Presenting MetaCoq: A Safe Tactic Language for Coq

Beta Ziliani

FAMAF, UNC and CONICET

In colaboration with
Yann Régis-Gianas and Jan-Oliver Kaiser

Contribs by Batrice Carré, Jacques-Pascal Deplaix, and Thomas Refis.

January 13, 2017
False quotes from Coq’s power users

A tactic must succeed no matter what
— Adam Chlipala

A tactic must fail reliably
— Georges Gonthier
False quotes from Coq’s power users

A tactic must succeed no matter what
— Adam Chlipala

A tactic must fail reliably
— Georges Gonthier
A tactic must fail reliably

1. During the definition.
 ▶ A typechecker should catch as many errors as possible.
 ▶ But without getting on our way.

2. During the execution.
 ▶ Proper error handling.
 ▶ Sensible (and formal) semantics.
Today: The Ltac language (example)

\[
\textbf{Definition } \quad x_{\text{in}_z y x} : \forall x \ y \ z : \text{nat}, \ x \in [z; y; x]. \\
\textbf{Proof.} \\
\text{intros.} \\
\text{apply in_cons.} \\
\text{apply in_cons.} \\
\text{apply in_eq.} \\
\text{Qed.}
\]
Today: The Ltac language (example)

Definition \texttt{x_in_zyx} : \(\forall x \ y \ z : \text{nat}, \ x \in [z; y; x] \).
Proof.
 intros.
 apply in_cons.
 apply in_cons.
 apply in_cons.
 apply in_eq.
Qed.

OK for a beginner...
Today: The Ltac language (automated example)

```
Ltac solve_in := repeat (apply in_eq || apply in_cons).

Definition x_in_zyx : \forall x y z : nat, x \in [z; y; x].
Proof.
  intros; solve_in.
Qed.
```
Today: The Ltac language (automated example)

```
Ltac solve_in := repeat (apply in_eq || apply in_cons).

Definition x_in_zyx : ∀ x y z : nat, x ∈ [z; y; x].
Proof.
    intros; solve_in.
Qed.
```

Better, but can we abstract solve_in for different domains?
Presenting MetaCoq

Introduction

Today: no fun writing tactics in Ltac

Today: The Ltac language (automated example 2)

```
Ltac apply_one l :=
  list_fold_left (λ a b ⇒ (b || apply (elem a))) l fail.

Ltac solve_in := repeat (apply_one [Dyn in_eq; Dyn in_cons]).

Definition x_in_zyx : ∀ x y z : nat, x ∈ [z; y; x].
Proof.
  intros; solve_in.
Qed.
```
Today: The Ltac language (automated example 2)

\texttt{Ltac apply_one \textit{l} :=}
\begin{verbatim}
list_fold_left \texttt{Ltac}(\lambda \ a \ b \Rightarrow \ (b \ || \ \text{apply} \ (\text{elem} \ a))) \textit{l} \texttt{fail}.
\end{verbatim}

\texttt{Ltac solve_in :=} \texttt{repeat} \ (\texttt{apply_one \texttt{[Dyn in_eq; Dyn in_cons]}}).

\textbf{Definition} \texttt{x_in_zyx} : \ \forall \ x \ y \ z : \texttt{nat}, \ x \in \ [z; y; x].
\textbf{Proof}.
\begin{verbatim}
intros; solve_in.
\end{verbatim}
\texttt{Qed.}
Presenting MetaCoq

| Introduction
| Today: no fun writing tactics in Ltac

Today: The Ltac language (automated example 2)

```
Ltac apply_one l :=
    list_fold_left ltac:(λ a b ⇒ (b || apply (elem a))) fail l.

Ltac solve_in := repeat (apply_one [Dyn in_eq; Dyn in_cons]).
```

```
Definition x_in_zyx : ∀ x y z : nat, x ∈ [z; y; x].
Proof.
    intros; solve_in.
Qed.
```
Presenting MetaCoq

Introduction

Today: no fun writing tactics in Ltac

Today: The Ltac language (automated example 2)

Ltac apply

one :=

list fold left ltac:

(λ a b ⇒ (b ||| apply (elem a))) .

