{akaposi, kovacsandras}@inf.elte.hu

2 IMT Atlantique, Inria, LS2N CNRS, France
ambroise.lafont@inria.fr

Inductive-inductive types [3, 1] (IITs) allow multiple indexed type families in an inductive
definition, where a type family may be indexed over a previously declared one. This enables
intrinsically typed formalizations of syntaxes of type theories. We show that IITs are reducible
to indexed inductive types in a setting with uniqueness of identity proofs and function exten-
sionality.

Signatures and initial algebras for IITs

In [2], a syntax for signatures of quotient inductive-inductive types (QIITs) is given as a domain-
specific type theory, where every typing context can be viewed as a listing of type, value and
equality constructors. It is also shown that initial algebras for all QIITs can be constructed
from terms of the syntax of signatures.

We can get inductive-inductive signatures by taking the equality-free fragment of QIIT
signatures. We also restrict signatures so that they are closed (cannot refer to types external to
a signature). In this case it also holds that all IITs are constructible from terms of the syntax
of II signatures.

However, this syntax of II signatures is given as a QIIT, and thus at this stage we can only
show that if we assume the existence of this particular QIIT, then all IITs exist. We strengthen
this result by giving a construction of the syntax of II signatures from indexed inductive types,
thereby showing that all IITs are in fact constructible from indexed inductive types.

Constructing the syntax of II signatures

This can be viewed as an instance of the initiality problem popularized by Voevodsky: we have
an intrinsically typed categorical notion of model for a particular type theory (the theory of II
signatures), and we aim to construct the initial model, using inductively defined preterms and
well-formedness relations.

However, the initiality proof in our case is simpler than in general, because the theory of II
signatures does not contain �-rules, and thus it is possible to construct the initial model using
only �-normal preterms, avoiding the use of quotients.

Hence, we first define normal preterms and typing relations on them, using indexed inductive
types. Then, we use well-typed preterms to construct a model of the theory of II signatures.
Lastly, we show that the constructed model is initial. We explain the last step in more detail.

Initiality of the term model

Initiality means that we have a recursion principle for II signatures, and recursors are also
unique. This is less convenient in practice than induction, but [2] shows unique recursion to be
equivalent to induction, and in our case it is easier to consider the former.

63

Closed Inductive-Inductive Types are Reducible to Indexed Inductive Types Kaposi, Kovács, and Lafont

To show initiality, we consider an arbitrary model for the theory of II signatures, and exhibit
a unique morphism from the previously given term model to it. We do this in the following
steps. Each step is preformed by induction on the presyntax.

1. We define a relation between the presyntax and the given model.

2. We show that the relation is right-unique.

3. We show that the relation is preserved by substitution.

4. We show that the relation is left-total on well-typed presyntax.

5. Since now the relation is shown to be functional, we can use it to build a model morphism.

6. We show that the model morphism is unique.

Streicher’s previous construction [4] used a family of partial functions from the presyntax to
a given model, which functions are later shown to be total on well-formed presyntax. In contrast,
we use a relation which is later shown to be functional. For our use case, the relational approach
seemed to be more convenient in a mechanized setting, and it could be worthwhile to try it in
initiality proofs for other type theories as well.

Formalization

We formalized in Agda (https://github.com/amblafont/UniversalII/blob/cwf-syntax/
Cwf/) the construction of the syntax of II signatures. Separately, there is an Agda formalization
for [2] in https://bitbucket.org/akaposi/finitaryqiit, which includes the construction of
IITs from the syntax of II signatures.

Note that the [2] formalization assumed definitional computation rules for induction on
signatures, while our current construction of signatures only provides propositional computation
rules. However, we already assume uniqueness of identity proofs (UIP) along with function
extensionality, and also use limited equality reflection in the form of Agda rewrite rules. Hence,
our formalization is largely in an extensional setting, and thus the propositional-definitional
mismatch is not essential. Repeating these constructions without UIP and equality reflection is
a potential line of future work. Another future research would be to extend the current result
to open and infinitary signatures and QIITs.

References
[1] Gabe Dijkstra. Quotient inductive-inductive definitions. PhD thesis, University of Nottingham,

2017.
[2] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-

inductive types. Proceedings of the ACM on Programming Languages, 3(POPL):2, 2019.
[3] Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis, Swansea University, 2013.
[4] Thomas Streicher. Semantics of type theory: correctness, completeness and independence results.

Springer Science & Business Media, 2012.

2
64

A formal, classical proof of the Hahn-Banach theorem

Marie Kerjean1 and Assia Mahboubi1

Inria, LS2N
Marie.Kerjean@inria.fr, Assia.Mahboubi@inria.fr

The state of the art in formalized classical analysis is probably the corpora available for the
HOL-Light and Isabelle/HOL proof assistants [4]. This topic has been much less investigated
using proof assistants based on dependent type theory like Coq or Agda. By contrast, the
latter make possible the investigation of formalized constructive analysis [8]. In this abstract,
we present and discuss a formalization of the Hahn-Banach theorem [9, 2], developed using the
Coq proof assistant and based on the Mathematical Components libraries [1], extended with
some axioms. The Hahn-Banach Theorem is a cornerstone of functional and convex analysis
[10, 7]. Here is the so-called analytical form of the theorem:

Theorem 1. Hahn-Banach. Consider V a real vector space, F a sub-vector space of V .
Consider p a convex scalar function on V and f a scalar linear map on F . There is a linear
scalar map g defined on V , majored by p on V and extending f .

The convex map p is usually instantiated as a semi-norm in locally convex topological
spaces, or as a norm in normed spaces, so as to allow the extension of continuous linear scalar
maps. The so-called geometrical form of the Hahn-Banach theorem is a corollary of the latter
analytical form. It establishes, for any a�ne subspace L of a given topological vector space,
the existence of a separating a�ne hyperplane containing L and disjoint from C, an arbitrary
non-empty open convex set.

The proof of Theorem 1 goes as follows. By elementary arithmetical computations, and
taking benefit of the convexity of p, one shows that a linear partial scalar function bounded by
p can always be extended to a real-line not included in its domain. When the co-dimension of
F is finite, a recurrence on the co-dimension concludes the proof. When this co-dimension is
not known, the existence of a maximal extension is established using a form of choice axiom.
For instance, Rudin [10, 3.3.2] considers the collection of pairs (G, g), where G is a vector space
containing F and g a scalar linear map defined on G, extending f and bounded by p, and the
partial order:

(G1, g1) (G2, g2) i↵ G1 ✓ G2 and g1 g2 on G1.

This collection is non-empty, as it contains the pair (F, f), and is a partial order. Rudin then
uses Zorn’s lemma to conclude.

Up to our best knowledge, there exists few formal proofs of this result in a proof assistant
based on some form of type theory. An entry in the Journal of Formalized Mathematics1

describes its verification using the Mizar proof assistant, which is based on a typed, first-order
presentation of set theory. We are also aware of a proof in the Isabelle/HOL proof assistant [3],
using the Isar language. Cederquist, Coquand and Negri [6] have given a constructive version of
the Hahn-Banach theorem, in a point-free formulation based on formal topology, which seems
to have been formalized [5] in the Alf proof assistant, based on Martin-Löf Type Theory (we
were not able to retrieve the code and the paper seems unpubished).

In this submission, we propose to discuss the formalization of the analytic form of the Hahn-
Banach theorem in the Coq proof assistant, using the Mathematical Components libraries,
extended with some axioms. The corresponding Coq file is available at the following location:

1http://mizar.uwb.edu.pl/JFM/Vol5/hahnban.html

65

https://github.com/math-comp/analysis/blob/hb/hahn_banach.v

The standard library of the Coq proof assistant includes possible extensions which make
classical principles, like choice or excluded middle, available to the user. But the resulting,
dependently typed, formal language remains quite di↵erent in essence from the one used in
Isabelle/HOL, HOL-Light or Mizar. The main point of this submission is to discuss the appro-
priate formalization choices pertaining to this classical, dependently typed setting.

In this formalization work, we make use of the formal definition of vector spaces available
in the Mathematical Components libraries, and we consider a vector space V on a real field R
with a supremum operator. The main issue in this proof is to address the gradual extension
of the initial linear application and the possible pitfalls related to partiality. For instance, the
explicit handling of sub-vector spaces as done in the aforementioned proof by Rudin [10] can
prove quite laborious.

Instead, we consider linear applications defined on the entire space V , and extend gradually
the locus where the application is bounded by p. Moreover, instead of considering an order
relation on subsets of V , we reason on subsets of V ⇥ R, namely on type V ! R ! Prop.
This type is used to represent the graph of the applications successively considered. We define
an appropriate partial order on this type, so as to carry successfully the construction of the
successive extensions.

This talk will include a discussion on the axioms added to CIC for the purpose of the proof,
namely functional extentionality, propositional extentionality, propositional irrelevance and a
choice axiom in the sort Prop. We will also discuss the relation with the constructive approach
in localic spaces [6].

References

[1] Mathematical Components. 2018. https://math-comp.github.io/mcb/.

[2] Stefan Banach. Sur les fonctionnelles linéaires II. Studia Mathematica, 1:223–239, 1929.

[3] Gertrud Bauer and Markus Wenzel. Computer-assisted mathematics at work (the Hahn-Banach
Theorem in Isabelle/Isar). In Types for Proofs and Programs, International Workshop TYPES’99,
Lökeberg, Sweden, June 12-16, 1999, Selected Papers, pages 61–76, 1999.

[4] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Formalization of real analysis: A survey
of proof assistants and libraries. Mathematical Structures in Computer Science, 26(7), 2016.

[5] Jan G. Cederquist. A machine-assisted proof of the Hahn-Banach theorem. http://citeseerx.

ist.psu.edu/viewdoc/download?doi=10.1.1.50.6159&rep=rep1&type=pdf, 1994.

[6] Jan G. Cederquist, Thierry Coquand, and Sara Negri. The Hahn-Banach Theorem in Type Theory,
pages 57–72. Oxford Univ. Press, 10 1998. Imported from DIES.

[7] Frank H. Clarke. Optimization and nonsmooth analysis. Canadian Mathematical Society Series of
Monographs and Advanced Texts. John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience
Publication.

[8] Lúıs Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. C-Corn, the Constructive Coq Repository
at Nijmegen. In Mathematical Knowledge Management, Third International Conference, MKM
2004, Bialowieza, Poland, September 19-21, 2004, Proceedings, pages 88–103, 2004.

[9] Hans Hahn. Über lineare Gleichungssysteme in linearen Räumen. Journal für die reine und
angewandte Mathematik, 157:214–229, 1927.

[10] Walter Rudin. Functional Analysis. McGraw-Hill Book Company, 1991.

66

Extracting Exact Bounds from Typing in a

Classical Framework

Delia Kesner1 and Pierre Vial2

1 Univ. de Paris (IRIF, CNRS)
2 INRIA (LS2N and IMT)

Type systems are designed to capture di↵erent properties of programming languages,
such as for example termination, data races freedom, memory safety, deadlock freedom,
non-interference, privacy, productivity. In this work we use a typing system to provide
exact bounds for consumption of resources [5, 2, 1], notably, time (evaluation lengths) and
space (size of normal forms). We focus on functional languages with control operators (e.g.
the callcc function), which allow to explicitly alter the control flow of programs. Indeed,
control operators can be intuitively seen as goto instructions for functional programming,
allowing not only bypassing some pieces of code, but also backtracking. It is then not
clear how to measure consumption of resources, and in particular evaluation lengths. We
overcome the challenge of this goal by making use of non-idempotent types.

Indeed, our approach is based on intersection and union types [3, 4, 7], which are able to
fully characterize normalization properties, in the sense that a term is typable if and only
if it is normalizing. More precisely, while idempotent intersection and union types provide
only qualitative characterizations as the one mentioned above, we use here non-idempotent
ones [6, 5], which have the power to provide quantitative characterizations, in the sense
that typable terms provide also upper or exact bounds for normalization evaluation lengths
and/or normal form sizes. Giving exact bounds for computations by means of typing is
challenging, particularly because the typing system needs to statically understand the
main ingredients to measure evaluation, which is a dynamic property. Notably, our typing
system gives at the same time exact measures for the number of evaluation steps and the
size of the result, and these integers are measured separately, simply because the size of
the result can be exponentially bigger than the number of steps.

More specifically, we capture the power of functional languages with control operators
by means of the lambda-mu calculus of M. Parigot [8], for which exact bounds, and
even upper bounds, are not easy to establish. From a technical point of view our typing
judgements are decorated with three counters, one to measure �-evaluation lengths, the
second to measure µ-evaluation lengths and a last one to measure the size of the result of
the computation. Our typing system makes use of several key tools, the most important
of which are the following:

• Persistent and consuming arrows. We distinguish between two di↵erent kind
of functional arrows: I ! U is a functional type made by a consuming arrow, which
types an application node that will be consumed during evaluation, while I 9 U is
a functional type made by a persistent arrow, which types a persistent application,
i.e. an application which contributes to the size of the normal form. Building on
this idea, normal (resp. not normal) applications terms will be typed with persistent
(resp. consuming) arrows. Consequently, only persistent arrows contribute to the
size of normal forms, and only consuming arrows contribute to evaluation lengths.

1

67

Extracting Exact Bounds from Typing in a Classical Framework Kesner, Vial

• Activation operator. The type of a µ-abstraction µ↵.c carries the type of all the
commands named ↵ inside c, and particularly, those of neutral normal forms (normal
forms which are not abstractions). Consuming arguments for such a µ-abstraction
creates new application nodes but without creating any new redex. Intuitively,
the type of such neutral terms should be persistent (contributing to the normal
form) whereas the type of µ↵.c should be consuming (contributing to µ-evaluation).
This mismatch explains the introduction of an activation operator, which transforms
persistent functions types (pertaining to neutral terms in commands) into consuming
ones (carried by µ↵.c).

The main contributions of this work are the correctness and completeness results for
typing of functional programming with control operators w.r.t. evaluation. More precisely,

• Correctness: every (tight) typable term with counters (`, m, f) evaluates to a normal
form of size f by means of ` �-steps and m µ-steps.

• Completeness: every term evaluating to a normal form of size f by means of ` �-steps
and m µ-steps is a (tight) typable term with counters (`, m, f).

Our development is carried out for three di↵erent evaluation strategies: head-evaluation,
leftmost-outermost evaluation and maximal evaluation, each of them characterizing, re-
spectively, head, weak and strong normalization in the �µ-calculus.

However, we do not provide one typing system per strategy, but only a unique parametrized
system, that can be instantiated for di↵erent cases, namely, head, leftmost and maximal
evaluation. This allows us to factorize the proofs of the properties pertaining to the three
mentioned strategies. This new approach emphasizes the di↵erences between the di↵erent
systems for the mentioned reduction strategies, by putting together at the same time all
their resemblances.

References

[1] B. Accattoli, S. Graham-Lengrand, and D. Kesner. Tight typings and split bounds. PACMPL,
2(ICFP):94:1–94:30, 2018.

[2] A. Bernadet and S. Lengrand. Complexity of strongly normalising �-terms via non-idempotent
intersection types. In M. Hofmann, editor, Foundations of Software Science and Computation
Structures (FOSSACS), volume 6604 of Lecture Notes in Computer Science. Springer-Verlag,
2011.

[3] M. Coppo and M. Dezani-Ciancaglini. A new type assignment for lambda-terms. Archive for
Mathematical Logic, 19:139–156, 1978.

[4] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the
�-calculus. Notre Dame Journal of Formal Logic, 4:685–693, 1980.

[5] D. de Carvalho. Sémantique de la logique linéaire et temps de calcul. PhD thesis, Université
Aix-Marseille, Nov. 2007.

[6] P. Gardner. Discovering needed reductions using type theory. In TACS, Sendai, 1994.

[7] O. Laurent. On the denotational semantics of the untyped lambda-mu calculus, 2004. Unpub-
lished note.

[8] M. Parigot. �µ-calculus: an algorithmic interpretation of classical natural deduction. In LPAR,
pages 190–201, 1992.

2

68

Dependent Event Types in Event Semantics⇤

Zhaohui Luo1 and Sergei Soloviev2

1 Royal Holloway, University of London, U.K.
zhaohui.luo@hotmail.co.uk

2 IRIT, Toulouse, France
Sergei.Soloviev@irit.fr

It was pointed out recently [1, 7] that refining event types by dependent types and subtyp-
ing is quite useful in analysis of some di�cult cases in Davidson’s event semantics [4, 9]. In
particular, this has led to a satisfactory solution to the event quantification problem [2, 10, 5],
concerning incompatibilities that arise in combining event semantics with the traditional Mon-
tague semantics, about scopes when existential event quantifiers interact with other quantifiers.

The sentence (1) may be seen as a typical example, which contains the general quantifier ‘no’.
Consider its possible interpretations (2) and (3), where Event is the type of all events, e type of
all entities, dog : e ! t a predicate from entities to truth values (of type t), bark : Event ! t
a predicate over events, and agent : Event ! e ! t a thematic relation between events and
entities with agent(e, x) meaning that x acts in event e.1

(1) No dog barked.

(2) ¬9x : e. (dog(x) & 9v:Event. (bark(v) & agent(v, x)))

(3) 9v : Event. ¬9x : e. (dog(x) & bark(v) & agent(v, x))

Note that the second interpretation (3) is incorrect from the commonsense viewpoint: it means
that ‘either there was a non-barking event or there was a barking event whose agent was not
a dog’. However, formally, the incorrect interpretation (3) is acceptable just as the correct one
(2): (3) is a legal formula.

In the standard Montagovian setting, the Davidson’s event semantics has only one type
Event of all events, but the above event quantification problem cannot be resolved merely by
introduction of many non-dependent types of events. Rather, as shown in [7], dependent types
combined with subtyping o↵er a natural solution.

Traditional Davidsonian semantics is built on the basis of Church’s simple type theory as
employed in Montague semantics. We consider two extensions with dependent event types
(depending on thematic roles, such as agent and patient): first, the extension Ce of Church’s
simple type theory by appropriate dependent types and predicates and, secondly, the extension
of a modern type theory (MTT) as employed in MTT-semantics [6, 3]. As in [8], we denote
this extension T [E], where T is an MTT and E the set of basic coercions describing subtyping
relations between dependent event types.

Rather than a single type Event of events, we introduce types of events that are dependent
on some parameters. For instance, an event type can be dependent on agents and patients.
Let Agent and Patient be the types of agents and patients, respectively. Then, for a : Agent
and p : Patient, the dependent type EvtAP (a, p) is the type of events whose agents are a and
whose patients are p, and EvtA(a) is that of events whose agents are a.2

⇤Partially supported by EU COST Action CA15123.
1Other thematic relations may be considered; e.g., patient(e, x) means that x is a target of an action in e.
2Technically, in our framework, the thematic relations such as agent and patient can be defined. In other

words, one does not need to assume such relations anymore.

69

Dependent Event Types in Event Semantics Luo and Soloviev

The relationships between dependent event types are characterised by subtyping (subsump-
tive for Ce and coercive for T [E]), which provide consistency for interpretations that may use
either a supertype or a subtype. Consider again the sentence (1). In MTT-semantics common
nouns are interpreted as types (rather than predicates). One may translate’ the interpretations
(2) and (3) into (4) and (5), respectively (the relation agent disappears: see Fn 2):

(4) ¬9x : Dog. 9v : EvtA(x). bark(v).

(5) 9v : EvtA(x). ¬9x : Dog. bark(v)

Here, ‘literally’, bark(v) would be ill-typed since EvtA(x) is not Event, while bark : Event ! t.
However, with subtyping, bark(v) is well-typed since bark : Event ! t EvetA(x) ! t, for
x : Dog Agent.

Here (5) is not just incorrect, but ill-typed, because the first x is a variable that is not
assumed anywhere, while the correct interpretation is well-typed.

The formalisation of this example in T [E] is similar, and the incorrect interpretation will
also be ill-typed for the same reason, the only di↵erence being that we adopt coercive subtyping
rather than subsumptive subtyping. A standard requirement [8] is coherence of the set E of
basic coercions: e.g., if we consider the chains of coercions EvtAP (a, p) <c1

EvtA(a) <c2
Event

and EvtAP (a, p) <c01 EvtP (p) <c02 Event then c2 � c1 = c02 � c01.
With respect to [7] the talk will present the proofs of the following two new results.

Theorem 1. The system Ce with dependent event types and subsumptive subtyping is a
conservative extension of Church’s simple type theory.
Theorem 2. Let T be a type theory specified in LF and E the set of coercions between
dependent event types. Then, E is coherent and, hence, the type theory T [E], the extension of
T by coercive subtyping specified in E, as described in [8], is a conservative extension of T .

References

[1] N. Asher and Z. Luo. Formalisation of coercions in lexical semantics. Sinn und Bedeutung 17,
Paris, 2012.

[2] L. Champollion. The interaction of compositional semantics and event semantics. Linguistics and
Philosophy, 38:31–66, 2015.

[3] S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type Theories. Wiley & ISTE
Science Publishing Ltd., 2019. (to appear).

[4] D. Davidson. The logical form of action sentences. In: S. Rothstein (ed.). The Logic of Decision
and Action. University of Pittsburgh Press, 1967.

[5] P. de Groote and Y. Winter. A type-logical account of quantification in event semantics. Logic
and Engineering of Natural Language Semantics 11, 2014.

[6] Z. Luo. Formal semantics in modern type theories with coercive subtyping. Linguistics and
Philosophy, 35(6):491–513, 2012.

[7] Z. Luo and S. Soloviev. Dependent event types. In WoLLIC 2017, LNCS 10388, pages 274–287.

[8] Z. Luo, S. Soloviev, and T. Xue. Coercive subtyping: theory and implementation. Information
and Computation, 223:18–42, 2012.

[9] T. Parsons. Events in the Semantics of English. MIT Press, 1990.

[10] Y. Winter and J. Zwarts. Event semantics and abstract categorial grammar. Proc. of Mathematics
of Language 12, LNCS 6878, 2011.

2
70

Universal Algebra in HoTT

Andreas Lynge1 and Bas Spitters2

1 Aarhus University, Aarhus, Denmark
andreaslynge@cs.au.dk

2 Aarhus University, Aarhus, Denmark
b.a.w.spitters@gmail.com

Introduction
Universal algebra is a mathematical theory of algebraic structures. The isomorphism theorems
in universal algebra are generalizations of the isomorphism theorems known from group theory
and ring theory. In universal algebra these theorems apply to all algebras, e.g. groups, rings,
groups acting on sets, etc.

