A NEW TYPE OF
THEORY WITHIN
COMPUTER SCIENCE

r IMPACT
o |

HTTPS://EUTYPES.CS.RU.NL/



A new type

W1thm co

The EUTypes.C OST Action has been established with.a view to develop understanding of type theory.
This highly collaborative project includes researchers from 27 countries, and will ultimately lead to the
development of improved computer systems and a robust methodology to reduce errors in software and
hardware and in mathematical proofs

In both computer science and computer
programming, a ‘type’ is a specific
classification of data which explains to

the interpreter how the programmer
intends to use the data. The importance of
types is shown by the fact that almost all
programming languages include a notion
of them. Indeed, a type defines a formal
interface between software components
and, in doing so, allows their connections
to be automatically verified. Thus, both the
robustness and reliability of computations
and communications are greatly enhanced.

As technology has advanced, type systems
have rapidly evolved, becoming increasingly
able to capture new aspects of the
behaviour of computer programs, like time
or memory consumption, and side effects.
Alongside this more practical focus comes
the foundational study of type theory itself,
which is the study of how types interact
with one another, and how they can be
organised into a consistent system of
constructing objects and reasoning about
them. A development of type theory will,
therefore, enable an improved computer
manipulation of mathematics.

THE NEED FOR IMPROVED SYSTEMS
In response to these developments, a
COST Action has been established to
accentuate research into type theory and
its many applications in computer science.
Chaired by Professor Herman Geuvers
of Radboud University Nijmegen in the
Netherlands, the highly collaborative,
four-year ‘European research network on
types for programming and verification’
(EUTypes) project involves participation

from 27 different countries.

With the project now into its second year,
the participants work with the notion

of ‘type’ as the fundamental concept of
computational thinking. Geuvers explains:
‘Whenever we distinguish cats from dogs,
or natural numbers from integers, we

deal with types. It is sort of obvious that
mistaking elements of one type with another
may lead to undesirable consequences.’

For example, if a negative number is
allowed to form part of a computer program
in which positive numbers were essential,
such as in computing the age of a living
human being, a problem is likely to result
as humans only ever get older. Such
incompatibility presents a real problem in
computer science and indeed in the real
world too, which it often seeks to represent:
‘There are many examples of computer
malfunctions that were caused by a lack of
systematic control over types of acceptable
numbers,” Geuvers notes. ‘For instance,
the spectacular explosion of the maiden
flight of Ariane 5in 1996 was caused by a
mismatch between the types of numbers
that were used by different components

of the control system.” Such errors occur
because of insufficient type checks. This

is one simple example where types would
have helped. Type theory is a field which
constantly seeks to invent new systems
that can prevent more subtle errors, so the
potential applications for the findings of the
project are vast.

INTERDISCIPLINARY WORKING GROUPS
In order to achieve the aims of EUTypes, the
action has been organised into four Working

Groups (WGs). By managing the work in
this way, two main purposes are served.
Firstly, the main streams of efforts in the
field are reflected; and second, the results
of each contributor’s studies are activated.

The community involved in the project

is strong in theoretical investigations,

so WG1 focuses on foundations and
theory, with many of the activities
concentrated on the study of relations
between contemporary logic and geometry
(expressed in terms of homotopy theory).
‘Since Vladimir Voevodsky introduced
homotopy type theory, researchers have
come to understand that type theory is
the ideal language to express notions
from the abstract mathematical field of
homotopy theory, and that type theory
provides the ideal language to reason
about homotopies in a more flexible,

yet very precise way,” Geuvers says. It is
exciting to see how ideas and concepts
from homotopy type theory feed back into
type theory as a language for programs
and proofs. This has already resulted in
the important concept of “higher inductive
types’. In the coming years we will see
better how this crossfertilization can
result in improved programming and
verification techniques. ‘The interaction
with geometry will be more fruitful

when there are good computer tools

that help in the development of formal
mathematics,’ explains Geuvers. ‘This is
where WG2 comes in — it is focused on
the development of type-based computer
tools.” Such tools are an important means
of demonstrating the strength of the
network’s approach to the outside world.



-

o
- |
= =

o N

h
‘l-
‘I

'

-

. . ! 'S -,
“For me personally, the lgigges‘t‘}.é;‘lﬂ}df the past few‘gap‘ihs -
has been the development and further uhders'fdnding":-o_‘faj_

computation rule that reflects one of the most important

geometrical principles to cover in this area, namely, the

principle behind the univalence axiom ’

Groups WG3 and WG4 are centred on
programming languages and software
verification. They deal with methods for
the development of dependable software
systems, albeit from two different
directions. WG3: Types for Programming
focuses on the development of stronger
type systems and type-based programming
methodologies that will guarantee the
absence of more and more complicated
programming errors (thereby directing

the programmer in writing the correct
programs); WG4: Types for Verification,
meanwhile, focuses on making the process
of property expression and proof easier and
less time-consuming. So, while WG3 and
WG4 are methodologically different, both
serve to complement one another.