Ltac solve

in := repeat (apply one [Dyn in eq; Dyn in cons]).

Definition x in zyx :

∀ x y z : nat,

x ∈ [z; y; x].

Proof.

intros; solve in.

Qed.
Summary: Ltac

1. During the definition.
 - The typechecker does not catch many errors.

2. During the execution.
 - Improper error handling.
 - Insensible semantics.
The Mtac language

- Gallina is a pure dependently-typed language.
The Mtac language

- Gallina is a pure dependently-typed language.
- Can we add typed tactic programming to Gallina?
Presenting MetaCoq

The Mtac language

- Gallina is a **pure** dependently-typed language.
- Can we add **typed** tactic programming to Gallina?
- Use a monad!
The Mtac language

- Gallina is a **pure** dependently-typed language.
- Can we add **typed** tactic programming to Gallina?
- Use a monad!
 - Provide **meta-programming** primitives a Gallina type.
The Mtac language

- Gallina is a pure dependently-typed language.
- Can we add typed tactic programming to Gallina?
- Use a monad!
 - Provide meta-programming primitives a Gallina type.
 - Provide an interpreter to execute them.
The Mtac language

Definition solve_in \{A\} (x:A) : \forall l, M (x \in l) :=
 \text{mfix1} f (l : \text{list} A) : M (x \in l) :=
 \text{mmatch} l \text{ with}
 | [? l'] x :: l' ⇒ \text{ret} (\text{in_eq} _ _)
 | [? y l'] y :: l' ⇒ r ← f l';
 \quad \text{ret} (\text{in_cons} _ _ _ r)
 | _ ⇒ \text{failwith} "Not found"
end.

Lemma x_in_zyx : \forall x y z : \text{nat}, x \in [z; y; x].
Proof.
 intros; mrun (solve_in _ _).
Qed.
The Mtac language

Definition solve_in {A} (x:A) : ∀ l, M (x ∈ l) :=
 mfix1 f (l : list A) : M (x ∈ l) :=
 mmatch l with
 | [? l’] x :: l’ ⇒ ret (in_eq _ _)
 | [? y l’] y :: l’ ⇒ r ← f l’;
 ret (in_cons _ _ r)
 | _ ⇒ failwith "Not found"
end.

Lemma x_in_zyx : ∀ x y z:nat, x ∈ [z; y; x].
Proof.
 intros; mrun (solve_in _ _).
Qed.
The Mtac language

Definition solve_in \{A\} (x:A) : \forall l, M (x \in l) :=
 mfix1 f (l : list A) : M (x \in l) :=
 mmatch l with
 | [? l'] x :: l' \Rightarrow \text{ret (in_eq _ _)}
 | [? y l'] y :: l' \Rightarrow r \leftarrow f l';
 \text{ret (in_cons _ _ _ r)}
 | _ \Rightarrow \text{failwith ”Not found”}
 end.

Lemma x_in_zyx : \forall x y z:nat, x \in [z; y; x].
Proof.
 intros; mrun (solve_in _ _).
Qed.
The Mtac language

Definition solve_in \{A\} (x:A) : \forall l, M (x \in l) :=
mfix1 f (l : list A) : M (x \in l) :=
 mmatch l with
 | [? l'] x :: l' \Rightarrow ret (in_eq _ _)
 | [? y l'] y :: l' \Rightarrow r \leftarrow f l';
 | _ \Rightarrow failwith "Not found"
end.

Lemma x_in_zyx : \forall x y z:nat, x \in [z; y; x].
Proof.
 intros; mrun (solve_in _ _).
Qed.
The Mtac language

Definition `solve_in` \(\{A\} (x:A) : \forall l, M (x \in l) := \)

`mfix1 f (l : list A) : M (x \in l) :=`

`mmatch l with`

\[| [? l'] x :: l' \Rightarrow \text{ret } (\text{in_eq } _ _)|\]

\[| [? y l'] y :: l' \Rightarrow r \leftarrow f l'; \]

\[\quad \text{ret } (\text{in_cons } _ _ _ r)\]

\[| _ \Rightarrow \text{failwith } "\text{Not found}" \]

end.