Universal algebra has been developed in type theory before [6, 4, 2]. To model quotient
types and function extensionality, these developments are using setoids. This leads to well-
known problems.

We formalize universal algebra in the HoTT library [1] using Coq’s type class mechanism
[5] in the style of the math-classes library [6]. Propositional truncation and quotient types are
defined in terms of HITs [7, Chapter 6] and the univalence axiom implies function extensionality
[7, Section 4.9]. By using this we avoid the need for setoids. We show that there is a univalent
category of algebras and homomorphisms for a signature. The development contains the three
fundamental isomorphism theorems, which become identification theorems in HoTT.

The following sections give a brief overview of the work. A longer explanation is available
at https://github.com/andreaslyn/Work/blob/master/Math-Bachelor.pdf.

Fundamental definitions
A (multi-sorted) algebra A : Algebra(�) for a signature � : Signature consists of

• A carrier type As : U for each s : Sort(�), where Sort(�) is a type of sorts corresponding
to the signature �. It is required that As is a set for all s : Sort(�).

• An operation uA : Operation(A, u) for each u : Symbol(�). Here Symbol(�) is a type of
function symbols corresponding to �, and

Operation(A, u) ⌘ (As1
! As2

! · · · ! Asn
),

where n : N and s1, . . . , sn : Sort(�) depends on u.

For example, a group G acting on a set S is an algebra with two carrier types, the group G and
the set S. This algebra has the usual group operations: the identity element e : G, the binary
operation · : G ! G ! G, and the inverse operation (�)�1 : G ! G. Additionally there is the
action of G on S, an operation ↵ : G ! S ! S.

A homomorphism f : A ! B between algebras A, B : Algebra(�) is a family of functions
fs : As ! Bs, indexed by s : Sort(�), that preserves operations in the sense that

fsn+1(u
A(x1, x2, . . . , xn)) = uB(fs1(x1), fs2(x2), . . . , fsn(xn)),

for all u : Symbol(�) and xi : Asi .
An isomorphism is a homomorphism f : A ! B where, for all s : Sort(�), fs is both

injective and surjective, or equivalently fs is an equivalence.

71

Universal algebra in HoTT Lynge and Spitters

A property of homomorphisms f : A ! B is that equational laws involving operations, such
as uA(vA(x), y) = wA(x, y), are always preserved,

uB(vB(fr(x)), fs(y)) = ft(u
A(vA(x), y)) = ft(w

A(x, y)) = wB(fr(x), fs(y)).

Results
For generic single-sorted (single carrier type) algebraic structures, Coquand and Danielsson
show that isomorphic structures are equal [3]. This leads us to a central theorem about multi-
sorted algebras:

If there is an isomorphism A ! B between two algebras A, B : Algebra(�), then A = B.

This is in fact an equivalence, which we use to show that there is a (univalent) category �-Alg
of algebras and homomorphisms for signature �. This was previously formalized in HoTT for
single-sorted algebraic structures [7, Section 9.8]. We have generalized this to multi-sorted
algebraic structures, but with a more specific notion of algebraic structure and homomorphism.

We define product algebra, subalgebra and quotient algebra. Product algebras are used
to construct products in the category �-Alg, equalisers are subalgebras, and coequalisers are
quotient algebras. We prove the three isomorphism theorems. The first isomorphism theorem
states that:

Given a homomorphism f : A ! B between algebras A, B : Algebra(�),

• The kernel of f , defined by ker(f)(s, x, y) :⌘ (fs(x) = fs(y)), gives rise to a quotient
algebra A/ ker(f) of A by ker(f).

• Set inim(f)(s, y) :⌘
��P

(x:As)(fs(x) = y)
��, where k�k denotes propositional truncation.

It induces a subalgebra B& inim(f) of B, the homomorphic image of f .

• There is an isomorphism A/ ker(f) ! B& inim(f), and hence A/ ker(f) = B& inim(f).

It follows that any morphism f : A ! B in �-Alg image factorizes A ! B& inim(f) ,! B.
Images are stable under pullback, so the category �-Alg of algebras for signature � is regular.

References
[1] A. Bauer, J. Gross, P. L. Lumsdaine, M. Shulman, M. Sozeau, and B. Spitters. The HoTT Library:

A Formalization of Homotopy Type Theory in Coq. In Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs, CPP 2017, pages 164–172. ACM, 2017. http://doi.
acm.org/10.1145/3018610.3018615.

[2] V. Capretta. Universal Algebra in Type Theory. In Y. Bertot, G. Dowek, A. Hirschowits, C. Paulin,
and L. Théry, editors, Theorem Proving in Higher Order Logics, 12th International Conference,
TPHOLs ’99, volume 1690 of LNCS, pages 131–148. Springer, 1999.

[3] T. Coquand and N. A. Danielsson. Isomorphism is equality. Indagationes Mathematicae, 24(4):1105
– 1120, 2013. In memory of N.G. (Dick) de Bruijn (19182012), http://www.sciencedirect.com/
science/article/pii/S0019357713000694.

[4] E. Gunther, A. Gadea, and M. Pagano. Formalization of Universal Algebra in Agda. Electronic
Notes in Theoretical Computer Science, 338:147–166, 10 2018.

[5] M. Sozeau and N. Oury. First-Class Type Classes. In Proceedings of the 21st International Con-
ference on Theorem Proving in Higher Order Logics, TPHOLs ’08, pages 278–293, Berlin, 2008.
Springer. http://dx.doi.org/10.1007/978-3-540-71067-7_23.

[6] B. Spitters and E. van der Weegen. Type Classes for Mathematics in Type Theory. MSCS, special
issue on ‘Interactive theorem proving and the formalization of mathematics’, 21:1–31, 2011.

[7] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations for Mathe-
matics. http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

2
72

Dijkstra Monads for All
(Extended Abstract)

Kenji Maillard1,2, Danel Ahman3, Robert Atkey4, Guido Martínez5,
Cătălin Hriţcu1, Exequiel Rivas1, and Éric Tanter1,6

1Inria Paris, 2ENS Paris, 3University of Ljubljana, 4University of Strathclyde,
5CIFASIS-CONICET Rosario, 6University of Chile

We propose a semantic framework [4] for specifying and verifying programs with side-effects mod-
eled by computational monads [5]. The framework is based on Dijkstra monads, which have proven
valuable in practice for verifying effectful code [7]. A Dijkstra monad D A w is a monad-like structure
that classifies programs returning values in A and specified by w : WA, where W is what we call a
specification monad. A typical specification monad contains predicate transformers mapping postcon-
ditions to preconditions, and is naturally ordered by pointwise implication. For instance, for code in the
state monad St A = S ! A⇥S, a natural specification monad is W StA = (A⇥S ! P) ! (S ! P),
mapping postconditions (on return values and final states) to preconditions (on the initial states).

Our work [4] was driven by the following two questions: How to associate a specification monad
W to an arbitrary computational monad M? And once we have a computational monad M and a
corresponding specification monad W , can we construct a Dijkstra monad out of them?

A partial answer to these questions was given in Dijkstra Monads for Free (DM4Free) [1]: from a
computational monad defined as a term in a metalanguage called DM, a canonical specification monad
is automatically derived through a syntactic translation. We observe that a monad in DM essentially
yields a monad transformer T , giving rise to both a computational monad T (Id), by applying it to
the identity monad, and a specification monad T (WPure), by applying it to the continuation monad
WPureA = (A ! P) ! P. Returning to our example, W StA can be obtained by applying the monad
transformer StT M A = S ! M(A⇥S) to WPure. Consequently, the class of supported computational
monads is restricted to those that can be decomposed as a monad transformer applied to Id, ruling out
various effects such as nondeterminism or IO, for which no proper monad transformer is known [3].

To overcome this limitation, we decouple the computational monad and the specification monad:
instead of insisting on deriving both monads from the same monad transformer as in DM4Free, we con-
sider them independently and only require that they are suitably related, namely, by a monad morphism.

We illustrate on the computational monad for interactive IO that neither the specification monad
nor the monad morphisms need to be canonical. The IO monad is represented as trees of interactions
IO A = µY.A + (I ! Y) + O ⇥ Y . It is the free monad on two operations: read : IO I , that reads
an input of type I , and write : O ! IO 1, that outputs an element of type O. As IO is a free monad,
a monad morphism out of it is defined by its action on operations. Considering the simple specification
monad WPure, we can define two monad morphisms ✓8, ✓9 : IO ! WPure, differing on read:

✓8(read) = �(p : I ! P). 8i.p i : WPure I ✓9(read) = �(p : I ! P). 9i.p i : WPure I

whereas ✓8/9(write o) forgets the write via �(p : 1 ! P). p ⇤ : WPure 1. ✓8 mandates that a pro-
gram should satisfy the postcondition for all input values, whereas ✓9 accepts programs that satisfy the
postcondition for some input value, analogously to the two modalities of evaluation logic [6].

To provide specifications aware of the output, we apply an update monad transformer [2] to WPure,
obtaining the specification monad WHist X = (X ⇥ E⇤ ! P) ! E⇤ ! P where E = In I | Out O is
the alphabet of IO events. Specifications can now refer to both the history of past events and the trace
of events generated by the program being specified. A monad morphism ✓Hist from IO is given by:
✓Hist(read) = �p h. 8i, p hi, [In i]i : WHist(I) ✓Hist(write o) = �p h. p h⇤, [Out o]i : WHist(1)

73

While WHist provides a good way to reason about IO, some IO programs do not depend on the context
of past interactions. We can provide an even more parsimonious way to specify and verify such programs
by applying a writer transformer to WPure. The resulting specification monad WFr is in fact a special
case of WHist when the history is taken to be 1 [2]. Analogously to the above, a monad morphism ✓Fr

similar to ✓Hist can be defined. These four possibilities of specifying IO can be summarised as follows:

IO

WHist X = (X ⇥ E⇤ ! P) ! E⇤ ! P

WFr X = (X ⇥ E⇤ ! P) ! P
WPure

✓8

✓9

✓Hist

✓Fr

With similar ease, we can also use computational and specification monads to reason about combi-
nations of effects. For example, to reason about computations that can both perform IO and manipulate
state, we can pair the computational monad IOSt X = S ! IO(X ⇥ S) with the specification monad
W IOSt X = (X ⇥ S ⇥ E⇤ ! P) ! S ! E⇤ ! P, with the corresponding monad morphism ✓IOSt

naturally combining the behaviour of ✓Hist and ✓St, where ✓St(f) = �p s. p (f s) : St ! W St. Further,
there exist various natural pairings (via monad morphisms) of computational monads and specification
monads for nondeterminism, exceptions, partiality and their combinations.

A key contribution of our work is the observation that Dijkstra monads can be reconstructed from
such monad morphisms: given a monad morphism ✓ : M ! W , a type A, and a specification w : W A,
we can consider the subtype DMA w = {m : M A | w W ✓(m)} of computations in M returning
values in A and specified by w. This assignment turns out to always provide a Dijkstra monad, and is in
fact part of a (categorical) equivalence between categories of Dijkstra monads and monad morphisms.

We illustrate the applicability of this correspondence on ✓Fr and ✓IOSt: we define two Dijkstra
monads, IOFree A (w : WFr A) and IOST A (w : W IOSt A), and consider the following programs:

let duplicate () : IOFree unit (� p !8i. p ((), [In i; Out i; Out i])) =
let i = read () in write i; write i

let do_io_then_roll_back_state () : IOST unit (� p s h !8i . p (() , s , [In i; Out (s + i + 1)])) =
let s = get () in let i = read () in put (s + i); let s’ = get () in write (s’ + 1); put s

The first program reads the input once and then outputs the read value twice, exactly as expressed in
its specification. The second program combines IO and state, mutating the state to compute the output
from the input, but then rolls back the state to its initial value, again as described by its specification.

The loose coupling between computational and specification monads described here and the corre-
sponding draft paper [4], via monad morphisms, provides great flexibility in choosing the most suitable
candidates for the verification task at hand. We have implemented this framework both in Coq1 and F?2,
and verified example programs using the Dijkstra monads induced by such monad morphisms.

References
[1] D. Ahman et al. “Dijkstra Monads for Free”. In: POPL 17. ACM, Jan. 2017.

[2] D. Ahman et al. “Update Monads: Cointerpreting Directed Containers”. In: TYPES 13.

[3] M. Hyland et al. “Combining algebraic effects with continuations”. In: T.C.S. (2007).

[4] K. Maillard et al. Dijkstra Monads for All. Draft at https://arxiv.org/abs/1903.01237. Mar. 2019.

[5] E. Moggi. “Computational Lambda-Calculus and Monads”. In: LICS ’89. 1989.

[6] A. M Pitts. “Evaluation logic”. In: IV Higher Order Workshop. Springer. 1991.

[7] N. Swamy et al. “Dependent Types and Multi-Monadic Effects in F*”. In: POPL ’16.

1https://gitlab.inria.fr/kmaillar/dijkstra-monads-for-all
2https://github.com/FStarLang/FStar/tree/guido_effects/examples/dm4all

74

How Erasure is Linked to (im)Predicativity

Stefan Monnier and Nathaniel Bos

Université de Montréal - DIRO
monnier@iro.umontreal.ca nathaniel.bos@mail.mcgill.ca

Abstract

Of all the threats to the consistency of a type system, such as side e↵ects and recursion,
impredicativity is arguably the least understood. In this paper, we revisit several type
systems which do include some form of impredicativity and show that they can be refined
to equivalent systems where impredicative quantification can be erased, in a stricter sense
than the kind of proof irrelevance notion used for example for Prop terms in systems like
Coq.

We hope these observations will lead to a better understanding of why and when im-
predicativity can be sound. As a first step in this direction, we discuss how these results
suggest some extensions of those systems which might still enjoy consistency.

1 Introduction

Diagonalization proofs and paradoxes such as “This sentence is false” show the dangers of self
reference: admitting such propositions in a logic leads to inconsistencies. For this reason Russell
introduced the concept of type as well as predicativity (and its inverse).

The stratification enforced by predicativity seems su�cient to protect us from such paradoxes,
but it does not seem to be absolutely necessary either: systems such as System-F are not
predicative yet they are generally believed to be consistent. Some people reject impredicativity
outright, and indeed systems like Agda [Bove et al., 2009] demonstrate that impredicativity
is not indispensable to get a powerful logic. Yet, many popular systems, like Coq [Huet
et al., 2000], do include some limited form of impredicativity, although those limits tend to
feel somewhat ad-hoc, making the overall system more complex, with unsatisfying corner cases.
For this reason we feel there is a need to try and better understand what those limits to
impredicativity should look like.

Let’s disappoint the optimistic reader right away: this paper does not solve this problem.
But during the design of our experimental language Typer [Monnier, 2019], we noticed an
interesting property shared by several existing impredicative systems which are believed to be
consistent, that seemed to link impredicativity and erasability. Some mathematicians, such as
Carnap [Fruchart and Longo, 1996], have argued that impredicative quantification might be
acceptable as long as those arguments are not used in what we could describe as a “significant”
way, so we investigate here whether erasability might be such a notion of “insignificance”.

Arguably, such a link between impredicativity and erasure is already evidenced by systems
like Coq whose impredicative universe is also erasable, and even more so by the propositional
resizing axiom [The Univalent Foundations Program, 2013] which allows impredicativity for all
mere propositions, i.e. types whose inhabitants are all provably equal and hence erasable. But
we here link impredicativity to the somewhat di↵erent notion of erasability of arguments which
are only used in type annotations, such as the implicit arguments in ICC* and EPTS [Barras
and Bernardo, 2008, Mishra-Linger and Sheard, 2008].

75

HELP Stefan Monnier

More specifically, we take various impredicative systems and refine them with annotations of
erasability, and then show that all impredicative quantifications can be annotated as erasable.

Armed with this proverbial hammer, we then look at a few other forms of impredicativity that
are known to break consistency and argue that they look like nails: by restricting those forms
of impredicativity to be erasable we may be able to recover consistency.

The contributions of this work are:

• A proof that in CC! all impredicative functions actually take erasable arguments.

• A proof that in CIC all impredicative functions take erasable arguments and that all large
fields of inductive types are also erasable.

• A potentially consistent extension of CIC with strong elimination of large inductive types.

• A proof that the same idea does not allow impredicativity in more than one universe.

• As needed for some of the above contributions, we sketch a calculus with both inductive
types and erasability annotations. While this is straightforward, we do not know of such a
system published so far, the closest we found being the one described by Bernardo [2009].

References
Bruno Barras and Bruno Bernardo. Implicit calculus of constructions as a programming lan-

guage with dependent types. In Conference on Foundations of Software Science and Com-
putation Structures, volume 4962 of LNCS, April 2008.

Bruno Bernardo. Towards an implicit calculus of inductive constructions. extending the im-
plicit calculus of constructions with union and subset types. In International Conference on
Theorem Proving in Higher-Order Logics, volume 5674 of LNCS, August 2009.

Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda – a functional language with
dependent types. In International Conference on Theorem Proving in Higher-Order Logics,
volume 5674 of LNCS, pages 73–78, August 2009.

Thomas Fruchart and Guiseppe Longo. Carnap’s remarks on impredicative definitions and the
genericity theorem. Technical Report LIENS-96-22, ENS, Paris, 1996.

Gérard P. Huet, Christine Paulin-Mohring, et al. The Coq proof assistant reference manual.
Part of the Coq system version 6.3.1, May 2000.

Alexandre Miquel. The implicit calculus of constructions: extending pure type systems with an
intersection type binder and subtyping. In International conference on Typed Lambda Calculi
and Applications, pages 344–359, 2001.

Nathan Mishra-Linger and Tim Sheard. Erasure and polymorphism in pure type systems. In
Conference on Foundations of Software Science and Computation Structures, volume 4962 of
LNCS, pages 350–364, April 2008.

Stefan Monnier. Typer: ML boosted with type theory and Scheme. In Journées Francophones
des Langages Applicatifs, pages 193–208, 2019.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Math-
ematics. Institute for Advanced Study, 2013.

2 76

� .Qm#H2@*�i2;Q`B+�H S2`bT2+iBp2 QM hvT2 lMBp2`b2b
1/r�`/ JQ`2?Qmb2- :X �X E�ppQb»- �M/ .�MB2H _X GB+�i�»

q2bH2v�M lMBp2`bBiv- JB//H2iQrM- *QMM2+iB+mi- la�

AM ivT2 i?2Q`v- i?2 +QM+2Ti Q7 mMBp2`b2 T`QpB/2b � +QKT`2?2MbBQM bi`m+im`2 7Q` ivT2b- BM
i?2 b2Mb2 i?�i � mMBp2`b2 Bb � ivT2 r?Qb2 BM?�#Bi�Mib �`2 i?2Kb2Hp2b ivT2bX a2K�MiB+b 7Q` ivT2
mMBp2`b2b +�M #2 ;Bp2M BM �TT`QT`B�i2 bQ`ib Q7 +�i2;Q`B2bX

AM ?B;?2`@/BK2MbBQM�H ivT2 i?2Q`v i?2`2 Bb KQ`2 i?�M QM2 bQ`i Q7 K�T #2ir22M ivT2b i?�i r2
r�Mi iQ +QMbB/2`X 6Q` 2t�KTH2- BM >QKQiQTv hvT2 h?2Q`v U>QhhV r2 ?�p2 7mM+iBQMb #2ir22M
ivT2b- �M/ �HbQ 2[m�HBiB2b #2ir22M ivT2b r?B+?- #v i?2 lMBp�H2M+2 �tBQK- �`2 2[mBp�H2Mi iQ
7mM+iBQMb i?�i i�F2 T�`i BM �M 2[mBp�H2M+2X h?mb Bi rQmH/ #2 mb27mH iQ ?�p2 � +�i2;Q`B+�H
b2K�MiB+b BM r?B+? r2 ?�p2 KQ`2 i?�M QM2 bQ`i Q7 KQ`T?BbK, QM2 iQ BMi2`T`2i 7mM+iBQMb #2ir22M
ivT2b �M/ �MQi?2` iQ BMi2`T`2i T�i?b #2ir22M ivT2bX JQ`2Qp2`- r2 rQmH/ HBF2 i?2b2 irQ bQ`ib
Q7 KQ`T?BbK iQ #2 `2H�i2/ #v � lMBp�H2M+2@HBF2 T`BM+BTH2X

AM >Qhh- i?2 T�i?b #2ir22M ivT2b �`2 bvKK2i`B+�H- #mi BM /B`2+i2/ ivT2 i?2Q`B2b- 2X;X (j)-
i?Bb M22/ MQi #2 i?2 +�b2X q2 �`2 BMi2`2bi2/ BM bim/vBM; +�i2;Q`B+�H KQ/2Hb i?�i �HHQr- #mi
/Q MQi `2[mB`2- bm+? /B`2+iBQM�H bvKK2i`v Q7 T�i?bX >Qr2p2`- r2 rBb? iQ `2i�BM QM2 Q7 i?2
KQbi #�bB+ �bT2+ib Q7 >QhhǶb lMBp�H2M+2 7Q` B/2MiBiv ivT2b, r?2M2p2` r2 ?�p2 � T�i? #2ir22M
ivT2b- r2 +�M +Q2`+2 �M 2H2K2Mi Q7 Bib /QK�BM ivT2 �HQM; Bi BM Q`/2` iQ Q#i�BM �M 2H2K2Mi Q7 Bib
+Q/QK�BM ivT2X �b � bHQ;�M- ǳ�HH T�i?b �`2 +Q2`+B#H2ǴX