THE PRESENT BODES WELL

FOR THE FUTURE

Despite the fact that the project is only a
quarter of the way through it has already
produced some exciting results. ‘For me
personally, the biggest result of the past
few months has been the development and
further understanding of a computation
rule that reflects one of the most important
geometrical principles to cover in this
area,’ says Geuvers. ‘Namely, the principle
behind the univalence axiom.” In lay terms,
this principle states that types of the same
structure, such as isomorphic types, should
be considered equal. While this can be
thought of a natural conclusion to draw, it
is actually rather difficult to frame, as two
types with the same structure can have
considerably different descriptions. Perhaps
this is best shown through the fact that
natural numbers can be thought of as all

numbers obtained by adding one several
times to zero, but are also defined as all
numbers represented in decimal notation.

Throughout the course of the COST Action,
the researchers will employ innovative
methods in order to conduct their
investigations. Importantly, Geuvers and
his colleagues try to formulate all of their

theoretical works by using a proof assistant.

This ensures the results they obtain are far
more reliable, and practically eliminates
the possibility of human error. In addition,
this method enables the team to work

on complex theoretical models that are

far bigger than any other time in history.
‘Formally verifying your mathematical
results is an innovation that can slowly

be seen spreading throughout the field,’
says Geuvers. ‘Proof assistant tools are
improving and the acceptance of this
technology is growing. | believe this is a
technological revolution and we will see its
benefits in the near future.’ If the first year
of EUTypes and the results that have been
obtained so far are anything to go by, the

future might be nearer than we think.

Proof checking in a proof assistant

Project Insights

EU Framework Programme Horizon
2020 COST Action CA15123

Austria « Belgium « Bosnia and
Herzegovina « Czech Republic «
Denmark « Estonia « Finland « France

« FYR Macedonia « Germany « Greece

» Hungary « Ireland « Israel « Italy «
Lithuania « Netherlands « Norway «
Poland « Portugal « Romania « Serbia «
Slovenia « Spain « Sweden « Switzerland «
United Kingdom

Herman Geuvers
Action Chair

+31 243652603
herman@cs.ru.nl
https://eutypes.cs.ru.nl/

Professor Herman Geuvers is a Professor
of Computer Science (Theoretical
Computer Science) in the Software
Science Section of the Institute for
Computing and Information Science
(ICIS) of Radboud University Nijmegen
in the Netherlands, and head of the
Foundations group within this Section.
Since 2015 he has been the Research
Director of ICIS. Geuvers was previously
the Director of Education for the

ICIS curricula at Radboud University
Nijmegen. He is also the Chair of the
Types Steering Committee, responsible
for organising the annual Types
Conference.

——
CcoskE

Radboud University §

COST (European Cooperation in Science and
Technology) is a pan-European intergovernmental
framework. Its mission is to enable break-through
scientific and technological developments leading to
new concepts and products and thereby contribute
to strengthening Europe’s research and innovation
capacities. Www.cost.eu




Improving techniques,
methods and tools of
automatic verification

Professor Herman Geuvers is leading a project that seeks to provide a strong impetus to research on
type theory. Here, he discusses the importance of the research involved, the benefits of collaboration and
some of the challenges that have been faced in the project

You are the Chair
of the COST Action
‘European research
network on types
for programming
and verification’

(EUTypes). Can you
talk a little about what you hope will
be achieved?

The network wants to bring European
researchers in type theory together to
develop and use expressive type systems
as a basis for improved programming
techniques and for methods and tools to
implement computer artefacts and verify
them. Types are pervasive in programming
and information technology. A type defines
a formal interface between software
components, allowing the automatic
verification of their connections, and greatly
enhancing the robustness and reliability of
computations and communications.

Type systems have rapidly evolved over the
past years, becoming more sophisticated,
capturing new aspects of the behaviour

of programs and the dynamics of their
execution. This COST action will give

a strong impetus to research on type

theory and its many applications in
computer science.

In what ways does collaboration play an
important role in the success of
the network?

Because of the sheer size of the problems
involved, all of the research questions
require a joint effort. In addition, the open
network will generate new original insights
and fresh ideas. A result in the form of a tool
that actually helps in the development of
more dependable programs is a complicated
artefact, and is also a long-term enterprise
to develop it. It is far too complicated to
conduct within one research team.

While large companies, such as Microsoft,
Google and Facebook can afford to invest in
type theoretic research and develop proof
assistant tools, it is a far too long-term
project for them to actually go through with
it. In the types community various proof
assistant tools have been developed in the
past, and a range of new ideas have been
invented, tested and incorporated into
their systems. All of this has come about
through an open exchange of ideas and
implementations. This cooperative attitude

is key to the success of this research in the
long term.

Who will benefit from this research?

The work in the project will not have an
immediate impact on society, but we do
expect that it will improve the way computer
programs are written. In particular,
programs will be more robust and more
secure. We have already seen that with past
efforts of our community in the CompCert
C-compiler and the selL4 operating system
— both systems fully verified using tools that
emerged from studies on type theory. This
means that these systems are free from
programming errors. More achievements
of this kind will be possible with the

help of tools and methods developed by
members of the EUTypes community. Also,
the verification of mathematical proofs

will be enhanced considerably using the
proof assistant tools that are developed

by researchers in the project. We have
already seen some impressive examples of
that in the recent past: the formalisation

of the proof of the four-colour theorem,
and the formally checked proof of the
Kepler conjecture.