Lemma `x_in_zyx` : \(\forall x y z : \text{nat}, x \in [z; y; x] \).

Proof.

`intros; mrun (solve_in _ _)`.
Qed.
Problem with the Mtac language

Compare

Ltac `solve_in := repeat (apply in_eq || apply in_cons).`

with

Definition `solve_in {A} (x:A) : ∀ l, M (x ∈ l) := mfix1 f (l : list A) : M (x ∈ l) :=`

```
  mmatch / with
  | [? l'] x :: l' ⇒ ret (in_eq _ _)
  | [? y l'] y :: l' ⇒ r ← f l'; ret (in_cons _ _ r)
  | _ ⇒ failwith "Not found"
```

end.
Adding tactics to Mtac

- Add a type for tactics.

\[
\text{goal} \to \mathbb{M} \left(\text{list goal}\right)
\]

(But what is a goal?)

- Write basic tactics (intros, assumption, \ldots) in Mtac.
Adding tactics to Mtac: IMPOSSIBLE!

- Add a type for tactics.

 \[\text{goal} \rightarrow M(\text{list goal}) \]

 (But what is a goal?)

- Write basic tactics (intros, assumption, \ldots) in Mtac.
 - Insufficient primitives!
 - Inconvenient semantics!
Mtac2: improving Mtac

- Several new primitives.
 - hypotheses, abs_prod, abs_let, abs_fix, unify, ...

- Revised semantics.
 - Backtracking of meta-context.

- `mmatch` in Gallina.
Builds on top of Mtac2.
• Adds a type for tactics and goals.
• Adds a proof environment MProof.
• Several basic tactics:
 ▶ intros, apply, assumption, reflexivity, generalize, clear, constructor, pose, assert, simpl, cbv, fix, repeat, . . .
• Several tactic combinators:
 ▶ &⟩, |1⟩, |l⟩
 ▶ Insert your combinator here.
MetaCoq (example)

Definition apply_one l : tactic :=
 fold_left (λ a b ⇒ a or (apply (elem b))) l (fail CantApply).

Definition solve_in := repeat (apply_one [Dyn in_eq; Dyn in_cons]).

Goal ∀ x y z : nat, x ∈ [z; y; x].
MProof.
 intros &⟩ solve_in.
Qed.
MetaCoq (example)

Definition apply_one l : tactic :=
 fold_left (λ a b ⇒ a or (apply (elem b))) l (fail CantApply).

Definition solve_in := repeat (apply_one [Dyn in_eq; Dyn in_cons]).

Goal ∀ x y z : nat, x ∈ [z; y; x].
MProof.
 intros &⟩ solve_in.
Qed.
MetaCoq (example)

Definition apply_one l : tactic :=
 fold_left (\ a b \to a or (apply (elem b))) l (fail CantApply).

Definition solve_in := repeat (apply_one [Dyn in_eq; Dyn in_cons]).

Goal \forall x y z : \text{nat}, x \in [z; y; x].
MProof.
 intros &\ solve_in.
Qed.
MetaCoq (example)

Definition apply_one l : tactic :=
 fold_left (\ a b \rightarrow a or (apply (elem b))) l (fail CantApply).

Definition solve_in := repeat (apply_one [Dyn in_eq; Dyn in_cons]).

Goal \forall x y z : nat, x \in [z; y; x].
MProof.
 intros & solve_in.
Qed.
MetaCoq (example)

Definition apply_one l : tactic :=
 fold_left (λ a b => a or (apply (elem b))) l (fail CantApply).

Definition solve_in := repeat (apply_one [Dyn in_eq; Dyn in_cons]).

Goal ∀ x y z : nat, x ∈ [z; y; x].
MProof.
 intros &.solve_in.
Qed.
MetaCoq (example)

Definition apply_one l : tactic :=
 fold_left (λ a b ⇒ a or (apply (elem b))) l (fail CantApply).