� /Qm#H2 +�i2;Q`v Bb K�/2 mT Q7 Q#D2+ib- irQ /BbiBM+i bQ`ib Q7 KQ`T?BbKb- r?B+? r2 +�HH
ǳ�``QrbǴ UrBi? ?QKb ǳ ݂ Ǵ �M/ mMBib ǳB/ǴV �M/ ǳT`Q�``QrbǴ UrBi? ?QKb ǳ Ѝ Ǵ �M/ mMBib
ǳlǴV- �M/ b[m�`2b r?Qb2 QTTQbBi2 7�+2b �`2 KQ`T?BbKb Q7 i?2 b�K2 bQ`i �M/ r?Qb2 �/D�+2Mi
7�+2b �`2 KQ`T?BbKb Q7 QTTQbBi2 bQ`ibX a[m�`2b +QKTQb2 BM #Qi? /BK2MbBQMb #v T�biBM;- �M/
�Mv r�v Q7 T�biBM; iQ;2i?2` � +QKTQb�#H2 /B�;`�K vB2H/b i?2 b�K2 +QKTQbBi2(R)X

q2 +�M mb2 i?2 �``Qrb �M/ T`Q�``Qrb Q7 � /Qm#H2 +�i2;Q`v iQ BMi2`T`2i i?2 7mM+iBQMb �M/
T�i?b Q7 � bBKTH2 Ĝ BX2X MQM@/2T2M/2Mi Ĝ /B`2+i2/ ivT2 i?2Q`v r?Qb2 ivT2b �`2 BMi2`T`2i2/ �b
+�i2;Q`B2bX h?2 irQ /BK2MbBQMb �`2 `2H�i2/ #v i?2 T`QT2`iv i?�i �HH T�i?b �`Bb2 7`QK 7mM+iBQMbX
h?Bb Bb r?�i K�F2b i?2K +Q2`+B#H2, iQ +Q2`+2 �HQM; � T�i?- bBKTHv �TTHv i?2 +Q``2bTQM/BM;
7mM+iBQMX �Hi?Qm;? �HH T�i?b �`Bb2 7`QK 7mM+iBQMb- MQi �HH 7mM+iBQMb M22/ ;Bp2 `Bb2 iQ T�i?bX "v
p�`vBM; r?B+? 7mM+iBQMb /Q- r2 +�M +QMbi`m+i KQ/2Hb Q7 mMBp2`b2b rBi? /B772`2Mi T`QT2`iB2bX

�Mv bm+? KQ/2H b�iBb7B2b i?2 7QHHQrBM; lMBp�H2M+2@HBF2 T`BM+BTH2, i?2 #B+�i2;Q`v Q7 ivT2b-
T�i?@/2i2`KBMBM; 7mM+iBQMb �M/ 7mM+iBQM ?QKQiQTB2b #2ir22M i?2K Bb #B2[mBp�H2Mi iQ i?�i Q7
ivT2b- T�i?b �M/ T�i? ?QKQiQTB2b #2ir22M i?2KX h?2 bi`m+im`2 BMi2`T`2iBM; i?Bb HBMF Bb i?�i
Q7 +QKT�MBQMbX

AM � /Qm#H2 +�i2;Q`v- �M �``Qr ԕ " ݂ # �M/ T`Q�``Qr . " Ѝ # �`2 +QKT�MBQMb(k) B7
i?2`2 �`2 b[m�`2b " #

#ԕ B/

.
l

ੁԕ �M/
" "
" #B/ ԕl

.ԕੁ
»h?Bb K�i2`B�H Bb #�b2/ QM `2b2�`+? bTQMbQ`2/ #v h?2 lMBi2/ ai�i2b �B` 6Q`+2 _2b2�`+? G�#Q`�iQ`v mM/2`

�;`22K2Mi MmK#2` 6�N88y@R8@R@yy8j �M/ 6�N88y@Re@R@ykNkX h?2 lXaX :Qp2`MK2Mi Bb �mi?Q`Bx2/ iQ `2T`Q/m+2
�M/ /Bbi`B#mi2 `2T`BMib 7Q` :Qp2`MK2Mi�H Tm`TQb2b MQirBi?bi�M/BM; �Mv +QTv`B;?i MQi�iBQM i?2`2QMX h?2 pB2rb
�M/ +QM+HmbBQMb +QMi�BM2/ ?2`2BM �`2 i?Qb2 Q7 i?2 �mi?Q`b �M/ b?QmH/ MQi #2 BMi2`T`2i2/ �b M2+2bb�`BHv `2T`2b2Mi@
BM; i?2 Q77B+B�H TQHB+B2b Q` 2M/Q`b2K2Mib- 2Bi?2` 2tT`2bb2/ Q` BKTHB2/- Q7 i?2 lMBi2/ ai�i2b �B` 6Q`+2 _2b2�`+?
G�#Q`�iQ`v- i?2 lXaX :Qp2`MK2Mi- Q` *�`M2;B2 J2HHQM lMBp2`bBivX

77

� .Qm#H2@*�i2;Q`B+�H S2`bT2+iBp2 QM hvT2 lMBp2`b2b JQ`2?Qmb2- E�ppQb �M/ GB+�i�

b�iBb7vBM; i?2 7QHHQrBM; 2[m�iBQMb UmT iQ M�im`�H BbQKQ`T?BbKV,

" "
" #
#

B/

ԕ
ԕ
B/

l

.
l

ԕੁ
ੁԕ � " "

#ԕ ԕl

l

l �M/
" " #
" # #B/ ԕ B/

l .
. l

ԕੁ ੁԕ � " #
" #B/ B/

.

.B/
*QKT�MBQMb- r?2M i?2v 2tBbi- �`2 mMB[m2 mT iQ � +�MQMB+�H BbQKQ`T?BbKX q2 r`Bi2 ǳ ࣞԕǴ 7Q` i?2
+QKT�MBQM T`Q�``Qr UBMi2`T`2iBM; � T�i?V Q7 �M �``Qr ԕ UBMi2`T`2iBM; � 7mM+iBQMVX h?2 ivT2@
i?2Q`2iB+ T`QT2`iv i?�i �HH T�i?b �`2 +Q2`+B#H2 +Q``2bTQM/b iQ � `2[mB`2K2Mi i?�i �HH T`Q�``Qrb
#2 ǳ+QKT�MBQM�#H2ǴX

lbBM; +QKT�MBQM bi`m+im`2- r2 +�M BMi2`T`2i � 7Q`K Q7 +Qp�`B�Mi E�M +QKTQbBiBQM BM Qm`
/Qm#H2@+�i2;Q`B+�H mMBp2`b2 KQ/2HbX 6Q` 2t�KTH2- r2 +�M 7BHH i?2 ǳQT2M #QtǴ

" %
%ԕ B// rBi? i?2 b[m�`2

" # %
%ԕ B/ B/

ࣞԕ /
l /ੁԕ B/

>Qr2p2`- BM Q`/2` iQ 7BHH �M QT2M #Qt Q7 i?2 7Q`K" $
%ԕ Ԗ/

r2 rQmH/ M22/ � T`Q�``Qr +Q``2bTQM/BM; iQ i?2 `2p2`b2 Q7 i?2 �``Qr ԖX am+? � T`Q�``Qr Bb FMQrM
�b � +QMDQBMi- �M/ ?�b T`QT2`iB2b /m�H iQ i?Qb2 Q7 +QKT�MBQMbX Ai ?�TT2Mb i?�i � +QKT�MBQM iQ
� H27i �/DQBMi- B7 Bi 2tBbib- Bb M2+2bb�`BHv � +QMDQBMiX h?Bb i2HHb mb r?2M � 7mM+iBQM ;Bp2b `Bb2 iQ �
T�i? BM i?2 `2p2`b2 /B`2+iBQMX q2 K�v `2+Qp2` bvKK2i`B+�H T�i?b BM � mMBp2`b2 #v /2bB;M�iBM;
�b +QKT�MBQM�#H2 i?2 �``Qrb i?�i T�`iB+BT�i2 BM �M �/DQBMi 2[mBp�H2M+2- #2+�mb2 i?2 �``Qrb Q7
�M �/DQBMi 2[mBp�H2M+2 �`2 2�+? H27i �/DQBMi iQ i?2 Qi?2`X

_272`2M+2b
(R) _Q#2`i .�rbQM �M/ _Q#2`i S�`2X ǳ:2M2`�H �bbQ+B�iBpBiv �M/ :2M2`�H *QKTQbBiBQM 7Q`

.Qm#H2 *�i2;Q`B2bǴX AM, *�?B2`b /2 hQTQHQ;B2 2i :ûQKûi`B2 .B77û`2MiB2HH2 *�iû;Q`B[m2b jRXR
URNNjV- TTX 8dĜdNX

(k) J�`+Q :`�M/Bb �M/ _Q#2`i S�`2X ǳ�/DQBMi 7Q` .Qm#H2 *�i2;Q`B2bǴX AM, *�?B2`b /2 hQTQHQ;B2
2i :ûQKûi`B2 .B77û`2MiB2HH2 *�iû;Q`B[m2b 98Xj Ukyy9V- TTX RNjĜk9yX

(j) 1KBHv _B2?H �M/ JB+?�2H a?mHK�MX ǳ� ivT2 i?2Q`v 7Q` bvMi?2iB+ ũ@+�i2;Q`B2bǴX AM, >B;?2`
ai`m+im`2b RXR UkyRdVX

k 78

Compositional Game Theory in Type Theory

Fredrik Nordvall Forsberg

University of Strathclyde, Glasgow, UK
fredrik.nordvall-forsberg@strath.ac.uk

Introduction Game theory is the mathematical theory of rational agents trying to make
optimal decisions, as in the famous example of the Prisoner’s Dilemma, where two prisoners have
to decide whether to give each other up to the authorities or not. Game theory is a major tool
used in e.g. economics, political science, computer science, biology, and philosophy, but for this
tool to be useful, software support is needed — it is not feasible to work with large models of
games using pen and paper only. Unfortunately, computationally modelling and finding optimal
decisions in large games is also computationally hard [Daskalakis et al., 2009].

Compositional game theory Compositional game theory, as introduced by Hedges [2016]
(see also the work of Escardó and Oliva [e.g. 2010]), aims to tackle the problem of scalability
by supporting a compositional modelling of games. This is achieved by equipping games with
input/output “ports” for interacting with their environment, resulting in so-called open games.
The ports are specified by two pairs of sets (X, S) and (Y, R), where we think of X as the history
(or state) of the game, Y as the set of possible moves, R as the type of possible utilities (payo↵s)
in the game, and S as the type of utilities passed on to the environment. A game is then given
by a set of valid strategies, functions explaining how strategies give rise to moves, and how
strategies convert utility into coutility (i.e. utility for the environment), as well as a function
specifying which strategies are optimal for each utility function u : Y ! R — the equilibria of
the game (so called since they often coincide with equilibrium concepts in concrete games):

Definition 1. Let X, Y , S, R : Set. An open game G = (⌃G , PG , CG , EG) : (X, S) ! (Y, R)
consists of:

• a set ⌃G : Set, called the set of strategy profiles of G,

• a function PG : X ! ⌃G ! Y , called the play function of G,

• a function CG : X ! ⌃G ! R ! S, called the coutility function of G, and

• a function EG : X ! (Y ! R) ! P(⌃G), called the equilibrium function of G.

We represent the power set P(A) in type theory by P(A) = A ! Prop (a proof-relevant
version P(A) = A ! Set also seems possible). Using the “type information” present in a game
G : (X, S) ! (Y, R), we can compose it with other games, e.g. given G0 : (X 0, S0) ! (Y 0, R0) we
can construct the game G ⌦G0 : (X ⇥X 0, S ⇥S0) ! (Y ⇥Y 0, R⇥R0) where G and G0 are played
in parallel, and given H : (Y, R) ! (Z, T) with a matching interface (Y, R), we can construct the
game H � G : (X, S) ! (Z, T) where G and then H are played sequentially. In this way, larger
games can be modularly built from smaller, well-understood games, instead of being constructed
monolithically from scratch each time — for instance the Prisoner’s Dilemma game arises as the
parallel composition of two simple Prisoner games. The situation can be summed up as follows:

Theorem 2 (Ghani et al. [2018a]). The collection of pairs of sets, with open games G : (X, S) !
(Y, R) as morphisms, forms a symmetric monoidal category Game. There is a faithful functor
Set ⇥ Setop ! Game embedding a pair of functions (f, g) as the play and coutility functions of a
strategically trivial game.

79

Compositional Game Theory using Dependent Types Nordvall Forsberg

Notice how the opposite category Setop takes the “contravariance” of coutilities into account.
This model also supports many other operations, such as infinite repetition [Ghani et al., 2018b].

Dependently typed open games However, the model described above is not flexible enough
to accurately describe certain games; most notably, strategies are required to be playable in
all states (by the type of the play function PG : X ! ⌃G ! Y), and utility functions must be
ready to assign a payo↵ from the same set R to all moves. As a concrete example, this precludes
the construction of a well-behaved external choice operator � on games, where the state set
of the game G � G0 is the disjoint union of the state sets of G and G0 — we would hope that
this would be a coproduct of games in a natural way, but that hope is thwarted by the need to
over-approximate the strategy set; in general we need a strategy from each game, but for any
fixed state, a strategy from only one game would su�ce. To fix this imprecision, we turn to
dependent types, and replace pairs of sets in the interface of games with families of sets:

Definition 3. Let X, Y : Set, S : X ! Set, R : Y ! Set. A dependently typed open game
G = (⌃G , PG , CG , EG) : (X,S) ! (Y, R) consists of:

• a family of sets ⌃G : X ! Set,

• a function PG :
�
x : X

�
! ⌃G(x) ! Y ,

• a function CG :
�
x : X

�
!

�
� : ⌃G

�
! R(PG x�)) ! S(x), and

• a function EG :
�
x : X

�
!

�
y : Y

�
! R(y) ! P(⌃G(x)).

We see that if S, R and ⌃G are all constant families — i.e. if there is no real dependency —
then a dependently typed open game is exactly an ordinary open game. Again, we can construct
the parallel and sequential composition of dependently typed open games, and we get:

Theorem 4. The collection of families of sets, with dependently typed open games G : (X, S) !
(Y, R) as morphisms, forms a symmetric monoidal category DGame. There is a faithful functor
Fam(Setop) ! DGame.

The category Fam(Setop) is also known as the category of containers [Abbott et al., 2005],
which suggests an intriguing connection between game theory and the theory of data types.

References

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing strictly positive
types. Theoretical Computer Science, 342(1):3–27, 2005.

Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity of
computing a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

Mart́ın Hötzel Escardó and Paulo Oliva. Selection functions, bar recursion and backward
induction. Mathematical Structures in Computer Science, 20(2):127–168, 2010.

Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Compositional game theory. In
LICS 2018, pages 472–481, 2018a.

Neil Ghani, Clemens Kupke, Alasdair Lambert, and Fredrik Nordvall Forsberg. A compositional
treatment of iterated open games. Theoretical Computer Science, 741:48–57, 2018b.

Jules Hedges. Towards compositional game theory. PhD thesis, Queen Mary University London,
2016.

2 80

Dependable Atomicity in Type Theory

Andreas Nuyts1 and Dominique Devriese2

1 imec-DistriNet, KU Leuven, Belgium
2 Vrije Universiteit Brussel, Belgium

Presheaf semantics [Hof97, HS97] are an excellent tool for modelling relational preservation prop-
erties of (dependent) type theory. They have been applied to parametricity (which is about
preservation of relations) [AGJ14], univalent type theory (which is about preservation of equiv-
alences) [BCH14, Hub15], directed type theory (which is about preservation of morphisms) and
even combinations thereof [RS17, CH19]. Of course, after going through the endeavour of con-
structing a presheaf model of type theory, we want type-theoretic profit, i.e. we want internal
operations that allow us to write cheap proofs of the ‘free’ theorems [Wad89] that follow from the
preservation property concerned.

While the models for univalence, parametricity and directed type theory are all just cases of
presheaf categories, approaches to internalize their results do not have an obvious common ances-
tor (neither historically nor mathematically). Cohen et al. [CCHM16] have used the final type
extension operator Glue to prove univalence. In previous work with Vezzosi [NVD17], we used Glue
and its dual, the initial type extension operator Weld, to internalize parametricity to some extent.
Before, Bernardy, Coquand and Moulin [BCM15, Mou16] have internalized parametricity using
completely di↵erent ‘boundary filling’ operators (for extending types) and � (for extending func-
tions). Unfortunately, and � have so far only been proven sound with respect to substructural
(a�ne-like) variables of representable types (such as the relational or homotopy interval I). More
recently, Licata et al. [LOPS18] have exploited the fact that the homotopy interval I is atomic1

— meaning that the exponential functor (I ! xy) has a right adjoint
p

— in order to construct a
universe of Kan-fibrant types from a vanilla Hofmann-Streicher universe [HS97] internally.

A failed attempt to prove parametricity of System F in ParamDTT [NVD17] using Glue and
Weld, set us on a quest to figure out what is the proper way to internalize presheaf semantics. A
comparison of the expressive power of Glue, Weld, �, and a few additional operators, revealed
that � cannot be implemented in terms of these other operators and strongly suggested that —
in this set of operators — � is indispensible when it comes to proving parametricity of System
F [ND18]. This is an unfortunate result, as our models of parametricity with identity extension
[Nuy18] are incompatible with the substructurality of interval variables required by � and .2

We propose a property that we will call dependable atomicity as a key notion to internalize
presheaf semantics. Roughly speaking, we call a closed type I dependably atomic if the (potentially
substructural) dependent function type former ((i : I) (xy) : Ty(�, i : I) ! Ty(�) has a right
adjoint (i G xy) : Ty(�) ! Ty(�, i : I) which we will call the transpension3. Dependable
atomicity of I can be internalized using a transpension type former from which we can implement
 . Interestingly, this is feasible both in substructural and in cartesian settings.

All results presented below are preliminary; we are working on a proof assistant Menkar [ND19]
in order to be able to trust our proofs.

Breaking down presheaf operators Let’s assume we are working in MLTT with a universe
of definitionally proof-irrelevant propositions ' : Prop which can be used as types and which
tend to reduce to > when satisfied. Assume furthermore that we have extension types A[' ? a]
classifying terms of type A that become definitionally equal to a when ' ⌘ >. Under these
circumstances, Moulin’s -operator [Mou16] can be implemented using the transpension type and
a strictness axiom as used by Orton and Pitts [OP18]. Values of the transpension type i G T can

1They use the word tiny, which denotes a weaker property that is equivalent in presheaf categories.
2Discreteness of the ⇧-type is essentially proven by swapping the function argument with an interval variable,

but the substructural interval variables do not admit the exchange law.
3A sensible name would be ‘dependent amazing right adjoint’, as

p
is sometimes called the ‘amazing right

adjoint’, but in our opinion the name ‘transpension’ is more intuitive for reasons explained further.

81

Dependable Atomicity in Type Theory A. Nuyts and D. Devriese

be dependently eliminated to a restricted class of motive types, which we call transpensive in
dimension i. Using this dependent eliminator, we can implement the operator � for constructing
functions to transpensive types. The

p
operator can be implemented as (i : I) ! i G xy in

cartesian settings. Certain instances of Glue and Weld can be constructed using � and in a
cumbersome way [ND18], but as Orton and Pitts show [OP18], Glue can already be implemented
from a strictness axiom. A similar result holds for Weld, though we need an additional pushout type
former for creating simple higher inductive types. Finally, a form of higher dimensional pattern
matching (HDPM) which allows proving theorems such as (I (A] B) ! (I (A)] (I (B) or
((i : I) (Weld {A ! (i = 0 _ i = 1? T, f)}) ! (I (A), becomes possible using the transpension
type.

We can implement ! using # �
p

Glue Weld HDPM

transpension • • • (cart.) •
dep. transp. elimination •
strictness axiom [OP18] • • •
pushouts along snd : '⇥ A ! A •

The transpension type If we model type theory in presheaves over a symmetric semi-cartesian
base category I and interpret context extension with i : I (where I = yI is some representable
object) as a Day-convolution rather than a cartesian product (which generally requires an a�ne
treatment of such variables), then we can soundly introduce a transpension type with the following
unusual formation and introduction rules akin to rules proposed for the �-combinator [BV17]:

�, (i : I) (� ` T type

�, i : I,� ` i G T type
transp

�, (i : I) (� ` t : T

�, i : I,� ` merid t i : i G T
merid

Elimination is done using unmerid : ((i : I) (i G T) ! T , the co-unit of the adjunction (a G.
(A stronger elimination rule may be possible.) The above rules are natural in � and �, though
not necessarily in the position of i in the context.

It is interesting to consider how we can construct terms of type i G T . Clearly, we have
�t.�i.merid t i : T ! (i : I) (i G T . However, assuming I is some cube category, how do
we construct t : 0 G T? The typing rule merid doesn’t cover that, but we can try to prove
(i : I) ((i = 0) ! i G T . Then the premise of merid has an assumption (i : I) ((i = 0) which
is false. Thus (since merid is invertible in the semantics), 0 G T must be a singleton, and the
same holds for 1 G T . We will call the respective elements north = merid 0 and south = merid 1.
The transpension type is thus akin to a dependent version of the suspension type [Uni13, §6.5].

Further properties are obtained by making additional assumptions on the functor I ! I/I :
J 7! (J ⇤ I,⇡2) to the slice category over the object I 2 I that represents I = yI 2 Psh(I). We
will call I: cancellative if this functor is faithful, a�ne if it is full, and connection-free if it is
essentially surjective on objects (K,') where ' : K ! I is split epi.

If I is a�ne and cancellative, then unmerid becomes an isomorphism and the rules transp and
merid become in some sense natural w.r.t. the position of the variable i in the context. If I is
moreover connection-free, then all types are transpensive w.r.t. all variables i : I and � becomes
sound w.r.t. such variables. If I is cancellative and I is cartesian, then transp and merid are
typically not natural in the position of i in the context. However, since we then have the exchange
rule, we may choose to always invoke these rules as though i were the first variable in the context,
putting all other variables in �.

Transpensivity A type A is transpensive along i if it can be torn apart and reconstructed up to
isomorphism using in dimension i. If and likely only if this is the case, then we can dependently
eliminate m : i G T to A i m by providing values of type A 0 north, A 1 south and for every
t : T a path (i : I) (A i (merid t i) connecting them. The transpension type i G T itself is
transpensive, and we expect that the property is respected by most type formers (though likely
not by the universe). Thus, we hope that even in a cartesian setting, we can prove that all System
F types are transpensive and then use � to prove parametricity of System F.

2
82

Dependable Atomicity in Type Theory A. Nuyts and D. Devriese

Acknowledgements We want to thank Jean-Philippe Bernardy, Dan Licata and Andrea Vez-
zosi for inspiring discussions on the subject. Andreas Nuyts holds a Ph.D. Fellowship from the
Research Foundation - Flanders (FWO).

References

[AGJ14] Robert Atkey, Neil Ghani, and Patricia Johann. A relationally parametric model of dependent
type theory. In Principles of Programming Languages, 2014. doi:10.1145/2535838.2535852.

[BCH14] Marc Bezem, Thierry Coquand, and Simon Huber. A Model of Type Theory in Cubical
Sets. In 19th International Conference on Types for Proofs and Programs (TYPES 2013),
volume 26, pages 107–128, Dagstuhl, Germany, 2014. URL: http://drops.dagstuhl.de/

opus/volltexte/2014/4628, doi:10.4230/LIPIcs.TYPES.2013.107.

[BCM15] Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. A presheaf model of para-
metric type theory. Electron. Notes in Theor. Comput. Sci., 319:67 – 82, 2015. doi:http:

//dx.doi.org/10.1016/j.entcs.2015.12.006.

[BV17] Jean-Philippe Bernardy and Andrea Vezzosi. Parametric application. Private communication,
2017.

[CCHM16] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory:
a constructive interpretation of the univalence axiom. CoRR, abs/1611.02108, 2016. URL:
http://arxiv.org/abs/1611.02108.

[CH19] Evan Cavallo and Robert Harper. Parametric cubical type theory. CoRR, abs/1901.00489,
2019. arXiv:1901.00489.

[Hof97] Martin Hofmann. Syntax and semantics of dependent types, chapter 4, pages 13–54. Springer
London, London, 1997. doi:10.1007/978-1-4471-0963-1_2.

[HS97] Martin Hofmann and Thomas Streicher. Lifting grothendieck universes. Unpublished note,
1997.

[Hub15] Simon Huber. A model of type theory in cubical sets. Licentiate’s thesis, University of
Gothenburg, Sweden, 2015.

[LOPS18] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. Internal universes in models of
homotopy type theory. In 3rd International Conference on Formal Structures for Computation
and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, pages 22:1–22:17, 2018. URL:
https://doi.org/10.4230/LIPIcs.FSCD.2018.22, doi:10.4230/LIPIcs.FSCD.2018.22.

[Mou16] Guilhem Moulin. Internalizing Parametricity. PhD thesis, Chalmers University of Technology,
Sweden, 2016.

[ND18] Andreas Nuyts and Dominique Devriese. Internalizing Presheaf Semantics: Charting the
Design Space. In Workshop on Homotopy Type Theory / Univalent Foundations, 2018. URL:
https://hott-uf.github.io/2018/abstracts/HoTTUF18_paper_1.pdf.

[ND19] Andreas Nuyts and Dominique Devriese. Menkar: Towards a multimode presheaf proof assis-
tant. In TYPES, 2019.

[Nuy18] Andreas Nuyts. Presheaf models of relational modalities in dependent type theory. CoRR,
abs/1805.08684, 2018. arXiv:1805.08684.

[NVD17] Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. Parametric quantifiers for depen-
dent type theory. PACMPL, 1(ICFP):32:1–32:29, 2017. URL: http://doi.acm.org/10.1145/
3110276, doi:10.1145/3110276.

[OP18] Ian Orton and Andrew M. Pitts. Axioms for modelling cubical type theory in a topos. Logical
Methods in Computer Science, 14(4), 2018. URL: https://doi.org/10.23638/LMCS-14(4:
23)2018, doi:10.23638/LMCS-14(4:23)2018.

[RS17] E. Riehl and M. Shulman. A type theory for synthetic 1-categories. ArXiv e-prints, May
2017. arXiv:1705.07442.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. http://homotopytypetheory.org/book, IAS, 2013.

[Wad89] Philip Wadler. Theorems for free! In FPCA ’89, pages 347–359, New York, NY, USA, 1989.
ACM. doi:10.1145/99370.99404.

3
83

Menkar: Towards a Multimode Presheaf Proof Assistant

Andreas Nuyts1 and Dominique Devriese2

1 imec-DistriNet, KU Leuven, Belgium
2 Vrije Universiteit Brussel, Belgium

Recently, a number of extensions to dependent type theory have been proposed or refined that are
not easily added to pre-existing proof assistants as they severely impact the nature and manipu-
lation of type-theoretic judgements and therefore require principled implementation choices from
the start. For this reason, we have started the implementation in Haskell of a novel proof assistant
Menkar1 with the aim of supporting features that are relevant to studying modal and multimode
type theory as well as type-systems based on the internalization of properties of a presheaf model.
We take a pragmatic approach, looking for a compromise between soundness, user-friendliness,
ease of implementation, and flexibility with respect to foreseen and unforeseen modifications of
the type system. Unlike projects such as NuPRL and Cedille, we do not intend to demonstrate an
alternative view on type theory. Instead, we keep Menkar very Agda-like and merely aim for an
implementation of some recently proposed features. Below, we discuss how we (plan to) handle
each of the desired features. We conclude by listing possible applications.

Modal type theory In modal type theory, all functions and all variables are annotated with a
modality describing the behaviour of the dependency. Applications include: modal logic (epony-
mously) [PD01], variance of functors [Abe06, Abe08, LH11], intensionality vs. extensionality
[Pfe01], irrelevance [Pfe01, Miq01, BB08, MS08, Ree03, AS12, AVW17, ND18], shape-irrelevance
[AVW17, ND18], parametricity [NVD17], axiomatic cohesion [LS16] and globality [LOPS18]. Pfen-
ning and Abel [Pfe01, Abe06, Abe08] have gradually developed a treatment in terms of an ordered
monoid where left multiplication µ � xy has a left adjoint (a Galois connection) µ \ xy which we
call left division. When type-checking a term � ` t : T , µ-modal subterms are type-checked in
context µ \ �, which is obtained by applying µ \ xy to the modalities of all variables in �. Agda
supports modalities for irrelevance and shape-irrelevance based on the ordered monoid approach
and Vezzosi has made use of this to extend Agda with support for a global (a.k.a. crisp/flat)
modality in agda-flat and with support for parametric modalities in agda-parametric.2

Multimode type theory Sometimes, the set of available modalities µ for functions (µ p x :
A) ! B depends on the types A and B. For example, in previous work [ND18] we developed a
type system which we will refer to as RelDTT, in which functions from N to Bool are either ad
hoc or irrelevant, whereas functions from the universe to Bool can also be parametric and functions
from N to the universe can also be shape-irrelevant. In System F, there is always at most one
modality applicable, but it is not always the same: functions between types are always ad hoc,
while functions from kinds to types are always parametric. Recently, Licata and Shulman have
explained these phenomena by moving from an ordered monoid to a 2-category, whose objects
are called modes and whose morphisms serve as modalities. If there happens to be only a single
mode, then we are essentially back in the ordered monoid setting. In case there are or may be
multiple modes, we speak of multimode type theory, which is thus a generalization of modal type
theory. Here, one assigns a mode to every type, and the modality of a function must match the
domain and codomain modes. For System F, we could have 2 modes: data for types classifying
data and type for kinds classifying types. The modes of RelDTT are called �1, 0, 1, 2, . . . but could
be read as proof, data, type, kind, etc. In Menkar, we aim to support arbitrary multimode type
systems. Every declaration and every variable in Menkar is annotated (implicitly or explicitly)
with a mode matching its type, and a modality that lifts it to the mode of the enclosing module
or context. When type-checking a declaration, all other declarations that are in scope because

1http://github.com/anuyts/menkar
2See the flat and parametric branches at https://github.com/agda/agda.

84

Menkar: Towards a Multimode Presheaf Proof Assistant A. Nuyts and D. Devriese

they are part of enclosing modules, are simply added to the context. This ensures that they too
are subject to the correct left divisions as we move into modal subterms.

Internal mode and modality polymorphism RelDTT [ND18] has infinite sets of modes and
modalities. For this reason, Menkar support for internal mode and modality polymorphism is
more than desirable. For most type systems, this will be stretching the semantics, but in general
we intend to parametrize ⇧- and ⌃-types as well as the universe with mode and/or modality
arguments, on which they depend crisply [LOPS18]. The most striking consequence of modality
polymorphism is that it becomes impossible to compute µ\� by dividing every individual modality
in �, because µ may depend on all variables in �. Hence, in our implementation, left division is a
constructor of the context type. When type-checking a variable, it is checked that the variable’s
modality is less than the composite of all modalities it has been divided by.

Parametric Tarski-universes Our type systems for parametricity [NVD17, ND18] share the
remarkable property that the type T of a term � ` t : T is checked in context par \ �, i.e.
divided by parametricity. Fortunately, this does not require any heavyweight language support.
Instead, the language provides a (typically non-fibrant) universe UniHS (typically modelled by the
Hofmann-Streicher universe [HS97] available in all presheaf models) such that � ` t : T requires
� ` T : UniHS. The fibrant universe is then a di↵erent type Uni equipped with a parametric
function El : (par p Uni) ! UniHS.

Transpension and a�neness In parallel work [ND19] we propose a novel transpension type as
key to internalizing presheaf semantics. This type requires unusual context manipulation, including
the disappearance of variables and universal quantification of other variables. We expect that these
operations can be captured using a variable-indexed modality system with modalities expressing
‘fresh for i’, ‘for all i’ and ‘transpend over i’. We expect these same modalities can be used to
capture semantically related phenomena related to the substructural a�ne-like interval variables
used by Bernardy, Coquand and Moulin [BCM15, Mou16].

Proving fibrancy internally As mentioned before, Menkar provides a type UniHS which is in
general non-fibrant. Indeed, our intention is to model Menkar in the default CwF on an arbitrary
presheaf category [Hof97] and not in a CwF that restricts to fibrant types. Instead, we want to
prove fibrancy internally, avoiding unreadable technical reports such as [Nuy18]. This should often
be possible using the transpension type, which is more general than the

p
-operator used by Licata

et al. [LOPS18], to internalize CCHM fibrancy [CCHM16]. The fibrancy proofs might be made
available in a practical way using instance arguments [DP11].

Relatedness-checking RelDTT [ND18] relies on the notion of judgemental relatedness [Vez17].
We have implemented the core of a relatedness-checker for Menkar, though we are not sure how
to use it. In RelDTT, all types are fibrant (i.e. discrete) meaning that equality coincides with
0-relatedness. Thus, we need not distinguish between judgemental equality and judgemental 0-
relatedness and can seamlessly move from conversion-checking to relatedness-checking, ultimately
ignoring irrelevant subterms. However, in Menkar, types are non-fibrant unless proven otherwise;
hence, a definitional mechanism cannot rely on fibrancy.

Interestingly, using instance arguments it may also be possible to implement a relatedness-
checker within Menkar, which produces propositional evidence. To do so, we would provide an
instance for every term constructor of the language. In order to avoid that the instance for e.g.
application fires always, we should be able to restrict the instance to neutral function terms.

Applications Our own motivation to start the work on Menkar is to obtain an implementation
of RelDTT and of the transpension type, as well as to research a directed version of RelDTT.
However, we believe that Menkar’s features are also valuable for studying cubical HoTT, as well
as guarded type theory including clock-irrelevance [BGC+16] and time warps [Gua18].

2
85

Menkar: Towards a Multimode Presheaf Proof Assistant A. Nuyts and D. Devriese

Acknowledgements Thanks to Andrea Vezzosi for discussions about type-checking a type-
system with extents, and relatedness-checking, and to Andreas Abel for related discussions. An-
dreas Nuyts holds a Ph.D. Fellowship from the Research Foundation - Flanders (FWO).

References

[Abe06] Andreas Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types. PhD thesis,
Ludwig-Maximilians-Universität München, 2006.

[Abe08] Andreas Abel. Polarised subtyping for sized types. Mathematical Structures in Computer
Science, 18(5):797–822, 2008. URL: https://doi.org/10.1017/S0960129508006853, doi:

10.1017/S0960129508006853.

[AS12] Andreas Abel and Gabriel Scherer. On irrelevance and algorithmic equality in predicative
type theory. Logical Methods in Computer Science, 8(1):1–36, 2012. TYPES’10 special issue.
doi:http://dx.doi.org/10.2168/LMCS-8(1:29)2012.

[AVW17] Andreas Abel, Andrea Vezzosi, and Theo Winterhalter. Normalization by evaluation for
sized dependent types. Proc. ACM Program. Lang., 1(ICFP):33:1–33:30, August 2017. URL:
http://doi.acm.org/10.1145/3110277, doi:10.1145/3110277.

[BB08] Bruno Barras and Bruno Bernardo. The Implicit Calculus of Constructions as a Program-
ming Language with Dependent Types, pages 365–379. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008. doi:10.1007/978-3-540-78499-9_26.

[BCM15] Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. A presheaf model of para-
metric type theory. Electron. Notes in Theor. Comput. Sci., 319:67 – 82, 2015. doi:http:

//dx.doi.org/10.1016/j.entcs.2015.12.006.

[BGC+16] Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus Ejlers Møgelberg, and Lars
Birkedal. Guarded dependent type theory with coinductive types. In FOSSACS ’16, 2016.
doi:10.1007/978-3-662-49630-5_2.

[CCHM16] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory:
a constructive interpretation of the univalence axiom. CoRR, abs/1611.02108, 2016. URL:
http://arxiv.org/abs/1611.02108.

[DP11] Dominique Devriese and Frank Piessens. On the bright side of type classes: Instance arguments
in Agda. In 16th International Conference on Functional Programming, pages 143–155. ACM,
2011.

[Gua18] Adrien Guatto. A generalized modality for recursion. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-
12, 2018, pages 482–491, 2018. URL: https://doi.org/10.1145/3209108.3209148, doi:

10.1145/3209108.3209148.

[Hof97] Martin Hofmann. Syntax and semantics of dependent types, chapter 4, pages 13–54. Springer
London, London, 1997. doi:10.1007/978-1-4471-0963-1_2.

[HS97] Martin Hofmann and Thomas Streicher. Lifting grothendieck universes. Unpublished note,
1997.

[LH11] Daniel R. Licata and Robert Harper. 2-dimensional directed type theory. Electr. Notes Theor.
Comput. Sci., 276:263–289, 2011. URL: https://doi.org/10.1016/j.entcs.2011.09.026,
doi:10.1016/j.entcs.2011.09.026.

[LOPS18] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. Internal universes in models of
homotopy type theory. In 3rd International Conference on Formal Structures for Computation
and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, pages 22:1–22:17, 2018. URL:
https://doi.org/10.4230/LIPIcs.FSCD.2018.22, doi:10.4230/LIPIcs.FSCD.2018.22.

[LS16] Daniel R. Licata and Michael Shulman. Adjoint Logic with a 2-Category of Modes, pages
219–235. Springer International Publishing, 2016. doi:10.1007/978-3-319-27683-0_16.

[Miq01] Alexandre Miquel. The implicit calculus of constructions. In TLCA, pages 344–359, 2001.
URL: https://doi.org/10.1007/3-540-45413-6_27, doi:10.1007/3-540-45413-6_27.

[Mou16] Guilhem Moulin. Internalizing Parametricity. PhD thesis, Chalmers University of Technology,
Sweden, 2016.

3
86

Menkar: Towards a Multimode Presheaf Proof Assistant A. Nuyts and D. Devriese

[MS08] Nathan Mishra-Linger and Tim Sheard. Erasure and Polymorphism in Pure Type Systems,
pages 350–364. 2008. URL: https://doi.org/10.1007/978-3-540-78499-9_25, doi:10.

1007/978-3-540-78499-9_25.

[ND18] Andreas Nuyts and Dominique Devriese. Degrees of relatedness: A unified framework for
parametricity, irrelevance, ad hoc polymorphism, intersections, unions and algebra in depen-
dent type theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 779–788, 2018. URL:
https://doi.org/10.1145/3209108.3209119, doi:10.1145/3209108.3209119.

[ND19] Andreas Nuyts and Dominique Devriese. Dependable atomicity in type theory. In TYPES,
2019.

[Nuy18] Andreas Nuyts. Presheaf models of relational modalities in dependent type theory. CoRR,
abs/1805.08684, 2018. arXiv:1805.08684.

[NVD17] Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. Parametric quantifiers for depen-
dent type theory. PACMPL, 1(ICFP):32:1–32:29, 2017. URL: http://doi.acm.org/10.1145/
3110276, doi:10.1145/3110276.

[PD01] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science, 11(4):511–540, 2001. doi:10.1017/S0960129501003322.

[Pfe01] Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal type theory. In
LICS ’01, pages 221–230, 2001. URL: https://doi.org/10.1109/LICS.2001.932499, doi:
10.1109/LICS.2001.932499.

[Ree03] Jason Reed. Extending higher-order unification to support proof irrelevance. In TPHOLs
2003, pages 238–252. 2003. URL: https://doi.org/10.1007/10930755_16, doi:10.1007/

10930755_16.

[Vez17] Andrea Vezzosi. Judgemental relatedness. Private communication, 2017.

4
87

Type Inhabitation in Simply Typed Lambda Calculus
Parameterized by Width

Mateus de Oliveira Oliveira1⇤

University of Bergen, Norway
mateus.oliveira@uib.no

Abstract
In the type inhabitation problem, we are given a type t and the goal is to determine whether there exists a closed

l -term of type t . This problem is known to be PSPACE complete when restricted to the simply typed l -calculus. In
this work, we study the type inhabitation problem in simply typed l -calculus from the perspective of parameterized
complexity theory. More specifically, we introduce a suitable notion of width of a type inhabitation proof, and show
that one can decide the existence of a proof of width at most w in time 2O(w) · |t|, where |t| is the size of the input
type t . In other words, we show that the type inhabitation problem is fixed-parameter linear with respect to the
width parameter.

Keywords: Simply Typed Lambda Calculus, Minimal Logic, Fixed Parameter Tractability.

1 Introduction
In the simply typed l -calculus [2], a type t is said to be inhabited, if there exists at least one closed l -term of type t .
A type is empty if it is not inhabited. For instance, the type ((a ! b) ! a) ! a encoding Pierce’s law is a well
known example of type that is empty. From the point of view of programming language theory, an empty type is a
type that cannot be fulfilled by any program phrase.

In the type inhabitation problem, we are given a type t , and the goal is to determine whether there exists a closed
l -term M of type t . It can be shown that type inhabitation in the simply typed l -calculus is PSPACE complete [5].
In other words, there is an algorithm that takes a suitable n-bit encoding of a given type t , and determines using
space at most nO(1) whether t is inhabited. Additionally, by PSPACE-hardness, any computational problem that
can be solved using polynomial space can be efficiently reduced to the type inhabitation problem. This implies that
unless P = NP = PSPACE, type inhabitation cannot be solved in polynomial time.

In this work, we use techniques from the field of parameterized complexity theory [3] to cope with the intractability
of the type inhabitation problem in the simply typed l -calculus. In particular we introduce a new width measure for
proofs of inhabitation. Subsequently, we show that the problem of determining whether a given input type t has a
proof of width at most w can be solved in time 2O(w) · |t|, where |t| is the size of t . In the jargon of parameterized
complexity theory, we show that the type inhabitation problem in the simply typed l -calculus is fixed-parameter
linear with respect to w. This result is interesting for three main reasons. First, the single-exponential dependence on
the width parameter makes our algorithm practical on current computers for moderate values of width (say w = 20).
Second, the width parameter w imposes no restriction on the actual size of the proofs, and indeed, proofs of constant
width may be already much larger than the size of the input type t itself. Therefore, our algorithm is able to determine
whether a given type has a proof of width at most w without explicitly constructing a proof DAG (or proof tree), in
case such a proof exists1. Third, if our algorithm determines that a proof of width w does not exist, then we at least
have a quantitative lower bound for the complexity of our proof.

1.1 Our Approach
By reasoning in terms of the Curry-Howard isomorphism [4], one can establish a close correspondence between the
simply typed l -calculus and the implicational fragment of propositional intuitionistic logic, also known as minimal

⇤We acknowledge financial support from the Bergen Research Foundation in the context of the project Groovy FPT, and from the Research
Council of Norway in the context of the project Automated Theorem Proving from the Mindset of Parameterized Complexity Theory.

1But such an explicit derivation can be constructed, if needed, in time linear in the size of a minimum-size proof of width w.
88

Type Inhabitation in Simply Typed Lambda Calculus Parameterized by Width M. de Oliveira Oliveira

logic. Using this correspondence, one can associate with each type t a minimal logic formula P(t) in such a way
that t is inhabited if and only if the formula P(t) has a proof P in natural deduction.

Now, let t be an inhabited type, and P be a proof of P(t). Then our next step is to define a suitable directed
acyclic graph G(t,P), which encodes the input type t , the structure of the proof P (i.e. the proof DAG), and the
interdependence between sub-terms occurring in the proof. The graph G(t,P) has one vertex vt for each sub-term
occurring in P . This vertex vt is labeled with the root symbol of t. Now the graph G(t,P) has a directed edge
(vt ,vt 0) labeled with a number i, if and only if t is the i-th child of t 0. Note that a term t may occur several times as a
sub-term of the proof P . Nevertheless, all such sub-terms will correspond to the same vertex vt in the graph G(t,P).
In addition to this graph, we let G(t) be the sub-graph of G(t,P) induced by the vertices vt where t ranges over the
sub-terms of t only.

The reason we choose to encode the whole proof P as a graph is because in this way we can use the machinery
of structural graph theory to define suitable width parameters which are meant to capture the ”complexity” of a
proof. In particular, we choose as our parameter a width measure that we call embedding preserving tree-width,
which has an associated notion of embedding preserving tree-decomposition. Such decompositions are essentially
tree-decompositions of the proof graph G(t,P) which embeds a special isomorphism-invariant tree-decomposition
of the graph G(t). Our main result is formally stated in Theorem 1.

Theorem 1. Given a type t and a positive integer w, one can determine in time 2O(w) · |t| whether P(t) has a
minimum logic proof of width w. As a consequence, one can determine in time 2O(w) · |t| whether t is inhabited.

A proof sketch for Theorem 1 is as follows. We first construct an automaton A(w) that accepts all tree decom-
positions of width at most w of graphs corresponding to legal proofs of tautologies in minimal logic. Even though
the construction of the automaton A(w) is quite intricate, this construction can be performed in time 2O(w) because
the property of being the proof graph of some minimal logic tautology can be checked locally by testing certain
consistency conditions which intuitively encode the application of inference rules. Subsequently, we construct an
automaton B(t,w) that accepts all tree-decompositions of width at most w that embed the special isomorphism-
invariant tree decomposition of the graph G(t). This automaton can be constructed in time 2O(w) · |t|. Subsequently
we construct the intersection automaton C(t,w) = A(w)\B(t,w) that accepts the language L (A(w))\L (B(t,w)).
Then, we have that the type t is inhabited if and only if L (C(t,w)) 6= /0. This can be tested in time 2O(w) · |t|.

We should note that any proposition that is provable in minimal logic has a proof whose structure is a tree (i.e.
a graph of treewidth 1). Therefore, assuming that PSPACE is not equal to DT IME[n] (i.e. the class of problems
solvable in linear time), Theorem 1 cannot hold if one defines the width of a proof simply as the width of its
structural proof DAG. In view of this, it is important to emphasize that the graph G(t,P) encodes substantially more
information about the proof than the underlying proof DAG. In particular what makes our width measure interesting
from an algorithmic point of view is the fact that it takes into consideration the way in which the formulas occurring
during the proof share sub-formulas.