Definition solve_in := repeat (apply_one [Dyn in_eq; Dyn in_cons]).

Goal ∀ x y z : nat, x ∈ [z; y; x].
MProof.
 intros & solve_in.
Qed.
MetaCoq (example)

Definition apply_one l : tactic :=
 fold_left (λ a b⇒a or (apply (elem b))) l (fail CantApply).

Definition solve_in := repeat (apply_one [Dyn in_eq; Dyn in_cons]).

Goal ∀ x y z : nat, x ∈ [z; y; x].
MProof.
 intros & solve_in.
Qed.

Tactics that fail reliably with MetaCoq
Bonus track: Ever happened to you... that you couldn’t write the proof you like?
An example using Ssreflect

Definition add0 : ∀ n, n + 0 = n.
Proof.
 elim; first reflexivity.
 move⇒ n /= →; reflexivity.
Qed.
An example using Ssreflect

Definition add0 : ∀ n, n + 0 = n.
Proof.
 elim; first reflexivity.
 move⇒ n /= →; reflexivity.
Qed.
An example using Ssreflect

Definition \(\text{add0} : \forall \ n, \ n + 0 = n. \)

Proof.

- elim; first reflexivity.
- move\(\Rightarrow \ n \neq \rightarrow \); reflexivity.

Qed.
In MetaCoq

Definition add0 : ∀ n, n + 0 = n.
MProof.
 elim &⟩ case 0 do reflexivity.
 intros &⟩ simpl. select (=) rrewrite &⟩ reflexivity.
Qed.
In MetaCoq

Definition add0 : ∀ n, n + 0 = n.
MProof.
 elim &⟩ case 0 do reflexivity.
 intros &⟩ simpl. select (≈) rrewrite &⟩ reflexivity.
Qed.
In MetaCoq

Definition add0 : ∀ n, n + 0 = n.
MProof.
 elim &⟩ case 0 do reflexivity.
 intros &⟩ simpl. select (_ = _) rrewrite &⟩ reflexivity.
Qed.
Definition add0 : \(\forall \, n, \, n + 0 = n \).
MProof.
 elim \& case 0 do reflexivity.
 intros \& simpl. select (_ = _) rrewrite \& reflexivity.
Qed.

More understandable and robust proofs with MetaCoq
Presenting MetaCoq

Appendix

case in MetaCoq (2)

01 Definition get_constrs :=
02 mfix1 fill (T : Type) : M (list dyn) :=
03 mmatch T with
04 | [? A B] A → B ⇒ fill B
05 | _ ⇒ l ← constrs T; let (_, l') := l in ret l'
06 end.
07
08 Definition index {A} (c : A) :=
09 l ← get_constrs A;
10 (mfix2 f (i : nat) (l : list dyn) : M nat :=
11 mmatch l with
12 | [? l'] (Dyn c :: l') ⇒ ret i
13 | [? d' l'] (d' :: l') ⇒ f (S i) l'
14 end) 0 l.
“Type” error in Coq 8.6

In nested Ltac calls to "apply_one_of" and "list_fold_left", last call failed.
Error:
Must evaluate to a closed term offending expression:
l
this is a closure with body fail
in environment
Type error in MetaCoq

Toplevel input, characters 85-99:
Error:
In environment
l : ?T
The term "fail exception" has type "tactic" while it is expected to have type "list dyn".
Being honest

Current issues with MetaCoq:

- Performance.
Being honest

Current issues with MetaCoq:

- Performance.
- Performance.
Being honest

Current issues with MetaCoq:

- Performance.
- Performance.
- Seriously, performance.
Being honest

Current issues with MetaCoq:

▶ Performance.
▶ Performance.
▶ Seriously, performance.
▶ Some coercions unavoidable.
Current issues with MetaCoq:

- Performance.
- Performance.
- Seriously, performance.
- Some coercions unavoidable.
- Some issues with universes (so far avoidable).