It is also important to note that while the treewidth parameter has been extensively studied in graph theory
and used to provide fixed-parameter tractable algorithms for a large number of NP-hard computational problems
[1], these techniques do not directly apply to our problem, which is a PSPACE hard problem. In particular, the
proof of Theorem 1 uses new tools for the representation and manipulation of an exponential number of possible
decompositions using concise data-structures based on automata theory. We believe that these techniques may be of
independent interest.

References
[1] H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In International Colloquium on Automata,

Languages, and Programming, pages 105–118. Springer, 1988.
[2] A. Church. A formulation of the simple theory of types. The journal of symbolic logic, 5(2):56–68, 1940.
[3] R. G. Downey and M. R. Fellows. Fundamentals of parameterized complexity, volume 4. Springer, 2013.
[4] M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard isomorphism, volume 149. Elsevier, 2006.
[5] P. Urzyczyn. Inhabitation in typed lambda-calculi (a syntactic approach). In International Conference on Typed Lambda

Calculi and Applications, pages 373–389. Springer, 1997.

2
89

1z2+ib- am#biBimiBQM �M/ AM/m+iBQM
�M 1tTHQbBp2 JûM�;2 ¨ h`QBb

SB2``2@J�`B2 Sû/`Qi1 �M/ LB+QH�b h�#�`2�m1

AM`B� _2MM2b Ĝ "`2i�;M2 �iH�MiB[m2- GakL

aBM+2 i?2 BM+2TiBQM Q7 /2T2M/2Mi ivT2 i?2Q`v- b2p2`�H T2QTH2 i`B2/ iQ �TTHv i?2 i2+?MB[m2b
+QKBM; 7`QK bBKTHv@ivT2/ b2iiBM;b iQ 2M`B+? Bi rBi? M2r `2�bQMBM; T`BM+BTH2b mbBM; 2z2+ib-
ivTB+�HHv +H�bbB+�H HQ;B+X h?2 2�`Hv �ii2KTib r2`2 KBt2/- B7 MQi Qmi`B;?i 7�BHm`2bX JQbi MQ@
i�#Hv- "�`i?2 �M/ lmbi�Hm b?Qr2/ i?�i r`BiBM; � ivT2/ *Sa i`�MbH�iBQM T`2b2`pBM; /2T2M/2Mi
2HBKBM�iBQM r�b Qmi Q7 `2�+? (R)- �M/ bBKBH�`Hv >2`#2HBM T`Qp2/ i?�i CIC Bb BM+QMbBbi2Mi rBi?
+QKTmi�iBQM�H +H�bbB+�H HQ;B+ (j)X

_2i`QbT2+iBp2Hv- i?Bb b?QmH/ MQi ?�p2 #22M i?�i bm`T`BbBM;X h?Bb BM+QKT�iB#BHBiv Bb i?2 `2@
~2+i Q7 � p2`v �M+B2Mi Bbbm2, KBtBM; +H�bbB+�H HQ;B+ rBi? i?2 �tBQK Q7 +?QB+2- r?Qb2 BMimBiBQMBbiB+
p2`bBQM Bb � +QMb2[m2M+2 Q7 /2T2M/2Mi 2HBKBM�iBQM- Bb � r2HH@FMQrM bQm`+2 Q7 7QmM/�iBQM�H T`Q#@
H2Kb (8)X q?BH2 BM i?2 HBi2`�im`2 Km+? 2KT?�bBb ?�b #22M Tmi QM i?2 T�`iB+mH�` +�b2 Q7 +H�bbB+�H
HQ;B+- r2 �`;m2 ?2`2 i?�i i?Bb Bb �M BMbi�M+2 Q7 � #`Q�/2` T?2MQK2MQM- M�K2Hv i?�i bB/2@2z2+ib
�`2 �i Q//b rBi? /2T2M/2Mi ivT2 i?2Q`v- BM � TB+F irQ Qmi Q7 i?`22 +QMmM/`mKX h?Bb KBbK�i+?
Bb 2pQ+�iBp2Hv /m##2/ i?2 KûM�;2 ¨ i`QBb �M/ Bb 2K#Q/B2/ #v i?2 7QHHQrBM; i?2Q`2K- r?B+? Bb �
;2M2`�HBx�iBQM Q7 >2`#2HBMǶb T�`�/QtX

h?2Q`2K R U1tTHQbBp2 KûM�;2 ¨ i`QBbVX � ivT2 i?2Q`v i?�i 72�im`2b Q#b2`p�#H2 2z2+ib �M/
2MDQvb #Qi? �`#Bi`�`v bm#biBimiBQM �M/ /2T2M/2Mi 2HBKBM�iBQM Bb HQ;B+�HHv BM+QMbBbi2MiX

q2 /2b+`B#2 KQ`2 BM /2i�BH i?2 T`2KBb2b Q7 i?Bb i?2Q`2K ?2`2�7i2`- r?2`2 ⋆ bi�M/b 7Q` �Mv
T`QQ7 i2`K- MQi M2+2bb�`BHv mMB[m2X

.2}MBiBQM RX am#biBimiBQM Bb i?2 �/KBbbB#BHBiv Q7 i?2 7QHHQrBM; `mH2X
Γ, x : A ⊢ ⋆ : B Γ ⊢ u : A

Γ ⊢ ⋆ : B{x := u}

.2}MBiBQM kX .2T2M/2Mi 2HBKBM�iBQM QM #QQH2�Mb Bb i?2 �/KBbbB#BHBiv Q7 i?2 7QHHQrBM; `mH2X
Γ, x : B ⊢ A : ! Γ ⊢ ⋆ : A{x := true} Γ ⊢ ⋆ : A{x := false}

Γ, x : B ⊢ ⋆ : A

6BM�HHv- r2 M22/ iQ 2tT`2bb r?�i Bi K2�Mb 7Q` � ivT2 i?2Q`v iQ #2 Q#b2`p�#Hv 2z2+i7mHX
AMimBiBp2Hv- � ivT2 i?2Q`v Bb Tm`2 r?2M 2p2`v i2`K Q#b2`p�iBQM�HHv #2?�p2b �b � p�Hm2X aQ �
bBKTH2 r�v iQ 7Q`K�HBx2 r?�i Bi K2�Mb iQ #2 2z2+i7mH Bb iQ b�v i?�i i?2`2 2tBbib � #QQH2�M i2`K
r?B+? Bb MQi Q#b2`p�iBQM�HHv 2[mBp�H2Mi iQ true MQ` falseX

.2}MBiBQM jX � ivT2 i?2Q`v Bb Q#b2`p�#Hv 2z2+i7mH B7 i?2`2 2tBbib � +HQb2/ i2`K ⊢ t : B i?�i Bb MQi
Q#b2`p�iBQM�HHv 2[mBp�H2Mi iQ � p�Hm2- i?�i Bb- i?2`2 2tBbib � +QMi2ti C bm+? i?�i C[true] ≡ true

�M/ C[false] ≡ true- #mi C[t] ≡ false- r?2`2 ≡ /2MQi2b /2}MBiBQM�H 2[m�HBivX

S`QQ7X q2 /2}M2 2[m�HBiv �M/ 2KTiv ivT2 mbBM; i?2 bi�M/�`/ BKT`2/B+�iBp2 2M+Q/BM;- �M/ r2
i�F2 t �M/ C �b T`QpB/2/ #v .2}MBiBQM kX "v /2T2M/2Mi 2HBKBM�iBQM- Bi ?QH/b i?�i x : B ⊢ C[x] =
trueX "v bm#biBimiBQM- ⊢ C[t] = trueX "v +QMp2`bBQM �M/ #2+�mb2 C[t] ≡ false- i?Bb BKTHB2b
⊢ false = trueX "mi- #v /2T2M/2Mi 2HBKBM�iBQM- r2 �HbQ ?�p2 ⊢ false = true → ⊥X

90

�M 1tTHQbBp2 JûM�;2 ¨ h`QBb Sû/`Qi �M/ h�#�`2�m

1t�KTH2 RX Ai Bb TQbbB#H2 iQ mb2 callcc (k) iQ r`Bi2 � i2`K decide : ! → B i?�i /2+B/2b
BM?�#Bi�M+2 Q7 � ivT2X P#pBQmbHv- decide A +�MMQi 2p�Hm�i2 iQ � p�Hm2 BM ;2M2`�HX am+? i2`Kb
�`2 +�HH2/ #�+Fi`�+FBM; Q` MQM@bi�M/�`/- �M/ �`2 i?2 `QQi Q7 >2`#2HBMǶb T�`�/QtX

6�+BM; i?Bb BKTQbbB#BHBiv i?2Q`2K- r2 #`B2~v HBbi TQbbB#H2 r�vb Qmi �M/ i?2B` i`�/2@QzbX

LQ 1z2+ib h?Bb Bb i?2 ;QQ/ QH/ CIC- 72�im`BM; #Qi? bm#biBimiBQM �M/ /2T2M/2Mi 2HBKBM�iBQMX

*�HH@#v@p�Hm2 1p2`v 7mM+iBQM +�M 2tT2+i Bib �`;mK2Mi iQ #2 � p�Hm2- r?B+? 2tTH�BMb r?v /2@
T2M/2Mi 2HBKBM�iBQM Bb �Hr�vb p�HB/, true �M/ false �`2 i?2 QMHv MQM@p�`B�#H2 #QQH2�M
p�Hm2bX *QMbi`�biBM;Hv- bm#biBimiBQM Bb MQr #v /2}MBiBQM `2bi`B+i2/ iQ p�Hm2bX :2M2`�HBx@
BM; Bi iQ �`#Bi`�`v i2`Kb Bb MQi +Q``2+i B7 i?2`2 �`2 2z2+i7mH i2`Kb- �b 2pB/2M+2/ #v i?2
`2[mB`2K2Mi Q7 � p�Hm2 `2bi`B+iBQM BM KQbi bvbi2KbX �H#2Bi MQi bi`B+iHv bT2�FBM; /2T2M/2Mi
ivT2 i?2Q`v- i?Bb Bb i?2 T�i? 7QHHQr2/ #v PML (9)X

*�HH@#v@M�K2 AM i?Bb b2iiBM;- bm#biBimiBQM �Hr�vb ?QH/b #v +QMbi`m+iBQMX >Qr2p2`- �b �H@
`2�/v MQiB+2/ BM (e)- /2T2M/2Mi 2HBKBM�iBQM Bb MQr HQbi BM ;2M2`�HX A7 i?2`2 �`2 2z2+i7mH
i2`Kb- FMQrBM; i?2 #2?�pBQm` Q7 � T`2/B+�i2 QM #QQH2�M p�Hm2b Bb MQi 2MQm;? iQ FMQr
i?2 #2?�pBQm` Q7 i?2 T`2/B+�i2 BM ;2M2`�H- �b i?2`2 Bb � /2bvM+?`QMBx�iBQM #2ir22M 2z2+ib
T2`7Q`K2/ BM i?2 i2`K �M/ 2z2+ib T2`7Q`K2/ BM i?2 ivT2 /m`BM; T�ii2`M@K�i+?BM;X h?Bb
Bb r?�i BTT (e) Bb �HH �#QmiX

"QQK Ai Bb TQbbB#H2 iQ b�iBb7v i?2 T`2KBb2b Q7 i?2 i?2Q`2K- �i i?2 2tT2Mb2 Q7 +QMbBbi2M+vX h?2
2t+2TiBQM�H ivT2 i?2Q`v (d) Bb bm+? �M BMbi�M+2X q?BH2 b22KBM;Hv +QM+2`MBM; �i }`bi- QM2
+�M �`;m2 i?�i i?Bb Bb � T�`�/B;K b?B7i 7`QK � /2T2M/2Mi ivT2 i?2Q`v iQ � /2T2M/2MiHv@
ivT2/ T`Q;`�KKBM; H�M;m�;2- r?2`2 +QMbBbi2M+v Bb MQi `2H2p�MiX

q2 rBHH ;Bp2 KQ`2 BM@/2Ti? BMbB;?ib �#Qmi i?2b2 T�`�/B;Kb- �M/ �/pQ+�i2 7Q` �M 2M+QKT�bb@
BM; i?2Q`v +�HH2/ ∂*"So (3)X h?Bb Bb � ;2M2`�HBx�iBQM Q7 +�HH@#v@Tmb?@p�Hm2 iQ /2T2M/2Mi ivT2b
�HHQrBM; 7Q` � mMB7Q`K b2iiBM; BM r?B+? /2b+`B#2 i?2b2 2z2+i7mH i?2Q`B2bX

_272`2M+2b
(R) :X "�`i?2 �M/ hX lmbi�HmX *Tb i`�MbH�iBM; BM/m+iBp2 �M/ +QBM/m+iBp2 ivT2bX AM S`Q+22/BM;b Q7

S�`iB�H 1p�Hm�iBQM �M/ a2K�MiB+b@#�b2/ S`Q;`�K J�MBTmH�iBQM- T�;2b RjRĜR9kX �*J- kyykX
(k) hX :`B{MX � 7Q`KmH�2@�b@ivT2b MQiBQM Q7 +QMi`QHX AM a2p2Mi22Mi? avKTQbBmK QM S`BM+BTH2b Q7

S`Q;`�KKBM; G�M;m�;2b- a�M 6`�M+Bb+Q- *�HB7Q`MB�- la�- C�Mm�`v RNNy- T�;2b 9dĜ83- RNNyX
(j) >X >2`#2HBMX PM i?2 /2;2M2`�+v Q7 bB;K�@ivT2b BM T`2b2M+2 Q7 +QKTmi�iBQM�H +H�bbB+�H HQ;B+X AM

SX l`xv+xvM- 2/BiQ`- a2p2Mi? AMi2`M�iBQM�H *QM72`2M+2- hG*� Ƕy8- L�`�- C�T�MX �T`BH kyy8- S`Q@
+22/BM;b- pQHmK2 j9eR Q7 G2+im`2 LQi2b BM *QKTmi2` a+B2M+2- T�;2b kyNĜkkyX aT`BM;2`- kyy8X

(9) _X G2TB;`2X � +H�bbB+�H `2�HBx�#BHBiv KQ/2H 7Q` � b2K�MiB+�H p�Hm2 `2bi`B+iBQMX AM k8i? 1m`QT2�M
avKTQbBmK QM S`Q;`�KKBM;- 1aPS kyRe- T�;2b 9deĜ8yk- kyReX

(8) SX J�`iBM@Gƺ7X Ryy u2�`b Q7 w2`K2HQǶb �tBQK Q7 *?QB+2, q?�i r�b i?2 T`Q#H2K rBi? Bi\ *QKTmiX
CX- 9NUjV,j98Ĝj8y- kyyeX

(e) SX@JX Sû/`Qi �M/ LX h�#�`2�mX �M 2z2+i7mH r�v iQ 2HBKBM�i2 �//B+iBQM iQ /2T2M/2M+2X AM jkM/
avKTQbBmK QM GQ;B+ BM *QKTmi2` a+B2M+2- GA*a kyRd- _2vFD�pBF- A+2H�M/- CmM2 ky@kj- kyRd- T�;2b
RĜRkX A111 *QKTmi2` aQ+B2iv- kyRdX

(d) SX@JX Sû/`Qi �M/ LX h�#�`2�mX 6�BHm`2 Bb LQi �M PTiBQM Ĝ �M 1t+2TiBQM�H hvT2 h?2Q`vX AM kdi?
1m`QT2�M avKTQbBmK QM S`Q;`�KKBM;- 1aPS kyR3- T�;2b k98ĜkdR- kyR3X

(3) SX@JX Sû/`Qi �M/ LX h�#�`2�mX h?2 6B`2 h`B�M;H2X .`�7i �i ?iiTb,ffrrrXTö/`QiX7`f�`iB+H2bf
/+#TpXT/7- kyRNX

k
91

Coherence for symmetric monoidal groupoids in HoTT/UF

Stefano Piceghello

University of Bergen, Norway
stefano.piceghello@uib.no

We aim to produce a formalized proof of coherence for symmetric monoidal groupoids in
HoTT, using equivalent constructions of a free symmetric monoidal groupoid that highlight
di↵erent properties: commutativity of coherence diagrams, normal forms of symmetric monoidal
expressions, and invariance under symmetries.

Our analysis starts from monoidal structures without symmetries. The proof of a statement
for coherence for monoidal categories – namely, “in a free monoidal category, every diagram
commutes” – in intensional MLTT was formalized in ALF in [1]; in there, a category consists of a
set of objects and a family of Hom-setoids. A similar result can be obtained in HoTT, where we
choose instead to employ the built-in higher groupoid structure of types to represent categories
with all arrows invertible (i.e., groupoids), using the correspondence between objects and terms,
invertible arrows and paths, and commutative diagrams and 2-paths. This set-up is su�cient to
express the same statement for coherence, since (a.) all arrows in a free monoidal category are
products of instances of the natural isomorphisms defining the monoidal structure, and hence
they are invertible; and (b.) coherence is achieved by means of strong monoidal functors. A
monoidal groupoid is then a 1-type endowed with a monoidal structure, and coherence can be
formulated as follows: a free monoidal 1-type is monoidally equivalent to a monoidal 0-type.

In order to explicitly describe the free monoidal 1-type on a type X of generators, we use
higher inductive types (HITs) as in [2]. We define the recursive HIT F (X) with 0-constructors
for the objects of the groupoid (a unit, the inclusion of the generators, and a monoidal product),
1-constructors for associativity of the monoidal product and the unit laws, 2-constructors for
the coherence diagrams, and a 1-truncation. A normalization of the monoidal expressions in
F (X) is then used to show that this type is monoidally equivalent to the type list(X) of lists
over X, with list concatenation as the monoidal product. This is then easily proven to be a
0-type whenever X is.

F (X) ::= e : F (X) | g : X ! F (X) | ⌦ : F (X) ! F (X) ! F (X)

| ↵ : (a, b, c : F (X)) ! (a ⌦ b) ⌦ c = a ⌦ (b ⌦ c) | � : (b : F (X)) ! e ⌦ b = b

| ⇢ : (a : F (X)) ! a ⌦ e = a | ⌧ : (a, b : F (X)) ! (⇢a ⌦ 1b) · ↵a,e,b = (1a ⌦ �b)

| ⇡ : (a, b, c, d : F (X)) ! (↵a,b,c ⌦ 1d) · ↵a,b⌦c,d · (1a ⌦ ↵b,c,d) = ↵a⌦b,c,d · ↵a,b,c⌦d

| trunc : IsTrunc 1 F (X)

Though conceptually similar to [1], our HoTT-based implementation presents important
features of their own. First of all, the elimination principle of F (X) guarantees that this
type really represents a free monoidal groupoid, in the precise sense that the construction is
left-adjoint to the forgetful functor to types (this one realized by the first projection out of
a ⌃-type). Secondly, in [1] the normalizing functor from monoidal expressions to lists factors
through endomorphisms of list(X), where associativity and the unit laws hold definitionally.
While appropriate for the task, this method does not generalize to other coherence theorems
(e.g. when symmetry is part of the structure), so we choose to adopt a more straightforward
approach, by mapping the monoidal product directly to list concatenation. Finally, as the
coherence morphisms and diagrams rest on identity types, the resulting proof of a monoidal

92

Coherence for symmetric monoidal groupoids in HoTT/UF Stefano Piceghello

equivalence F (X) ' list(X) is much shorter than the one in [1] (performed by induction on the
arrows of the category): all the cases with an analogue in the groupoid structure of identity
types – inverses, composition, product of arrows – are redundant in our proof. The trade-o↵
for this approach is its intrinsic specificity to structures with invertible morphisms only.

We then investigate symmetric monoidality. A free symmetric monoidal 1-type FS(X)
defined similarly to F (X) can be proven to be equivalent, via a strong symmetric monoidal
functor, to another HIT slist(X) defined with the 0-constructors of lists, 1-constructors for
transpositions of two adjacent elements in a list, 2-constructors for the relations between the
transpositions, matching those in the presentation of the symmetric groups ⌃n,

⌃n :=
(a1, . . . , an�1)

a2
i = 1, (aiai+1)

3 = 1,
aiaj = ajai for |i � j| � 2

(1)

and a 1-truncation. In contrast to list(X), the type slist(X) (and hence FS(X)) is, in general,
not a 0-type, as indeed not every diagram in a free symmetric monoidal groupoid commutes.

While slist(X) is essentially meant to represent a “free permutative 1-type”, i.e. a free
symmetric monoidal 1-type in which associativity and the unitors are strict, our framework
does not actually allow to express strictness of a monoidal structure, so coherence cannot be
concluded by the established equivalence alone. A proof of coherence would instead entail
showing that the connected components of slist(X) corresponding to lists with no repetitions
are contractible. We believe that this can be attained in the following way: first of all, by
exhibiting a symmetric monoidal equivalence

slist(X) '
X

n:nat

X

A:B⌃n

(A ! X), (2)

where B⌃n is the classifying space of the symmetric group ⌃n, and then by observing that
X

n:nat

X

A:B⌃n

(A ,! X),

i.e. the subtype selecting symmetric monoidal expressions with no repetitions, is a 0-type. The
equivalence in (2) should follow from the equivalence between the description of B⌃n as

B⌃ :⌘ (n : nat) !
X

Y :U
kY ' Fin(n)k�1

and the family, indexed by nat, of deloopings of ⌃n. This can be defined as a family of 1-
truncated HITs, with a basepoint in the first type in the family, an inclusion of each type into
the next one, and a new loop at each type, satisfying the relations defining ⌃n as in (1).

The last equivalence and the one in (2) are, at the present time, yet to be formalized. All
other claims have been formalized in Coq using the HoTT library1.

References

[1] Ilya Beylin and Peter Dybjer. Extracting a proof of coherence for monoidal categories from a proof
of normalization for monoids. In Types for Proofs and Programs, pages 47–61. Springer Berlin
Heidelberg, 1996.

[2] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

1https://github.com/HoTT/HoTT

2
93

Twisted Cubes via Graph Morphisms
Gun Pinyo and Nicolai Kraus

University of Nottingham, Eötvös Loránd University

Short description. Twisted cubes are a variation of a cube category that has previously been
used to model homotopy type theory [1]. Here, we describe how twisted cubes are constructed
and what their properties are. The talk is based on our preprint [5].

General Motivation. Intensional Martin-Löf type theory admits models where types are
interpreted as groupoids (categories where every morphism is invertible) and even higher
groupoids. The latter view is particularly important to explain homotopy type theory. One
way of approaching higher groupoids is via presheaves on cube categories with certain filling
conditions, and this is how Bezem, Coquand, and Huber [1] have built an important model of
homotopy type theory.

x

y

z

w

p
q

r

The basic idea is as follows: a type is modeled as a cubical set (think of a
collection of cubes of various dimensions). Points are the elements of the type,
lines are the equalities, squares are the equalities between equalities, and so on.
The filling condition says that, whenever we have a partial cube satisfying some
properties, it can be completed (this corresponds to the Kan filling condition
of horns for simplicial sets). For example, a “partial square” could be given by

x, y, z, w and p, q, r as shown on the left, where we think of x, y, z, w as elements and p, q, r as
equalities. The filling then tells us that there is another line, namely the dashed one, as shown
in the picture; we think of it as the composition of the other three (the inner part of the square
would be the evidence that it is indeed the composition).

The direction of the arrows in the picture above is determined by the concrete cube category
that is used. We see that the three arrows in the above diagram cannot really be composed
directly, since p goes into the wrong direction. Since equality in (homotopy) type theory is
invertible, this is not an issue.

However, the idea to create a type theory where equality is not necessarily invertible is
subject to current research as well, and goes under the name directed type theory [4, 7, 3]. In this
case, the above observation is problematic. If z and w are simply x, and q and r are identities
(i.e. reflexivity on x), then the composition gives us an inverse of p which should not necessarily
exist. To remedy this, in the case of a square, we swap the direction of the left vertical arrow p
and call it a twisted square. This can be generalised and gives rise to twisted n-cubes by recursion:
To construct a twisted (n + 1)-cube, we multiply a twisted n-cube with a directed interval (in
the same way as a standard (n + 1)-cube can be constructed from a standard n-cube), and
invert everything at the first endpoint of the interval. This ensures that every face of a twisted
(n + 1)-cube is a twisted n-cube.

Technical Details. To make the above idea precise, we represent a twisted n-cube as a
directed graph without parallel edges, Tn. This graph is defined recursively using tw-iter, a
function that takes any graph and “thickens and inverts at the source”:

(tw-iter (V, E))nodes :⌘ {0, 1} ⇥ V T0 :⌘ ({✏}, {(✏, ✏)})

(tw-iter (V, E))edges :⌘ { ((0, t), (0, s)) | (s, t) : E} Tn+1 :⌘ tw-iter (Tn)

[{ ((1, s), (1, t)) | (s, t) : E}
[{ ((0, v), (1, v)) | v : V }.

(1)

94

Twisted Cubes via Graph Morphisms Gun Pinyo and Nicolai Kraus

000

001

010

011

100

101

110

111One interesting feature of Tn is a connection to the (2n � 1)-simplex,
witnessed by a unique Hamiltonian path through Tn. T3 is shown
on the right, with the Hamiltonian path drawn using thicker arrows.
This also implies that the transitive closure of Tn is a total linear
order, something that happens for simplices but not for cubes. The
sketch of proof is that the third clause in the definition of edges of
tw-iter links the biggest node in the first copy (which was the smallest
node before it got inverted) to the smallest node in the second copy.

The category of twisted cubes that we consider, denoted by 1grp, has natural numbers as
objects, and morphisms from m to n are graph homomorphisms from Tm to Tn.

We further add the condition to 1grp that dimensions are preserved, i.e. we only consider
graph homomorphisms f : Tm ! Tn such that, if e1, e2 are edges of Tm that go into the same
direction, f(e1) and f(e2) also go into the same direction. This defines a subcategory that we
denote by 1dim. This subcategory has the same objects as, but fewer morphisms than 1grp; and
this restriction essentially excludes connections. To show why the definition of 1dim makes sense,
we define a category for the standard cubes counterpart called ⇤dim and prove in our preprint [5]
that ⇤dim is isomorphic to the opposite of the category of cubes used by Bezem, Coquand, and
Huber [1]. ⇤dim is essentially the same as 1dim but skips the “twisting” step. In other words,
1dim is the “twisted analogue” of the BCH cube category.

Other interesting features of 1dim include the observation that there is exactly one surjective
morphism in 1dim(m, n) for all m > n (and clearly none if m < n). As a consequence, the
degeneracies are unique, i.e. one can only degenerate an n-cube to an (n + 1)-cube in exactly
one way, something that happens for globes but not for simplices or cubes.

Status of this work. We have defined the category of twisted cubes and proved several of its
properties, details can be found in our arXiv preprint [5]. Our goal is to use it to model a version
of “higher directed type theory”, but we have not yet done this. Another goal is to analyse
whether the setting allows for a development of higher categories in homotopy type theory: The
construction given in (1) can easily be adapted to define the category of twisted semi-cubes
simply by starting with T0 :⌘ ({✏}, ;). We can then consider Reedy-fibrant diagrams on this
category into the universe of types, i.e. twisted semi-cubical types. The unique Hamiltonian path
suggests that we can equip these types with an analogue of Rezk’s Segal condition [6] similar to
how it has been done in homotopy type theory (see e.g. [2]).

References
[1] Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in cubical sets. 19th

International Conference on Types for Proofs and Programs (TYPES 2013), 2014.
[2] Paolo Capriotti and Nicolai Kraus. Univalent higher categories via complete semi-segal types.

Proceedings of the ACM on Programming Languages, 2(POPL’18):44:1–44:29, dec 2017. Full version
available at https://arxiv.org/abs/1707.03693.

[3] Paige Randall North. Towards a directed homotopy type theory. arXiv:1807.10566, 2018.
[4] Andreas Nuyts. Towards a directed homotopy type theory based on 4 kinds of variance. Master’s

thesis, KU Leuven, 2015.
[5] Gun Pinyo and Nicolai Kraus. From cubes to twisted cubes via graph morphisms in type theory.

Preprint, arXiv: 1902. 10820 , 2019.
[6] Charles Rezk. A model for the homotopy theory of homotopy theory. Trans. Amer. Math. Soc.,

353(3):973–1007 (electronic), 2001.
[7] E. Riehl and M. Shulman. A type theory for synthetic 1-categories. arXiv:1705.07442, 2017.

2 95

Towards Curry-Howard for Shared Mutable State

Pedro Rocha and Lúıs Caires

NOVA LINCS and Departamento de Informática,
FCT, Universidade Nova de Lisboa

Session-based concurrent computation has a firm logical foundation. In [CP10] the authors
establish a tight Curry-Howard correspondence between session types and linear logic, in which
types are interpreted as propositions, processes as proofs and communication as cut elimina-
tion. Within this approach, session-typed processes enjoy subject reduction, never get stuck,
are confluent and always terminate. Apart from establishing the canonicity of session-based
concurrency, this correspondence also provides a solid ground to explore the fruitful interplay
between concurrent computation and linearity. In fact, several notions were further investigated
such as logical relations, dependent types and polymorphism.

Although session types embody a notion of state in the sense of protocol evolutions, the na-
ture of the abovementioned interpretations tells us that computation in these models is pretty
much functional [TY18], while most mainstream interactive concurrent software systems not
only communicate but also share and manipulate stateful resources. While linearity has been ex-
tensively explored to discipline the use of shared state, for example, in [TP10], [KTDG12, BP17],
the formulation of mutable shared state within a Curry-Howard interpretation is challenging,
and stands as an open problem.

In this talk we describe an approach towards a pure Curry-Howard interpretation of session-
based concurrency with mutable shared state, that preserves equational reasoning over proofs
by exploring internal representations of non-determinism, along the lines of [CP17]. We provide
an interpretation of a conservative extension of linear logic using a fine-grained variant of the
pi-calculus extended with (first class) reference cells. Each reference cell has a unique identifier
and stores a server session. Cell interactions are typed by two specific dual logical exponential
modalities, which are related to DiLL modalities [Ehr18]. Besides memory read and write
operations, all cell usages eventually have to be released, as enforced by the cell session protocol.

Reference cells are subject to a linear usage unless they are explicitly shared by two or
more processes, using co-contraction. Nondeterminism arises naturally by abstraction of the
actual order of cell operations in a sharing process, where the interleaving law for process
algebras (roughly akb = a; b + b; a) appears as a natural commuting conversion principle in
our logic. Computations then evolve to a nondeterministic superposition of processes, which
correspond to the di↵erent possible states the store can reach. Since we handle nondeterminism

x.cellhyi ` x : �A; �, y : A
P ` �; �

x.free; P ` �, x : +A; �

P ` �, x : +A; �, y : A

x.read(y); P ` �, x : +A; �

P1 ` �1, y :!A; � P2 ` �2, x : +A; �

x.write(y.P1); P2 ` �1, �2, x : +A; �

P1 ` �1, x : +A; � P2 ` �2, y : +A; �

sharez
x,y(P1, P2) ` �1, �2, z : +A; �

P1 ` �; � P2 ` �; �

P1 + P2 ` �; �

Table 1: Typing rules for cell manipulation, sharing and nondeterminism.

96

Towards Curry-Howard for Shared Mutable State Pedro Rocha and Lúıs Caires

explicitly [CP17, Ehr18], proof reduction is naturally confluent. Furthermore, typed processes
in our calculus satisfy both progress and type preservation. We will also discuss future work
directions.

References

[BP17] Stephanie Balzer and Frank Pfenning. Manifest sharing with session types. Proceedings of
the ACM on Programming Languages, 1(ICFP):37, 2017.

[CP10] Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
International Conference on Concurrency Theory, pages 222–236. Springer, 2010.

[CP17] Lúıs Caires and Jorge A Pérez. Linearity, control e↵ects, and behavioral types. In European
Symposium on Programming, pages 229–259. Springer, 2017.

[Ehr18] Thomas Ehrhard. An introduction to di↵erential linear logic: proof-nets, models and
antiderivatives. Mathematical Structures in Computer Science, 28(7):995–1060, 2018.

[KTDG12] Neelakantan R Krishnaswami, Aaron Turon, Derek Dreyer, and Deepak Garg. Superficially
substructural types. ACM SIGPLAN Notices, 47(9):41–54, 2012.

[TP10] Jesse A Tov and Riccardo Pucella. Stateful contracts for a�ne types. In European Sympo-
sium on Programming, pages 550–569. Springer, 2010.

[TY18] Bernardo Toninho and Nobuko Yoshida. On polymorphic sessions and functions. In Euro-
pean Symposium on Programming, pages 827–855. Springer, Cham, 2018.

97

KNOWLEDGE REPRESENTATION WITH HOTT

ANDREI RODIN (RUSSIAN ACADEMY OF SCIENCES)

While the concept of Formal Ontology already secured its central role in Knowledge Rep-
resentation (KR), Formal Epistemology presently remains a purely philosophical subject
with no direct application in KR [5]. As a result, standard formal tools used in KR such
as Description Logics (DL) and Web Ontology Language (OWL) lack any epistemic se-
mantics, which is an obvious miss since these tools are supposed to help us to represent
knowledge. Formal semantics qualifies as epistemic when it supports a formal distinction
between true propositions, on the one hand, and propositions such that their truthness
is known by an epistemic agent, on the other hand. Accordingly, an epistemic semantic
of logical inferences requires that a given inference not only preserves the truthness of
premises but also that the truth-preservation property of a given inference is made evi-
dent to an agent (which may put strong restrictions on admissible inferential structures).
Since OWL and DL use the standard truth-condition logical semantics rather than a ver-
sion of proof-theoretic semantics [4] OWL and DL do not formally distinguish between
those truth-preserving inferences, which are epistemically admissible and those, which are
not.

Even if the concept of knowledge remains a subject of wide philosophical controversy, the
very idea that knowledge of a proposition should not be identified with this proposition
itself is hardly controversial. According to an influential view, an agent knows that P
just in case (i) P is true and (ii) she justifiedly beliefs that P . (This view constitutes the
so-called JTB theory of knowledge). While the issue of human belief belongs to human
psychology and is arguably beyond the scope of theoretical KR, the epistemically-laden
concept of justification allows for a formal treatment [1] and fully belongs to its scope.
The fact that standard KR architectures do not support justificatory procedures, on the
practical side, means that a regular user of KR system typically is not in a position to judge
whether the “knowledge” she obtains from this system is reliable or not unless she uses
some external means and tools for checking it. The present proposal aims at integrating
relevant justificatory procedures into the KR architecture itself.

A justificatory procedure related to certain propositional knowledge has its formal dual
in the form of verification of the corresponding procedural knowledge aka knowledge-how,
that is, knowledge how to perform a given procedure. In this case the epistemic goal is not
to justify a proposition but to assure that an accomplished construction has some required

Date: April 28, 2019.
Key words and phrases. Knowledge Representation and Homotopy Type theory and Justification and

Verification.
1

98

2 ANDREI RODIN (RUSSIAN ACADEMY OF SCIENCES)

properties (think of technological processes which certain desired outcomes). Since this
di↵erence in epistemic goals does not a↵ect the basic semantics, our proposed approach
applies to both these sorts of tasks.

We propose to use HoTT and its proof-theoretic semantics as a formal semantic framework
for KR, which satisfies the above desiderata. The following features of HoTT motivate this
choice.

(1) HoTT admits the constructive epistemically-laden proof-theoretic semantics intended
by Martin-Löf’s Type for MLTT [2].
(2) The new interpretation of equality in HoTT gives rise to the notion of cumulative
h-hierarchy of types which, in particular, supports the distinction between propositional
and higher-level types. This is the crucial feature of HoTT, which allows for representing
objects (of various levels) and propositions “about” these objects within the same frame-
work. Each such object serves as a witness/truth-maker for proposition obtained via the
propositional truncation of type where the given object belongs.
(3) HoTT involves a system of formal rules, which are interpreted as logical rules at the
propositional h-level and as rules for object-construction at all higher levels. This feature
of HoTT, which is not available in the “flat” extensional MLTT, allows for representing
various extra-logical procedures (such as material technological procedures) keeping track
of the corresponding logical procedures at the propositional level of representation.

A simple example of using HoTT for representing the empirical knowledge of identity of
Morning Star and Evening Star is given in my [3]. Here I interpret the observable trajectory
of Venus as a path in the sense of HoTT. Other perspective applications of this approach
may be less direct but the same geometrical intuition associated with HoTT can be useful
in such cases too.

References

[1] S. Artemov and M. Fitting. Justification Logic. Cambridge University Press, 2019.
[2] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Bibliopolis, 1984.
[3] A. Rodin. Venus Homotopically. IfCoLog Journal of Logics and their Applications, 4(4):1427–1446, 2017.

Preprint: http://philsci-archive.pitt.edu/12116/.
[4] Peter Schroeder-Heister. Proof-theoretic semantics. In Edward N. Zalta, editor, The Stanford Encyclo-

pedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2018 edition, 2018.
[5] Jonathan Weisberg. Formal epistemology. In Edward N. Zalta, editor, The Stanford Encyclopedia of

Philosophy. Metaphysics Research Lab, Stanford University, winter 2017 edition, 2017.

99

CONGRUENCE IN UNIVALENT TYPE THEORY

LUIS SCOCCOLA

Introduction. The main purpose of congruence closure procedures is to automate the appli-
cation of basic properties of equality, such as transitivity and congruence (i.e., x = y implies
f(x) = f(y)). The only current implementation of a full congruence closure procedure for
intensional type theory, Selsam & de Moura (IJCAR 2016), adds an axiom to the type the-
ory that is inconsistent with univalence. This axiom is used when proving the congruence
lemmas. We describe an approach for automatically synthesizing congruence lemmas that is
compatible with univalence.

Congruence using heterogeneous equality. The main di�culty with congruence in de-
pendent type theory is that the “obvious” congruence lemmas don’t type check. For example,
given f : (a : A) ! B(a), the expression congrf : (a, a0 : A) ! (a = a0) ! f(a) = f(a0)
doesn’t type check, since f(a) : B(a) whereas f(a0) : B(a0). One way to fix this, is to use
heterogeneous equalities, a weakening of McBride’s “John Major equality”.

Definition 1. Heterogeneous equality is defined as an inductive family

heq : (A, A0 : U) ! A ! A0 ! U
with one constructor reflheq : (A : U) ! (a : A) ! heq(A, A, a, a).

One can use this to write congruence lemmas that type check, congrf : (a, a0 : A) !
heq(A, A, a, a0) ! heq(B(a), B(a0), f(a), f(a0)), but these cannot be proven without modify-
ing the type theory. The solution of Selsam & de Moura is to assume the following axiom

ofheq : (a, a0 : A) ! heq(A, A, a, a0) ! a = a0.

Using this axiom, they prove a congruence lemma hcongrn for each n � 1. The idea is that
hcongrn is the congruence lemma for dependent functions with n arguments.

Incompatibility with univalence. Recall, from [2], the pathover type family.

Definition 2 (Licata & Brunerie (LICS 2015)). Given a type B : U and a type family
X : B ! U , define the type family

pathoverB : (b, b0 : B) ! (b = b0) ! X(b) ! X(b0) ! U ,

by path induction. We denote the type pathoverB(b, b0, e, a, a0) by a =B
hei a0.

The types heq and pathover are related as follows.

Lemma 3. For any a : A and a0 : A0 we have

heq(A, A0, a, a0) '
X

e:A=A0
pathoverId:U!U (A, A0, e, a, a0).

From this, it follows that the axiom ofheq implies UIP (uniqueness of identity proofs),
and thus, that it is inconsistent with univalence.

Congruence using pathover. In order to synthesize congruence lemmas for type families
with arbitrarily many parameters, we must define a pathover type for each such family.

It is conceptually clearer to describe this generalization, and the congruence lemmas, in
terms of the category of contexts of our type theory. Given a context � and inhabitants
a, b : �, one can define an equality context a = b by context induction and path induction ([1,
Proposition 3.3.1]). Similarly, given a context extension �.�0, inhabitants a, b : �, a0 : �0(a),
b0 : �0(b), and an equality e : a = b, one can define a context of pathovers a0 =hei b0.

1100

REFERENCES 2

Now, given two context extensions �.�0 and �.�0 and a map f.f 0 : �.�0 ! �.�0 between
them, we can use path induction to prove the following congruence lemma

a, b : �, a0 : �0(a), b0 : �0(b), e1 : a = b, e2 : a0 =he1i b0 `
congrf 0(a, b, a0, b0, e1, e2) : f 0(a, a0) =hcongrf (a,b,e1)i f 0(b, b0).

Notice how the type of the congruence lemma for f 0 uses the congruence lemma for f .

Main result 4. We give an algorithm to automatically state and prove congruence lemmas
for any dependent function.

The main complication is in correctly characterizing the identity types of contexts. This
becomes apparent in the following example.

Example 5. The congruence lemma for cons : (n : N) ! A ! vecA(n) ! vecA(succ(n)) is

congrcons(n, m, x, y, xs, ys, e1, e2, e3) : cons(n, x, xs) =hcongrsucc(e1)i cons(m, y, ys)

where e1 : n = m, e2 : x = y, e3 : xs =he1i ys, and congrsucc : (n, m : N) ! (n = m) !
succ(n) = succ(m). We see that, although cons takes as input x : A, the type of its codomain
does not depend on x, and thus the pathover returned by its congruence lemma should not
live over the path e2 : x = y.

This means that we need a representation of contexts that takes dependency into account.
We represent contexts as inverse diagrams. This is the final ingredient in the procedure.
Since the description of the full procedure requires some setting up, we illustrate how it works
with an example.

Example 6. We first identify the domain and codomain contexts of cons, and represent them
as inverse diagrams

vecA

A N,

vecA

N
Analyzing the type of cons, we see that cons lives over the context morphism succ

(n : N).(x : A, xs : vecA(n)) (n : N).(xs : vecA(n))

(n : N) (n : N).

succ.cons

succ

So, inductively, we produce the congruence lemma for succ

congrsucc : (n, m : N) ! (n = m) ! succ(n) = succ(m).

Finally, we use path induction, and induction on the inverse diagrams, to correctly charac-
terize the identity types of the domain and codomain of cons. Giving, for example,

(e1 : n = m, e2 : x = y, e3 : xs =he1i ys)

for the domain. Putting these things together, we get the congruence lemma of Example 5.

References

[1] Richard Garner. “Two-dimensional models of type theory”. In: Mathematical Structures
in Computer Science 19.4 (2009), 687–736. doi: 10.1017/S0960129509007646.

[2] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. Institute for Advanced Study, Princeton, NJ, 2013. url: http : / /

homotopytypetheory.org/book.

101

A Model of the Blockchain using Induction-Recursion
Anton Setzer

Dept. of Computer Science, Swansea University, Bay Campus, Swansea SA1 8EN, UK
a.g.setzer@swansea.ac.uk

Abstract

We present a model of the blockchain as defined for instance in Bitcoin which is based
on transaction dags, and formalise it in Agda. Such a model can nicely be formulated
by using (small) induction-recursion, namely by defining inductively the set of transaction
dags while recursively defining the set of unspent transaction outputs. We postulate cryp-
tographic functions and their properties and use them to define Merkle trees. In order to
guarantee that signatures for claiming transaction outputs cannot be reused, uniqueness
of transaction ids is required. If one adds the block number to the coinbase transactions,
one can prove this property. It turns out that in the initial implementation of Bitcoin
uniqueness of transaction ids was not guaranteed. This was later fixed by adding the block
number to coinbase transactions.

Cryptocurrencies are a new approach towards money, where money is stored entirely digitally
on the blockchain. The blockchain is a distributed database together with a consensus protocol
which decides which instances of the database are the correct ones.

Since cryptocurrencies form a distributed database, they can be used as well to store other
information which needs to be uniquely shared world-wide. One main application is the tracing
of goods, guaranteeing that goods originate from authentic producers.

There are two main approaches to store the amount stored in a cryptocurrency. One ap-
proach is the ledger based approach, where for each user, usually represented by a public/private
key pair, the amount of money attributed to him or her is recorded over time. The second ap-
proach is the transaction based approach. In that approach the amount a user has is given by
the unspent transaction outputs of previous transactions, attributed to that user. The ledger
based approach is mathematically much simpler, it can be represented by a function mapping
time and public keys to the amount owned by the user at a given time. This is the model used
by the cryptocurrency Ethereum. The transaction based model is used in Bitcoin. This model
is interesting when considering the application to tracing of goods: The path, a product takes in
the transportation chain, can be considered as a sequence of transactions, in which sometimes
goods from several sources are combined, or split up between different vendors.

In this talk we present a model of the blockchain based on the transaction model which we
have developed in the dependently typed programming language and interactive theorem prover
Agda. In this model, the sequence of transactions forms a directed acyclic graph (dag). The
transaction dag is defined by small induction-recursion: One defines inductively the transaction
dag and transactions while simultaneously recursively defining the unspent transaction outputs.

More precisely one defines inductively the set TXDag of transaction dags and (TX dag) of
transactions depending on a transaction dag:

data TXDag : Set where
genesisDag : TXDag
txdag : (dag : TXDag) ! TX dag ! TXDag

data TX (dag : TXDag) : Set where
normalTX : TxInputs dag ! List TXOutputfield ! TX dag
coinbase : Time ! List TXOutputfield ! TX dag

102

A Model of the Blockchain using Induction-Recursion Anton Setzer

TX consists of normal transactions, given by a list of transaction inputs and a list of transac-
tion outputs, and of coinbase transactions, where miners can transfer to themselves the miner’s
reward. Transactions dags are formed from the constructors genesisDag, which forms the root
of the dag, and txdag, which adds a transaction to a transaction dag. Elements of TXOutputfield
are pairs consisting of a public key and the amount given to that public key. In order to define
TxInputs, one defines first recursively the unspent transaction outputs (utxo dag) of transaction
dags:

utxo : TXDag ! List TXOutput
utxo (txdag dag tx) = utxoMinusNewInputs dag tx ++ tx2TXOutputs dag tx

When adding a transaction, utxo is obtained by deleting transactions inputs used in the
transaction tx from the previous dag and adding one new unspent transaction output for each
output of the transaction. TxInputs is now given as disjoint lists of unspent transaction outputs.

In the Bitcoin protocol, the transaction dags are encoded as Merkle trees. In the Merkle tree
one defines a transaction id for each transaction occurring in a transaction dag. The transaction
id is formed by taking the ids for the transaction inputs and the transaction outputs, and hashing
the combination of this data. The id of a transaction input is a pair consisting of the transaction
id of the transaction and the number of the output. In the formalisation in Agda we postulate
the cryptographic functions needed, and postulate properties such as injectivity of the hashing
function. Note that, if one took the correct hashing function, it would not be injective. However,
since we only postulated the hashing function, injectivity can be fulfilled by instantiating the
hashing function with the identity, therefore this doesn’t result in an inconsistency.

Furthermore, we postulate the notion of signed messages signed by private keys correspond-
ing to given public keys. Signed transactions are transaction together with a signature for each
transaction input (corresponding to the public key for that input). Signed transaction dags are
transaction dags consisting of signed transactions.

One can now show that, provided the time values used in coinbase transactions are different,
all transaction ids of transactions in a transaction dag are different. Because of this all messages
to be signed are different, which shows that signatures from previous transactions cannot be
reused for future transactions, ensuring that signatures need to be given by the owners of the
public keys in question.

Uniqueness of transaction ids relies on uniqueness of coinbase transactions as given by the
additional time field. This field was initially not part of the Bitcoin protocol, and on the Bitcoin
blockchain there exist two pairs of transactions with identical transaction ids. Therefore the
original protocol allowed the reuse of signatures. This was later fixed by adding the time field
to the Bitcoin protocol.

We are currently working on expanding this model by smart contracts, and to use this
model to verify the correctness of smart contracts, an area where mistakes have led in the past
to substantial financial losses.

References
[1] A. Setzer. Modelling Bitcoin in Agda. arXiv, arXiv:1804.06398:27, 17 April 2018. https://arxiv.

org/abs/1804.06398.

2
103

XTT: Cubical Syntax for Extensional Equality
(without equality reflection)

Jonathan Sterling1, Carlo Angiuli2, and Daniel Gratzer3

1 Carnegie Mellon University
jmsterli@cs.cmu.edu

2 Carnegie Mellon University
cangiuli@cs.cmu.edu
3 Aarhus University
gratzer@cs.au.dk

We contribute XTT [14], a cubical reconstruction of Observational Type Theory [2, 3]
supporting extensional equality without equality reflection. Following cubical type theory [9, 4,
6], XTT easily obtains function extensionality by defining the equality type in terms of maps
out of an abstract interval. Unlike previous cubical type theories, XTT supports judgmental
unicity of identity proofs (for all P, Q : Eqi.A(M, N), P = Q judgmentally), and therefore admits
substantially simplified Kan operations. Finally, XTT is closed under a cumulative hierarchy1 of
closed universes à la Russell. We hope to integrate XTT into the redtt cubical proof assistant [5]
as an implementation of exact equality in the style of two-level type theory [6, 15, 1, 7].

Cubical exact equality The XTT formalism decomposes constructs from OTT into more
modular, judgmental principles. For instance, rather than defining equality separately at every
type and entangling the connectives, we define equality once and for all using interval variables
i (below); likewise, rather than ensuring that equality proofs are unique through brute force, we
obtain uniqueness of identity proofs indirectly through a judgmental boundary separation rule,
inspired by Coquand’s definition of “Bishop sets” in models of cubical type theory [11]:

equality introduction

 , i | � ` M : A
 , i, i = 0 | � ` M = N0 : A
 , i, i = 1 | � ` M = N1 : A

 | � ` �i.M : Eqi.A(N0, N1)

boundary separation
 | r : I

 , r = 0 | � ` M = N : A
 , r = 1 | � ` M = N : A

 | � ` M = N : A

In contrast to (univalent) path structure, our cubical account of exact equality satisfies
regularity : transport in constant type families is judgmentally equal to the identity function. As
a result, the cubical equality types of XTT can be used to encode Martin-Löf’s identity type,
satisfying its �-rule judgmentally.

Model theory, gluing, and canonicity By first developing the model theory of XTT in an
algebraic way, we then prove a canonicity theorem for the initial model of XTT: any closed term
of boolean type is equal to either true or false. We obtain this result using a novel extension
of the categorical gluing technique described by Coquand and Shulman [10, 12], by gluing the
fundamental fibration of a category of augmented Cartesian cubical sets along a cubical nerve.
Canonicity expresses a form of “computational adequacy”—in essence, that the equational
theory of XTT su�ces to derive any equation which ought to hold by (closed) computation—and
is one of many syntactical considerations that experience has shown to be correlated to usability.
We conjecture that our methods will extend to open terms, allowing us to establish normalization
and decidability of the typing relation.

1As in previous work [13], we employ an algebraic version of cumulativity which does not require subtyping.

104

XTT: Cubical Syntax for Extensional Equality Sterling, Angiuli, and Gratzer

References

[1] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. “Extending Homotopy Type
Theory with Strict Equality”. In: 25th EACSL Annual Conference on Computer Science
Logic (CSL 2016). Vol. 62. Dagstuhl, Germany, 2016. doi: 10.4230/LIPIcs.CSL.2016.21.

[2] Thorsten Altenkirch and Conor McBride. Towards Observational Type Theory. 2006. url:
www.strictlypositive.org/ott.pdf.

[3] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. “Observational Equality,
Now!” In: Proceedings of the 2007 Workshop on Programming Languages Meets Program
Verification. Freiburg, Germany, 2007.

[4] Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Kuen-Bang Hou (Favonia), Robert
Harper, and Daniel R. Licata. “Syntax and Models of Cartesian Cubical Type Theory”.
Feb. 2019. url: https://github.com/dlicata335/cart-cube.

[5] Carlo Angiuli, Evan Cavallo, Kuen-Bang Hou (Favonia), Robert Harper, Anders Mörtberg,
and Jonathan Sterling. redtt: implementing Cartesian cubical type theory. url: http:
//www.jonmsterling.com/pdfs/dagstuhl.pdf.

[6] Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. “Cartesian Cubical Com-
putational Type Theory: Constructive Reasoning with Paths and Equalities”. In: 27th
EACSL Annual Conference on Computer Science Logic (CSL 2018). Vol. 119. Dagstuhl,
Germany, 2018. doi: 10.4230/LIPIcs.CSL.2018.6.

[7] Danil Annenkov, Paolo Capriotti, and Nicolai Kraus. Two-Level Type Theory and Appli-
cations. 2017. arXiv: 1705.03307.

[8] James Chapman, Fredrik Nordvall Forsberg, and Conor McBride. “The Box of Delights
(Cubical Observational Type Theory)”. Jan. 2018. url: https://github.com/msp-
strath/platypus/blob/master/January18/doc/CubicalOTT/CubicalOTT.pdf.

[9] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. “Cubical Type
Theory: a constructive interpretation of the univalence axiom”. In: IfCoLog Journal of
Logics and their Applications 4.10 (Nov. 2017). url: http://www.collegepublications.
co.uk/journals/ifcolog/?00019.

[10] Thierry Coquand. Canonicity and normalization for Dependent Type Theory. Oct. 2018.
arXiv: 1810.09367.

[11] Thierry Coquand. Universe of Bishop sets. Feb. 2017. url: http://www.cse.chalmers.
se/~coquand/bishop.pdf.

[12] Michael Shulman. “Univalence for inverse diagrams and homotopy canonicity”. In: Mathe-
matical Structures in Computer Science 25.5 (2015). doi: 10.1017/S0960129514000565.

[13] Jonathan Sterling. Algebraic Type Theory and Universe Hierarchies. Dec. 2018. arXiv:
1902.08848 [math.LO].

[14] Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. “Cubical Syntax for Reflection-Free
Extensional Equality”. In: Proceedings of the 4th International Conference on Formal
Structures for Computation and Deduction (FSCD 2019). Vol. 131. 2019. doi: 10.4230/
LIPIcs.FSCD.2019.32. arXiv: 1904.08562.

[15] Vladimir Voevodsky. “A simple type system with two identity types”. Feb. 2013. url:
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.

pdf.

2 105

Proof Irrelevance and Predicate Subtyping in Dedukti

François Thiré12 and Gaspard Férey123

1 INRIA
2 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay

3 MINES ParisTech, PSL University

The logical framework Dedukti is an extension of LF relying on user-defined rewrite rules. It
has met some success in the encoding of several logics such as First-Order Logic, Higher-Order
Logic, Pure Type Systems or The Calculus of Inductive Constructions [1] and is now e↵ectively
used to translate proofs from one system to another as done in [5]. Gilbert [3] showed that the
core of the PVS system is an extension of Higher-Order Logic with predicate subtyping.

Predicate subtyping is a type theoretic construction restricting a type to its elements such
that a certain property is provable.

� ` t : A � ` P t � ` {x : A | P x} : Type

� ` t : {x : A | P x} SubTypingIntro

This feature allows, for example, to express the type of even numbers, {x : N | Even x}, from
the predicate Even on N which holds whenever its argument is an even number. This feature
can be obtained or encoded in other logics by means of dependent pairs, the subtype of even
numbers becoming then the type of natural numbers together with a proof of their parity.
However, in that case, for any two di↵erent proofs p and q that 2 is even, one will derive two
di↵erent terms h2, pi and h2, qi of type {x : N | Even x} even though they correspond to the
same PVS expression. Indeed predicate subtyping as implemented in PVS is a proof irrelevant
construction in the sense that the proof of the predicate is omitted in the introduction rule.

In this work we define a slight extension of Dedukti allowing to encode a form of judgmental
proof irrelevance i.e. convertibility of all proofs of the same theorem. To do so, we allow the
annotation of some symbols as private, meaning that these symbols may only occur in the
conversion without ever occuring in the translation of a theorem or its proof. This idea of
private symbols goes beyond the encoding of predicate subtyping into Dedukti and can be used
to encode a proof irrelevant theory or proof irrelevant features of a system such as the recent
universe sprop in Coq [4].

Private Definitions A natural way to encode proof irrelevance is to ensure that any proof
of a statement, if there is any, rewrites to the same canonical proof. This is easily done by
declaring a symbol hilbert mapping propositions A to a proof of A such that hilbert A is
the canonical proof of the statement A. This naturally breaks the consistency of the logic
as it allows to build a proof of any statement, including False. To overcome this issue, we
restrict the use of hilbert. For that purpose, we introduce an extension of Dedukti allowing
the declaration of private symbols. This can be done via the keyword private which has the
following semantics: A private symbol may never occur in the translation of a theorem or of
its proof. However, it may be used in the rewrite rules defining the encoding. This way, we
guarantee statically that proofs never contain private symbols, thus forbidding unlawful proofs
of False.

Proof irrelevance A variant of Pure Type Systems with a proof irrelevant sort as in [2]
can be encoded using the aforementioned hilbert private proof constructor together with a

106

Proof Irrelevance in Lambda-pi Calculus Modulo Theory François Thiré

1 A : Type. a : A. b : A.

2 private pr : A -> Type.

3 pu : A -> Type.

4 [] pu a --> pr a. (; Fine ;)

5 [] pr a --> pr b. (; Fine ;)

1 (; Proofs generated by the translation ;)

2

3 my_axiom : pr a. (; Error ;)

4 def my_thm := pr a. (; Error ;)

5 def my_prf : proof my_thm := pr a. (; Error ;)

make_proof constructor. The latter collapses distinct proofs of a statement A into the canonical
proof built with the hilbert symbol. However, this requires all translated proofs to use the
make_proof symbol. Such construction also provide a way to encode the sprop universe as
described in [4].

1 Prop : type.

2 iproof : Prop -> Type. proof : Prop -> Type.

3 private hilbert : A : Prop -> iproof A.

4 def make_proof : A : Prop -> proof A -> iproof A.

5 [A,prf] make_proof A prf --> hilbert A.

1 A : Prop. B : Prop. AorB : Prop.

2 left : iproof A -> proof AorB.

3 right : iproof B -> proof AorB.

4 (; make_proof AorB (left a) == ;)

5 (; make_proof AorB (right b) ;)

Predicate subtyping Faithfully encoding PVS predicate subtyping requires a finer notion
of proof irrelevance. Indeed only the construction of a subtype predicate may need to be proof
irrelevant while the previous method contaminates all propositions with proof irrelevance. This
can also be a problem when translating PVS libraries to proof relevant systems. To put this
plague into quarantine, we discharge proof irrelevance to the constructor of a subtype predicate.

1 Sig : Nat -> (Nat -> Prop) -> Type.

2 def mk_sig : (n : Nat) -> (P : (Nat -> Prop)) -> p : proof (P n) -> Sig n P.

3 private mk_sig' : (n : Nat) -> (P : (Nat -> Prop)) -> Sig n P.

4 [n, P, prf] mk_sig n P prf --> mk_sig' n P. (; Irrelevance of prf ;)

5

6 even : Nat -> Prop. p : proof (even 2). q : proof (even 2).

7 def prf_p : Sig 2 even := mk_sig 2 even p. (; rewrites to mk_sig' 2 even ;)

8 def prf_q : Sig 2 even := mk_sig 2 even p. (; also rewrites to mk_sig' 2 even ;)

In the above example, both translated definitions prf_p and prf_q are rewritten to a same
normal form independant from the provided proof witness. While using make_proof would
enforce all the proofs of even 2 to be proof irrelevant, with this method only the third argument
of the constructor mk_sig is. Using this proof irrelevant constructor mk_sig, we have taken
down the last bastion preventing the encoding of PVS into Dedukti.

References

[1] Ali Assaf, Guillaume Burel, Raphal Cauderlier, David Delahaye, Gilles Dowek, Catherine Dubois,
Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. Expressing theories
in the �⇧-calculus modulo theory and in the Dedukti system. In TYPES: Types for Proofs and
Programs, Novi SAd, Serbia, May 2016.

[2] Lukasz Czajka. A Shallow Embedding of Pure Type Systems into First-Order Logic. Dagstuhl,
Germany, 2018.

[3] Frédéric Gilbert. Extending higher-order logic with predicate subtyping : Application to PVS. PhD
thesis, Sorbonne Paris Cité, France, 2018.

[4] Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. Definitional proof-
irrelevance without K. PACMPL, 3(POPL):3:1–3:28, 2019.

[5] François Thiré. Sharing a library between proof assistants: Reaching out to the HOL family. In
LFMTP@FSCD, volume 274 of EPTCS, pages 57–71, 2018.

2
107

A General Framework for the Semantics of Type Theory

Taichi Uemura

University of Amsterdam, Amsterdam, the Netherlands
t.uemura@uva.nl

Dybjer [4] introduced categories with families as a notion of a model of basic dependent type
theory. Extending categories with families, one can define notions of models of dependent type
theories such as Martin-Löf type theory [5], two-level type theory [1] and cubical type theory
[3]. The way to define a model of a dependent type theory is by adding algebraic operations
corresponding to type and term constructors, and it is a kind of routine. However, as far as the
author knows, there are no general notions of a “type theory” and a “model of a type theory”
that include all of these examples. In this talk, we propose general notions of a type theory and
a model of a type theory to unify semantics of type theories based on categories with families.

Awodey [2] pointed out that a category with families is the same thing as a representable
map of presheaves and that type and term constructors are modeled by algebraic operations on
presheaves. Inspired by this work, we introduce a logical framework in which one can declare
a family of representable types as well as a family of ordinary types. More precisely, our logical
framework has a sort 2 of types and a subsort ⇤ ⇢ 2 of representable types. It also has
extensional identity types in 2 and dependent function types of the form

� ` A : ⇤ �, x : A ` B : 2

� ` (x : A) ! B : 2
.

Then, for instance, basic dependent type theory can be encoded to the signature consisting of
the following constants.

` Type : 2

A : Type ` el(A) : ⇤
This signature tells us what a model of basic dependent type theory is: it consists of a category
S of contexts, a presheaf U over S, which corresponds to Type, and a representable map E ! U
of presheaves over S, which corresponds to el.

One can encode type constructors in a natural way. For instance, ⇧-types are encoded by
constants

A : Type, B : el(A) ! Type ` ⇧(A, B) : Type

A : Type, B : el(A) ! Type, b : (x : el(A)) ! el(Bx) ` abs(b) : el(⇧(A, B))

A : Type, B : el(A) ! Type, f : el(⇧(A, B)), a : el(A) ` app(A, B, f, a) : el(Ba)

and some equations.
We can encode more complicated type theory. Cubical type theory [3] is a dependent type

theory with an interval, cofibrant propositions and composition operations. We encode the
interval to a representable type ` I : ⇤ equipped with some constants including end-points
0, 1 : I. Cofibrant propositions are encoded by types ` Cof : 2 and P : Cof ` true(P) : ⇤
such that true(P) is a proposition in the sense that any two elements of true(P) are equal. The
composition operation is encoded to a constant

A : I ! Type, P : Cof, a : true(P) ! (i : I) ! el(Ai),

a0 : el(A0), e : (x : true(P)) ! ax0 = a0 ` comp(A, P, a, a0, e) : el(A1)

108

A General Framework for the Semantics of Type Theory Taichi Uemura

and an equation ax1 = comp(A, P, a, a0, e) for x : true(P).
With this logical framework, we establish basic results in the semantics of type theory. For

a signature ⌃ of our logical framework, we define a notion of a theory over ⌃ and establish
a correspondence between theories over ⌃ and models of ⌃: for each theory K over ⌃, we
construct the syntactic model of ⌃ generated by K; for each model S of ⌃, we construct the
internal language of S. Categorically, these constructions yields a bi-adjunction between the
(locally discrete) 2-category of theories over ⌃ and the 2-category of models of ⌃. Moreover,
this bi-adjunction induces a bi-equivalence between the 2-category of theories over ⌃ and a full
sub-2-category of the 2-category of models of ⌃.

References

[1] Danil Annenkov, Paolo Capriotti, and Nicolai Kraus. Two-Level Type Theory and Appli-
cations. 2017. arXiv: 1705.03307v2.

[2] Steve Awodey. “Natural models of homotopy type theory”. In: Mathematical Structures in
Computer Science 28.2 (2018), pp. 241–286. doi: 10.1017/S0960129516000268.

[3] Cyril Cohen et al. “Cubical Type Theory: A Constructive Interpretation of the Univalence
Axiom”. In: 21st International Conference on Types for Proofs and Programs (TYPES
2015). Ed. by Tarmo Uustalu. Vol. 69. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018,
5:1–5:34. doi: 10.4230/LIPIcs.TYPES.2015.5.

[4] Peter Dybjer. “Internal Type Theory”. In: Types for Proofs and Programs: International
Workshop, TYPES ’95 Torino, Italy, June 5–8, 1995 Selected Papers. Ed. by Stefano
Berardi and Mario Coppo. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 120–
134. doi: 10.1007/3-540-61780-9_66.

[5] Per Martin-Löf. “An Intuitionistic Theory of Types: Predicative Part”. In: Studies in Logic
and the Foundations of Mathematics 80 (1975), pp. 73–118. doi: 10.1016/S0049-237X(08)
71945-1.

2
109

Guarded Recursion in Agda via Sized Types

Niccolò Veltri1 and Niels van der Weide2

1 Department of Computer Science, IT University of Copenhagen, Denmark
nive@itu.dk

2 Institute for Computation and Information Sciences, Radboud University, Nijmegen, The
Netherlands

nweide@cs.ru.nl

Sized types and guarded recursion are two techniques used to ensure the productivity of
recursively defined elements of coinductive types. Productivity means that each finite part of
the output only depends on a finite part of the input, and it is necessary to ensure consistency of
the type system. Programming with coinductive types becomes less convoluted when employing
these techniques instead of traditional approaches relying on strict syntactic checks. In this
work, we show how guarded recursion can be simulated in Agda using sized types.

Sized types [5] are types annotated with an abstract ordinal indicating the number of possible
unfoldings that can be performed on elements of the type. Sized types are implemented in Agda
and can be used in combination with coinductive records [1] to specify coinductive types.

Guarded recursion [7] is a di↵erent approach where the type system is enhanced with a
modality, called “later” and written ., encoding time delay in types. The later modality comes
with a general fixpoint combinator for programming with productive recursive functions and
allows the specification of guarded recursive types. These types can be used in combination
with clock quantification to define coinductive types [2].

To simulate guarded recursion via sized types, we formalize the syntax of a simple type
theory for guarded recursion in Agda, which we call GTT. Then we prove the syntax sound
w.r.t. a categorical semantics specified in terms of sized types1.

The Syntax of GTT

The language GTT is a variant of Atkey and McBride’s type system for productive copro-
gramming [2]. In Atkey and McBrides calculus, all judgments are indexed by a clock context,
which may contain several di↵erent clocks. They extend simply typed lambda calculus with
two additional type formers: a modality . for encoding time delay into types and universal
quantification over clock variables 8, which is used in combination with . to specify coinductive
types.

The judgements of GTT depend on a clock context which can only be empty or contain a
single clock. The types of GTT include the . modality and a modality 2, which is a nameless
analogue of Atkey and McBride’s universal clock quantification. The 2 type former maps a
type in the singleton clock context to one in the empty clock context. Guarded recursive types
are defined using a least fixpoint type former µ. We also have a weakening operation on types,
which maps a type in the empty clock context to one in the singleton clock context, and a
similar operations on contexts. Clouston et al.[4] also studied a guarded variant of lambda
calculus extended with a 2 operation, which they call “constant”. GTT di↵ers from their
calculus in that our judgments are indexed by a clock context and it has the benefit of allowing
a more appealing introduction rule for the 2 modality.

We only allow clock contexts in GTT to contain at most one clock variable, because Agda’s
support for sized types is tailored to types depending on exactly one size, or on a finite but

1The full Agda formalization can be found at https://github.com/niccoloveltri/agda-gtt.

110

Guarded Recursion in Agda via Sized Types Veltri and Van der Weide

precise number of sizes, which makes it cumbersome to work with types depending on clock
contexts containing an indefinite number of clocks.

The terms of GTT include operations box and unbox, which are the introduction and
elimination rules for the 2 modality. In Atkey and McBride’s system, these rules correspond
to clock quantification and clock application respectively. In the rule for clock quantification,
they add a side condition requiring the universally quantified clock to not appear free in the
variable context. In GTT, we achieve this by requiring box to be applicable only to terms over
a weakened context.

GTT also has a delayed fixpoint combinator dfix. This term takes as input a productive
recursive definition, represented by a function of type .A ! A, and returns an element of .A.
Using dfix we can define the usual fixpoint operator, returning a term of type A instead of .A.

Categorical Semantics of GTT

For the denotational semantics, we use a variation of the topos of trees [3]. Instead of natural
numbers, we take the preorder of sizes as the indexing category of the presheaves. Types and
contexts of GTT in the empty clock contexts are interpreted as sets, while types and contexts
in the singleton clock contexts are interpreted as antitone sized types. The simple type and
term formers are interpreted using the standard Kripke semantics.

Following Møgelberg’s interpretation of universal clock quantification [6], we model the 2

modality by taking limits. For the semantic later modality, we adapt the definition in the topos
of trees to our setting. Given a presheaf A, the action of I A on a size i is given by taking the
limit of A on all sizes strictly smaller than i. The semantic fixpoint operator is defined using
self-application. The productivity of this construction relies on sizes being a well-ordered set.
This gives rise to a consistent interpretation of GTT.

References

[1] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns: Programming
Infinite Structures by Observations. In POPL, pages 27–38, 2013.

[2] Robert Atkey and Conor McBride. Productive Coprogramming with Guarded Recursion. In ICFP,
pages 197–208, 2013.

[3] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First Steps
in Synthetic Guarded Domain Theory: Step-Indexing in the Topos of Trees. Logical Methods in
Computer Science, 8(4), 2012.

[4] Ranald Clouston, Ales Bizjak, Hans Bugge Grathwohl, and Lars Birkedal. Programming and
Reasoning with Guarded Recursion for Coinductive Types. In FoSSaCS, pages 407–421, 2015.

[5] John Hughes, Lars Pareto, and Amr Sabry. Proving the Correctness of Reactive Systems Using
Sized Types. In POPL, pages 410–423, 1996.

[6] Rasmus Ejlers Møgelberg. A Type Theory for Productive Coprogramming via Guarded Recursion.
In CSL-LICS, pages 71:1–71:10, 2014.

[7] Hiroshi Nakano. A Modality for Recursion. In LICS, pages 255–266, 2000.

2
111

*m#B+�H �;/�, � .2T2M/2MiHv hvT2/ S`Q;`�KKBM;
G�M;m�;2 rBi? lMBp�H2M+2 �M/ >B;?2` AM/m+iBp2 hvT2b

�M/`2� o2xxQbB1- �M/2`b Jƺ`i#2`;23- �M/ �M/`2�b �#2H4
1 Ah lMBp2`bBiv *QT2M?�;2M- *QT2M?�;2M- .2MK�`F

2 aiQ+F?QHK lMBp2`bBiv- aiQ+F?QHK- ar2/2M
3 *�`M2;B2 J2HHQM lMBp2`bBiv- SBiib#m`;?- la�

4 *?�HK2`b �M/ :Qi?2M#m`; lMBp2`bBiv- :Qi?2M#m`;- ar2/2M

� +Q`2 B/2� BM T`Q;`�KKBM; �M/ K�i?2K�iB+b Bb �#bi`�+iBQM, i?2 2t�+i /2i�BHb Q7 ?Qr �M
Q#D2+i Bb `2T`2b2Mi2/ b?QmH/ MQi �z2+i Bib �#bi`�+i T`QT2`iB2bX h?2 T`BM+BTH2 Q7 mMBp�H2M+2
+�Tim`2b i?Bb #v 2ti2M/BM; i?2 2[m�HBiv QM i?2 mMBp2`b2 Q7 ivT2b iQ BM+Q`TQ`�i2 2[mBp�H2Mi ivT2bX
h?Bb T`QpB/2b � 7Q`K Q7 �#bi`�+iBQM- Q` BMp�`B�M+2 mT iQ 2[mBp�H2M+2- BM i?2 b2Mb2 i?�i 2[mBp�H2Mi
ivT2b rBHH b?�`2 i?2 b�K2 bi`m+im`2b �M/ T`QT2`iB2bX h?2 7�+i i?�i 2[m�HBiv Bb T`QQ7 `2H2p�Mi
BM /2T2M/2Mi ivT2 i?2Q`v Bb i?2 F2v iQ 2M�#HBM; i?BbX h?2 /�i� Q7 �M 2[m�HBiv T`QQ7 +�M biQ`2
i?2 2[mBp�H2M+2 �M/ i`�MbTQ`iBM; �HQM; i?Bb 2[m�HBiv b?QmH/ i?2M �TTHv i?2 7mM+iBQM mM/2`HvBM;
i?2 2[mBp�H2M+2X AM T�`iB+mH�`- i?Bb �HHQrb T`Q;`�Kb �M/ T`QT2`iB2b iQ #2 i`�MbTQ`i2/ #2ir22M
2[mBp�H2Mi ivT2b- ?2`2#v BM+`2�bBM; KQ/mH�`Biv �M/ /2+`2�bBM; +Q/2 /mTHB+�iBQMX � +QM+`2i2
2t�KTH2 �`2 i?2 2[mBp�H2Mi `2T`2b2Mi�iBQMb Q7 M�im`�H MmK#2`b BM mM�`v �M/ #BM�`v 7Q`K�iX
AM � mMBp�H2Mi bvbi2K Bi Bb TQbbB#H2 /2p2HQT i?2Q`v �#Qmi M�im`�H MmK#2`b mbBM; i?2 mM�`v
`2T`2b2Mi�iBQM- #mi +QKTmi2 mbBM; i?2 #BM�`v `2T`2b2Mi�iBQM- �M/ �b i?2 irQ `2T`2b2Mi�iBQMb
�`2 2[mBp�H2Mi i?2v b?�`2 i?2 b�K2 T`QT2`iB2bX

h?2 T`BM+BTH2 Q7 mMBp�H2M+2 Bb i?2 K�DQ` M2r �//BiBQM BM >QKQiQTv hvT2 h?2Q`v �M/ lMB@
p�H2Mi 6QmM/�iBQMb U>Qhhfl6V (h?2 lMBp�H2Mi 6QmM/�iBQMb S`Q;`�K- kyRj)X >Qr2p2`- i?2b2
M2r ivT2 i?2Q`2iB+ 7QmM/�iBQMb �// mMBp�H2M+2 �b �M �tBQK r?B+? /Bb`mTib i?2 ;QQ/ +QMbi`m+@
iBp2 T`QT2`iB2b Q7 ivT2 i?2Q`vX AM T�`iB+mH�`- B7 r2 i`�MbTQ`i �//BiBQM QM #BM�`v MmK#2`b iQ i?2
mM�`v `2T`2b2Mi�iBQM r2 rBHH MQi #2 �#H2 iQ +QKTmi2 rBi? Bi �b i?2 bvbi2K rQmH/ MQi FMQr ?Qr
iQ `2/m+2 i?2 mMBp�H2M+2 �tBQKX *m#B+�H hvT2 h?2Q`v U*hhV (*Q?2M 2i �HX- kyR8�) �//`2bb2b
i?Bb T`Q#H2K #v BMi`Q/m+BM; � MQp2H `2T`2b2Mi�iBQM Q7 2[m�HBiv T`QQ7b �M/ i?2`2#v T`QpB/BM;
+QKTmi�iBQM�H +QMi2Mi iQ mMBp�H2M+2X h?Bb K�F2b Bi TQbbB#H2 iQ +QMbi`m+iBp2Hv i`�MbTQ`i T`Q@
;`�Kb �M/ T`QQ7b #2ir22M 2[mBp�H2Mi ivT2bX h?Bb `2T`2b2Mi�iBQM Q7 2[m�HBiv T`QQ7b ?�b K�Mv
Qi?2` mb27mH +QMb2[m2M+2b- BM T�`iB+mH�` 7mM+iBQM�H �M/ T`QTQbBiBQM�H 2ti2MbBQM�HBiv �M/ i?2
2[mBp�H2M+2 #2ir22M #BbBKBH�`Biv �M/ 2[m�HBiv 7Q` +QBM/m+iBp2 ivT2b (o2xxQbB- kyRd)X

.2T2M/2MiHv ivT2/ 7mM+iBQM�H H�M;m�;2b bm+? �b �;/�- *Q[- A/`Bb- �M/ G2�M- T`QpB/2 `B+?
�M/ 2tT`2bbBp2 2MpB`QMK2Mib bmTTQ`iBM; #Qi? T`Q;`�KKBM; �M/ T`QpBM; rBi?BM i?2 b�K2 H�M@
;m�;2X >Qr2p2`- i?2 2ti2MbBQM�HBiv T`BM+BTH2b K2MiBQM2/ �#Qp2 �`2 MQi �p�BH�#H2 Qmi Q7 i?2
#Qt �M/ M22/ iQ #2 �bbmK2/ �b �tBQKb Dmbi �b BM >Qhhfl6X lMbm`T`BbBM;Hv- i?Bb bmz2`b 7`QK
i?2 b�K2 /`�r#�+Fb �b Bi +QKT`QKBb2b i?2 +QKTmi�iBQM�H #2?�pBQ` Q7 T`Q;`�Kb i?�i mb2 i?2b2
�tBQKbX Ai 2p2M K�F2b bm#b2[m2Mi T`QQ7b KQ`2 +QKTHB+�i2/ �b 2[m�iBQM�H T`QT2`iB2b /Q MQi
?QH/ #v +QKTmi�iBQMX

aQ 7�`- *hh ?�b #22M /2p2HQT2/ rBi? i?2 ?2HT Q7 � T`QiQivT2 >�bF2HH BKTH2K2Mi�iBQM
+�HH2/ +m#B+�Hii (*Q?2M 2i �HX- kyR8#)- #mi Bi ?�b MQi #22M BMi2;`�i2/ BMiQ QM2 Q7 i?2 K�BM
/2T2M/2MiHv ivT2/ 7mM+iBQM�H H�M;m�;2bX _2+2MiHv- �M 2zQ`i r�b K�/2- mbBM; *Q[- iQ Q#i�BM
2z2+iBp2 i`�MbTQ`i 7Q` `2bi`B+i2/ mb2b Q7 i?2 mMBp�H2M+2 �tBQK (h�#�`2�m 2i �HX- kyR3)- #2+�mb2-
�b i?2 �mi?Q`b K2MiBQM- ǳBi Bb MQi v2i +H2�` ?Qr iQ 2ti2M/ (T`QQ7 �bbBbi�Mib) iQ ?�M/H2 mMBp�H2M+2
BMi2`M�HHvǴX

112

*m#B+�H �;/� o2xxQbB- Jƺ`i#2`; �M/ �#2H

q2 �+?B2p2 i?Bb- �M/ KQ`2- #v K�FBM; �;/� BMiQ � +m#B+�H T`Q;`�KKBM; H�M;m�;2 rBi? M�@
iBp2 bmTTQ`i 7Q` mMBp�H2M+2 �M/ ?B;?2` BM/m+iBp2b ivT2b U>AhbVX q2 +�HH i?Bb 2ti2MbBQM *m#B+�H
�;/� (kyRN) �b Bi BM+Q`TQ`�i2b �M/ 2ti2M/b *hhX AM �//BiBQM iQ T`QpB/BM; � 7mHHv +QMbi`m+iBp2
mMBp�H2M+2 i?2Q`2K- *m#B+�H �;/� 2ti2M/b i?2 i?2Q`v #v �HHQrBM; T`QQ7b Q7 2[m�HBiv #v +QT�i@
i2`Mb- >Ahb �b BM *Q[m�M/ 2i �HX (kyR3) rBi? M2bi2/ T�ii2`M K�i+?BM;- �M/ BMi2`p�H �M/ T�`iB�H
T`2@ivT2bX h?2 2ti2MbBQM Q7 /2T2M/2Mi U+QVT�ii2`M K�i+?BM; (*Q+Ft �M/ �#2H- kyR3) iQ i?2
2[m�HBiv ivT2 �HHQrb 7Q` +QMp2MB2Mi T`Q;`�KKBM; rBi? >Ahb �M/ mMBp�H2M+2X q2 /2KQMbi`�i2
i?Bb #v i?2 T`QQ7 i?�i i?2 iQ`mb Bb 2[m�H iQ irQ +B`+H2b BM *m#B+�H �;/�X

/�i� aǙ , a2i r?2`2
#�b2 , aǙ
HQQT , #�b2 ≡ #�b2

/�i� hQ`mb , a2i r?2`2
TQBMi , hQ`mb
HBM2R , TQBMi ≡ TQBMi
HBM2k , TQBMi ≡ TQBMi
b[m�`2 , S�i?S Uλ B ¹ HBM2R B ≡ HBM2R BV HBM2k HBM2k

ik+ , hQ`mb ¹ aǙ Ɠ aǙ
ik+ TQBMi 4 U#�b2 - #�b2V
ik+ UHBM2R BV 4 UHQQT B - #�b2V
ik+ UHBM2k DV 4 U#�b2 - HQQT DV
ik+ Ub[m�`2 B DV 4 UHQQT B - HQQT DV

+ki , aǙ Ɠ aǙ ¹ hQ`mb
+ki U#�b2 - #�b2V 4 TQBMi
+ki UHQQT B - #�b2V 4 HBM2R B
+ki U#�b2 - HQQT DV 4 HBM2k D
+ki UHQQT B - HQQT DV 4 b[m�`2 B D

h?2 T`QQ7 i?�i ik+ �M/ +ki �`2 BMp2`b2b Bb Dmbi `2~2tBpBiv BM 2�+? Q7 i?2 7Qm` +�b2bX q2 +�M i?2M
im`M i?2 BbQKQ`T?BbK BMiQ �M 2[m�HBiv- mbBM; i?2 BKTH2K2Mi�iBQM Q7 mMBp�H2M+2X

q?BH2 i?Bb Bb � `�i?2` 2H2K2Mi�`v `2bmHi BM iQTQHQ;v Bi ?�/ � bm`T`BbBM;Hv MQM@i`BpB�H T`QQ7 BM
>Qhh #2+�mb2 Q7 i?2 H�+F Q7 /2}MBiBQM�H +QKTmi�iBQM 7Q` ?B;?2` +QMbi`m+iQ`b (aQD�FQp�- kyRe-
GB+�i� �M/ "`mM2`B2- kyR8)X qBi? i?2 �//BiBQM�H /2}MBiBQM�H +QKTmi�iBQM `mH2b �M/ T�ii2`M@
K�i+?BM; Q7 *m#B+�H �;/� i?Bb T`QQ7 Bb MQr �HKQbi 2MiB`2Hv i`BpB�HX

_272`2M+2b
�;/� /2p2HQT2`bX �;/� kXeXy /Q+mK2Mi�iBQM- kyRNX ?iiT,ff�;/�X`2�/i?2/Q+bXBQf2MfpkXeXyfX
CX *Q+Ft �M/ �X �#2HX 1H�#Q`�iBM; /2T2M/2Mi U+QVT�ii2`M K�i+?BM;X S`Q+X �*J S`Q;`�KX G�M;X- k

UA*6SV- kyR3X ?iiT,ff/QBX�+KXQ`;fRyXRR98fjkjeddyX
*X *Q?2M- hX *Q[m�M/- aX >m#2`- �M/ �X Jƺ`i#2`;X *m#B+�H ivT2 i?2Q`v, � +QMbi`m+iBp2 BMi2`T`2i�iBQM

Q7 i?2 mMBp�H2M+2 �tBQKX AM huS1aǶR8- pQHX eN Q7 GASA+bX .�;bim?H- kyR8�X ?iiTb,ff/QBXQ`;fRyX9kjyf
GASA+bXhuS1aXkyR8X8X

*X *Q?2M- hX *Q[m�M/- aX >m#2`- �M/ �X Jƺ`i#2`;X *m#B+�HiiX ?iiTb,ff;Bi?m#X+QKfKQ`i#2`;f+m#B+�Hii-
kyR8#X

hX *Q[m�M/- aX >m#2`- �M/ �X Jƺ`i#2`;X PM ?B;?2` BM/m+iBp2 ivT2b BM +m#B+�H ivT2 i?2Q`vX AM GA*aǶR3X
�*J- kyR3X ?iiTb,ff/QBXQ`;fRyXRR98fjkyNRy3XjkyNRNdX

.X _X GB+�i� �M/ :X "`mM2`B2X � +m#B+�H �TT`Q�+? iQ bvMi?2iB+ ?QKQiQTv i?2Q`vX AM jyi? �MMm�H
�*JfA111 avKTQbBmK QM GQ;B+ BM *QKTmi2` a+B2M+2- GA*aǶR8X �*J- kyR8X

EX aQD�FQp�X h?2 1[mBp�H2M+2 Q7 i?2 hQ`mb �M/ i?2 S`Q/m+i Q7 hrQ *B`+H2b BM >QKQiQTv hvT2 h?2Q`vX
�*J h`�Mb�+iBQMb QM *QKTmi�iBQM�H GQ;B+- RdU9V- kyReX

LX h�#�`2�m- 1X h�Mi2`- �M/ JX aQx2�mX 1[mBp�H2M+2b 7Q` 7`22, lMBp�H2Mi T�`�K2i`B+Biv 7Q` 2z2+iBp2
i`�MbTQ`iX S`Q+X �*J S`Q;`�KX G�M;X- kUA*6SV- kyR3X ?iiT,ff/QBX�+KXQ`;fRyXRR98fjkjed3dX

h?2 lMBp�H2Mi 6QmM/�iBQMb S`Q;`�KX >QKQiQTv hvT2 h?2Q`v, lMBp�H2Mi 6QmM/�iBQMb Q7 J�i?2K�iB+bX
?iiTb,ff?QKQiQTvivT2i?2Q`vXQ`;f#QQF- AMbiBimi2 7Q` �/p�M+2/ aim/v- kyRjX

�X o2xxQbBX ai`2�Kb 7Q` +m#B+�H ivT2 i?2Q`vX ?iiT,ffb�Bx�MX;Bi?m#XBQfbi`2�Kb@+iiXT/7- kyRdX

k 113

Author Index

A
Abel, Andreas 8, 112
Ahman, Danel 73
Ahrens, Benedikt 10
Altenkirch, Thorsten 12
Altenmüller, Malin 14
Angiuli, Carlo 104
Annenkov, Danil 16
Atkey, Robert 18, 73
B
Bahr, Patrick 21
Basold, Henning 23
Baston, Co,m 26
Bidlingmaier, Martin 28
Blanqui, Frédéric 30
Bos, Nathaniel 75
Boulier, Simon 32
Buchholtz, Ulrik 34
C
Cagne, Pierre 36
Caires, Lúıs 96
Capretta, Venanzio 26
Castellan, Simon 38
Cavallo, Evan 1, 41
Chlipala, Adam 2
Clairambault, Pierre 38
Cockx, Jesper 43
Cohen, Cyril 45
Coquand, Thierry 47
Cruz-Filipe, Lúıs 49
Cubides, Jonathan 51
D
Dang, Abhishek 53
Devriese, Dominique 81, 84
Dowek, Gilles 55
Dybjer, Peter 38
E
Escardó, Mart́ın 57
Esṕırito Santo, José 59 F
Férey, Gaspard 106
Frumin, Dan 10
G
Genestier, Guillaume 30
Gratzer, Daniel 104
Graulund, Christian 21

114

Gylterud, H̊akon 51
H
Harper, Robert 41
Hermant, Olivier 30
Hritcu Cǎtǎlin 73
Huber, Simon 3
J
de Jong, Tom 61
K
Kaposi, Ambrus 12, 63
Kavvos, G.A. 77
Kerjean, Marie 65
Kesner, Delia 67
Kovács, András 12, 63
Kraus, Nicolai 94
Kurur, Piyush 53
L
Lafont, Ambroise 63
Licata, Daniel 77
Luo, Zhaohui 69
Lynge, Andreas 71
M
Magessi, Marco 10
Mahboubi, Assia 4, 45, 65
Maillard, Kenji 73
Martinez, Guido 73
Matthes, Ralph 59
McBride, Conor 5, 14
Møgelberg, Rasmus 21
Monnier, Stefan 75
Montesi, Fabrizio 49
Montillet, Xavier 45
Morehouse, Edward 77
Mörtberg, Anders 112
N
Nordvall Forsberg, Fredrik 79
Nuyts, Andreas 81, 84
O
Oliveira, Mateus de Oliveira 88
P
Pédrot, Pierre-Marie 90
Peressotti, Marco 49
Piceghello, Stefano 92
Pinto, Lúıs 59
Pinyo, Gun 94
R
von Raumer, Jakob 12
Rivas Exequiel 73

115

Rocha, Pedro 96
Rodin, Andrei 98
Ruch, Fabian 47
S
Sattler, Christian 6, 8
Scoccola, Luis 100
Setzer, Anton 102
Soloviev, Sergei 69, 71
Spitters, Bas 14
Sterling, Jonathan 104 T
Tabareau, Nicolas 43, 90

Tanter, Éric 73
Thiré, François 55, 106
U
Uemura, Taichi 108
V
Vial, Pierre 67
Veltri, Niccolò 23, 110
Vezzosi, Andrea 112 W
van der Weide, Niels 10, 23, 110
Weinberger, Jonathan 34
Weirich, Stephanie 7
Winterhalter, Théo 32, 43
Wood, James 18

116

